Non-Invasive Spectroscopy for Measuring Cerebral Tissue Oxygenation and Metabolism as a Function of Cerebral Perfusion Pressure
Abstract
:1. Introduction
2. Results
2.1. Changes in Tissue Oxygenation with Autoregulation
2.2. Comparison with Other Models
2.3. Metric for Autoregulatory Assessment
3. Discussion
3.1. Tissue Oxygenation and Metabolism: Clinical Metrics for Diagnosing Autoregulatory Failure
3.2. Other Models and Validity of Assumptions
3.3. Limitations and Future Directions
4. Materials and Methods
4.1. Subjects and Experimental Protocol
4.2. Hemodynamic Signal Acquisition
4.3. Signal Processing
4.4. Estimation of Tissue Oxygenation Metrics: General Model
4.5. Alternative Model: Constant γ Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lassen, N.A. Cerebral Blood Flow and Oxygen Consumption in Man. Physiol. Rev. 1959, 39, 183–238. [Google Scholar] [CrossRef] [Green Version]
- Claassen, J.A.H.R.; Thijssen, D.H.J.; Panerai, R.B.; Faraci, F.M. Regulation of Cerebral Blood Flow in Humans: Physiology and Clinical Implications of Autoregulation. Physiol. Rev. 2021, 101, 1487–1559. [Google Scholar] [CrossRef]
- Czosnyka, M.; Miller, C.; Le Roux, P.; Menon, D.K.; Vespa, P.; Citerio, G.; Bader, M.K.; Brophy, G.M.; Diringer, M.N.; Stocchetti, N.; et al. Monitoring of Cerebral Autoregulation. Neurocrit. Care 2014, 21, 95–102. [Google Scholar] [CrossRef]
- Vergouwen, M.D.I.; Vermeulen, M.; van Gijn, J.; Rinkel, G.J.E.; Wijdicks, E.F.; Muizelaar, J.P.; Mendelow, A.D.; Juvela, S.; Yonas, H.; Terbrugge, K.G.; et al. Definition of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies. Stroke 2010, 41, 2391–2395. [Google Scholar] [CrossRef] [Green Version]
- Guidelines for the Management of Severe Traumatic Brain Injury. J. Neurotrauma 2007, 24 Suppl 1 (Suppl. 1), i–vi. [CrossRef]
- Obrist, W.D.; Langfitt, T.W.; Jaggi, J.L.; Cruz, J.; Gennarelli, T.A. Cerebral Blood Flow and Metabolism in Comatose Patients with Acute Head Injury. Relationship to Intracranial Hypertension. J. Neurosurg. 1984, 61, 241–253. [Google Scholar] [CrossRef]
- Powers, W.J.; Videen, T.O.; Markham, J.; Walter, V.; Perlmutter, J.S. Metabolic Control of Resting Hemispheric Cerebral Blood Flow Is Oxidative, Not Glycolytic. J. Cereb. Blood Flow Metab. 2011, 31, 1223–1228. [Google Scholar] [CrossRef]
- Launey, Y.; Fryer, T.D.; Hong, Y.T.; Steiner, L.A.; Nortje, J.; Veenith, T.V.; Hutchinson, P.J.; Ercole, A.; Gupta, A.K.; Aigbirhio, F.I.; et al. Spatial and Temporal Pattern of Ischemia and Abnormal Vascular Function Following Traumatic Brain Injury. JAMA Neurol. 2020, 77, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Baker, W.B.; Balu, R.; He, L.; Kavuri, V.C.; Busch, D.R.; Amendolia, O.; Quattrone, F.; Frangos, S.; Maloney-Wilensky, E.; Abramson, K.; et al. Continuous Non-Invasive Optical Monitoring of Cerebral Blood Flow and Oxidative Metabolism after Acute Brain Injury. J. Cereb. Blood Flow Metab. 2019, 39, 1469–1485. [Google Scholar] [CrossRef] [PubMed]
- Fantini, S.; Franceschini, M.A.; Fishkin, J.B.; Barbieri, B.; Gratton, E. Quantitative Determination of the Absorption Spectra of Chromophores in Strongly Scattering Media: A Light-Emitting-Diode Based Technique. Appl. Opt. 1994, 33, 5204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassaroli, A.; Fantini, S. Comment on the Modified Beer-Lambert Law for Scattering Media. Phys. Med. Biol. 2004, 49, N255–N257. [Google Scholar] [CrossRef] [Green Version]
- Durduran, T.; Yodh, A.G. Diffuse Correlation Spectroscopy for Non-Invasive, Micro-Vascular Cerebral Blood Flow Measurement. Neuroimage 2014, 85, 51. [Google Scholar] [CrossRef] [Green Version]
- Culver, J.P.; Durduran, T.; Furuya, D.; Cheung, C.; Greenberg, J.H.; Yodh, A.G. Diffuse Optical Tomography of Cerebral Blood Flow, Oxygenation, and Metabolism in Rat during Focal Ischemia. J. Cereb. Blood Flow Metab. 2003, 23, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Boas, D.A.; Strangman, G.; Culver, J.P.; Hoge, R.D.; Jasdzewski, G.; Poldrack, R.A.; Rosen, B.R.; Mandeville, J.B. Can the Cerebral Metabolic Rate of Oxygen Be Estimated with Near-Infrared Spectroscopy? Phys. Med. Biol. 2003, 48, 2405–2418. [Google Scholar] [CrossRef] [Green Version]
- Payne, S.J. The Estimation of Cerebral Metabolic Rate of O2 from Near Infra-Red Spectroscopy. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Shanghai, China, 31 August–3 September 2005; Volume 7, pp. 3974–3977. [Google Scholar]
- Kocsis, L.; Herman, P.; Eke, A. Mathematical Model for the Estimation of Hemodynamic and Oxygenation Variables by Tissue Spectroscopy. J. Theor. Biol. 2006, 241, 262–275. [Google Scholar] [CrossRef]
- Fantini, S. A New Hemodynamic Model Shows That Temporal Perturbations of Cerebral Blood Flow and Metabolic Rate of Oxygen Cannot Be Measured Individually Using Functional Near-Infrared Spectroscopy. Physiol. Meas. 2014, 35, N1–N9. [Google Scholar] [CrossRef] [Green Version]
- Willie, C.K.; Tzeng, Y.C.; Fisher, J.A.; Ainslie, P.N. Integrative Regulation of Human Brain Blood Flow. J. Physiol. 2014, 592, 841–859. [Google Scholar] [CrossRef]
- Fantini, S.; Sassaroli, A.; Tgavalekos, K.T.; Kornbluth, J. Cerebral Blood Flow and Autoregulation: Current Measurement Techniques and Prospects for Noninvasive Optical Methods. Neurophotonics 2016, 3, 031411. [Google Scholar] [CrossRef]
- Fan, A.P.; Khalil, A.A.; Fiebach, J.B.; Zaharchuk, G.; Villringer, A.; Villringer, K.; Gauthier, C.J. Elevated Brain Oxygen Extraction Fraction Measured by MRI Susceptibility Relates to Perfusion Status in Acute Ischemic Stroke. J. Cereb. Blood Flow Metab. 2020, 40, 539–551. [Google Scholar] [CrossRef]
- Powers, W.J. Cerebral Blood Flow and Metabolism: Regulation and Pathophysiology in Cerebrovascular Disease. In Stroke: Pathophysiology, Diagnosis, and Management; Elsevier: Amsterdam, The Netherlands, 2015; pp. 28–46. ISBN 9780323295444. [Google Scholar]
- Boushel, R.; Langberg, H.; Olesen, J.; Gonzales-Alonzo, J.; Bülow, J.; Kjær, M. Monitoring Tissue Oxygen Availability with near Infrared Spectroscopy (NIRS) in Health and Disease. Scand. J. Med. Sci. Sports 2001, 11, 213–222. [Google Scholar] [CrossRef]
- Hashem, M.; Dunn, J.F. Brain Oximetry and the Quest for Quantified Metabolic Rate: Applications Using MRI and Near-Infrared Spectroscopy. Appl. Magn. Reson. 2021, 52, 1343–1377. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, D.; Tekes, A.; Kulikowicz, E.; Martin, L.J.; Lee, J.K.; Liu, P.; Qin, Q. Multi-Parametric Evaluation of Cerebral Hemodynamics in Neonatal Piglets Using Non-Contrast-Enhanced Magnetic Resonance Imaging Methods. J. Magn. Reson. Imaging 2021, 54, 1053–1065. [Google Scholar] [CrossRef]
- Steiner, L.A.; Coles, J.P.; Johnston, A.J.; Chatfield, D.A.; Smielewski, P.; Fryer, T.D.; Aigbirhio, F.I.; Clark, J.C.; Pickard, J.D.; Menon, D.K.; et al. Assessment of Cerebrovascular Autoregulation in Head-Injured Patients: A Validation Study. Stroke 2003, 34, 2404–2409. [Google Scholar] [CrossRef] [Green Version]
- Derdeyn, C.P.; Videen, T.O.; Yundt, K.D.; Fritsch, S.M.; Carpenter, D.A.; Grubb, R.L.; Powers, W.J. Variability of Cerebral Blood Volume and Oxygen Extraction: Stages of Cerebral Haemodynamic Impairment Revisited. Brain 2002, 125, 595–607. [Google Scholar] [CrossRef]
- Klein, S.P.; De Sloovere, V.; Meyfroidt, G.; Depreitere, B. Differential Hemodynamic Response of Pial Arterioles Contributes to a Quadriphasic Cerebral Autoregulation Physiology. J. Am. Heart Assoc. 2022, 11, 22943. [Google Scholar] [CrossRef]
- Wilson, M.H. Monro-Kellie 2.0: The Dynamic Vascular and Venous Pathophysiological Components of Intracranial Pressure. J. Cereb. Blood Flow Metab. 2016, 36, 1338–1350. [Google Scholar] [CrossRef] [Green Version]
- Oddo, M.; Bösel, J.; Le Roux, P.; Menon, D.K.; Vespa, P.; Citerio, G.; Bader, M.K.; Brophy, G.M.; Diringer, M.N.; Stocchetti, N.; et al. Monitoring of Brain and Systemic Oxygenation in Neurocritical Care Patients. Neurocrit. Care 2014, 21, 103–120. [Google Scholar] [CrossRef]
- Collins, J.A.; Rudenski, A.; Gibson, J.; Howard, L.; O’Driscoll, R. Relating Oxygen Partial Pressure, Saturation and Content: The Haemoglobin–Oxygen Dissociation Curve. Breathe 2015, 11, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Anesthesia Guidelines: Non-Human Primates | AHC Research Services—University of Minnesota. Available online: https://www.researchservices.umn.edu/services-name/research-animal-resources/research-support/guidelines/anesthesia-non-human-primates#drugs (accessed on 25 October 2021).
- Gobe, B.O.; Gobel, A.S.; Weisser, B.; Gldnzer, K.; Vetter, H.; Düsing, R. Arterial Blood Pressure Correlation with Erythrocyte Count, Hematocrit, and Hemoglobin Concentration. Am. J. Hypertens. 1991, 4, 14–19. [Google Scholar] [CrossRef]
- Eke, A. Hematocrit Changes in the Extra- and Intraparenchymal Circulation of the Feline Brain Cortex in the Course of Global Cerebral Ischemia. Adv. Exp. Med. Biol. 1989, 248, 439–449. [Google Scholar] [CrossRef]
- Kusunoki, M.; Kimura, K.; Nakamura, M.; Isaka, Y.; Yoneda, S.; Abe, H. Effects of Hematocrit Variations on Cerebral Blood Flow and Oxygen Transport in Ischemic Cerebrovascular Disease. J. Cereb. Blood Flow Metab. 1981, 1, 413–417. [Google Scholar] [CrossRef]
- Mondal, H.; Budh, D.P. Hematocrit; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- He, L.; Baker, W.B.; Milej, D.; Kavuri, V.C.; Mesquita, R.C.; Busch, D.R.; Abramson, K.; Jiang, J.Y.; Diop, M.; Lawrence, K.S.; et al. Noninvasive Continuous Optical Monitoring of Absolute Cerebral Blood Flow in Critically Ill Adults. Neurophotonics 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Goyal, M.S.; Blazey, T.M.; Su, Y.; Couture, L.E.; Durbin, T.J.; Bateman, R.J.; Benzinger, T.L.S.; Morris, J.C.; Raichle, M.E.; Vlassenko, A.G. Persistent Metabolic Youth in the Aging Female Brain. Proc. Natl. Acad. Sci. 2019, 116, 3251–3255. [Google Scholar] [CrossRef] [Green Version]
- Aanerud, J.; Borghammer, P.; Rodell, A.; Jónsdottir, K.Y.; Gjedde, A. Sex Differences of Human Cortical Blood Flow and Energy Metabolism. J. Cereb. Blood Flow Metab. 2017, 37, 2433–2440. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, E.A.; Piechnik, S.K.; Smielewski, P.; Raabe, A.; Matta, B.F.; Czosnyka, M. Symmetry of Cerebral Hemodynamic Indices Derived from Bilateral Transcranial Doppler. J. Neuroimaging 2003, 13, 248–254. [Google Scholar] [CrossRef]
- Ruesch, A.; Acharya, D.; Schmitt, S.; Yang, J.; Smith, M.A.; Kainerstorfer, J.M. Comparison of Static and Dynamic Cerebral Autoregulation under Anesthesia Influence in a Controlled Animal Model. PLoS One 2021, 16, e0245291. [Google Scholar] [CrossRef]
- Fantini, S.; Hueber, D.; Franceschini, M.A. Non-Invasive and Quantitative near-Infrared Haemoglobin Spectrometry in the Piglet Brain during Hypoxic Stress, Using a Frequency-Domain Multidistance Instrument † Related Content Non-Invasive Optical Monitoring of the Newborn Piglet Brain Usingcontinuous. Phys. Med. Biol. 2001, 46, 41–62. [Google Scholar]
- Ruesch, A.; Yang, J.; Schmitt, S.; Acharya, D.; Smith, M.A.; Kainerstorfer, J.M. Estimating Intracranial Pressure Using Pulsatile Cerebral Blood Flow Measured with Diffuse Correlation Spectroscopy. Biomed. Opt. Express 2020, 11, 1462. [Google Scholar] [CrossRef]
- Fantini, S.; Hueber, D.; Franceschini, M.A.; Gratton, E.; Rosenfeld, W.; Stubblefield, P.G.; Maulik, D.; Stankovic, M.R. Non-Invasive Optical Monitoring of the Newborn Piglet Brain Using Continuous-Wave and Frequency-Domain Spectroscopy. Phys. Med. Biol. 1999, 44, 1543–1563. [Google Scholar] [CrossRef]
- Piao, D.; Barbour, R.L.; Graber, H.L.; Lee, D.C. On the Geometry Dependence of Differential Pathlength Factor for Near-Infrared Spectroscopy. I. Steady-State with Homogeneous Medium. J. Biomed. Opt. 2015, 20, 105005. [Google Scholar] [CrossRef]
- Hoshi, Y.; Shimada, M.; Sato, C.; Iguchi, Y. Reevaluation of Near-Infrared Light Propagation in the Adult Human Head: Implications for Functional near-Infrared Spectroscopy. J. Biomed. Opt. 2005, 10, 064032. [Google Scholar] [CrossRef] [Green Version]
- Meidert, A.S.; Saugel, B. Techniques for Non-Invasive Monitoring of Arterial Blood Pressure. Front. Med. 2017, 4, 231. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, D.; Mukherjea, A.; Cao, J.; Ruesch, A.; Schmitt, S.; Yang, J.; Smith, M.A.; Kainerstorfer, J.M. Non-Invasive Spectroscopy for Measuring Cerebral Tissue Oxygenation and Metabolism as a Function of Cerebral Perfusion Pressure. Metabolites 2022, 12, 667. https://doi.org/10.3390/metabo12070667
Acharya D, Mukherjea A, Cao J, Ruesch A, Schmitt S, Yang J, Smith MA, Kainerstorfer JM. Non-Invasive Spectroscopy for Measuring Cerebral Tissue Oxygenation and Metabolism as a Function of Cerebral Perfusion Pressure. Metabolites. 2022; 12(7):667. https://doi.org/10.3390/metabo12070667
Chicago/Turabian StyleAcharya, Deepshikha, Ankita Mukherjea, Jiaming Cao, Alexander Ruesch, Samantha Schmitt, Jason Yang, Matthew A. Smith, and Jana M. Kainerstorfer. 2022. "Non-Invasive Spectroscopy for Measuring Cerebral Tissue Oxygenation and Metabolism as a Function of Cerebral Perfusion Pressure" Metabolites 12, no. 7: 667. https://doi.org/10.3390/metabo12070667
APA StyleAcharya, D., Mukherjea, A., Cao, J., Ruesch, A., Schmitt, S., Yang, J., Smith, M. A., & Kainerstorfer, J. M. (2022). Non-Invasive Spectroscopy for Measuring Cerebral Tissue Oxygenation and Metabolism as a Function of Cerebral Perfusion Pressure. Metabolites, 12(7), 667. https://doi.org/10.3390/metabo12070667