Effect of Blanching and Boiling on the Secondary Metabolism of Cultivated Cardoon Stalks: A Case Study of the Tuscany Region (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Boiling Treatment
2.3. Total Phenolic Content (TPC) Assay
2.4. Cynaropicrin and Phenolic Compound Extraction
2.5. Cynaropicrin and Phenolic Characterization
2.6. Antioxidant Activity (AA) Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Blanching
3.2. Effect of Boiling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rottenberg, A.; Zohary, D. The wild ancestry of the cultivated artichoke. Genet. Resour. Crop Evol. 1996, 43, 53–58. [Google Scholar] [CrossRef]
- Francaviglia, R.; Bruno, A.; Falcucci, M.; Farina, R.; Renzi, G.; Russo, D.E.; Sepe, L.; Neri, U. Yields and quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land in Central Italy. Eur. J. Agron. 2016, 72, 10–19. [Google Scholar] [CrossRef]
- Ferioli, F.; D’Antuono, L.F. Phenolic compounds in local Italian types of cultivated cardoon (Cynara cardunculus L. var. altilis DC) stalks and artichoke (Cynara cardunculus L. var. scolymus L.) edible sprouts. J. Food Compos. Anal. 2021, 106, 104342. [Google Scholar] [CrossRef]
- Huarte, E.; Juániz, I.; Cid, C.; de Peña, M.P. Impact of blanching and frying heating rate/time on the antioxidant capacity and (poly) phenols of cardoon stalks (Cynara cardunculus L. var. altilis DC). Int. J. Gastron. Food Sci. 2021, 26, 100415. [Google Scholar] [CrossRef]
- Pinelli, P.; Agostini, F.; Comino, C.; Lanteri, S.; Portis, E.; Romani, A. Simultaneous quantification of caffeoyl esters and flavonoids in wild and cultivated cardoon leaves. Food Chem. 2007, 105, 1695–1701. [Google Scholar] [CrossRef]
- Belitz, H.D.; Wieser, H. Bitter compounds: Occurrence and structure-activity relationships. Food Rev. Int. 1985, 1, 271–354. [Google Scholar] [CrossRef]
- Ramos, P.A.; Guerra, Â.R.; Guerreiro, O.; Santos, S.A.; Oliveira, H.; Freire, C.S.; Silvestre, A.J.D.; Duarte, M.F. Antiproliferative effects of Cynara cardunculus L. var. altilis (DC) lipophilic extracts. Int. J. Mol. Sci. 2017, 18, 63. [Google Scholar] [CrossRef] [Green Version]
- Brás, T.; Neves, L.A.; Crespo, J.G.; Duarte, M.F. Effect of extraction methodologies and solvent selection upon cynaropicrin extraction from Cynara cardunculus leaves. Sep. Purif. Technol. 2020, 236, 116283. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. J. Food Compos. Anal. 2011, 24, 148–153. [Google Scholar] [CrossRef]
- Juániz, I.; Ludwig, I.A.; Huarte, E.; Pereira-Caro, G.; Moreno-Rojas, J.M.; Cid, C.; De Peña, M.P. Influence of heat treatment on antioxidant capacity and (poly) phenolic compounds of selected vegetables. Food Chem. 2016, 197, 466–473. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chan, S.W.; Tseng, H.L.; Deng, Y.; Hoi, P.M.; Choi, P.S.; Or, P.M.Y.; Yang, J.; Lam, F.F.Y.; Lee, S.M.Y.; et al. Danshensu is the major marker for the antioxidant and vasorelaxation effects of Danshen (Salvia miltiorrhiza) water-extracts produced by different heat water-extractions. Phytomedicine 2012, 19, 1263–1269. [Google Scholar] [CrossRef]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant Activity and Polyphenols Characterization of Four Monovarietal Grape Pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Laddomada, B.; Blanco, A.; Mita, G.; D’Amico, L.; Singh, R.P.; Ammar, K.; Crossa, J.; Guzmán, C. Drought and heat stress impacts on phenolic acids accumulation in durum wheat cultivars. Foods 2021, 10, 2142. [Google Scholar] [CrossRef]
- Rivero, R.M.; Ruiz, J.M.; Garcıa, P.C.; Lopez-Lefebre, L.R.; Sánchez, E.; Romero, L. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001, 160, 315–321. [Google Scholar] [CrossRef]
- Garcìa, L.M.; Ceccanti, C.; Negro, C.; De Bellis, L.; Incrocci, L.; Pardossi, A.; Guidi, L. Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves. Horticulturae 2021, 7, 10. [Google Scholar] [CrossRef]
- Sun, J.; Deering, R.W.; Peng, Z.; Najia, L.; Khoo, C.; Cohen, P.; Seeram, N.; Rowley, D. Pectic oligosaccharides from cranberry prevent quiescence and persistence in the uropathogenic Escherichia coli CFT073. Sci. Rep. 2019, 9, 1959. [Google Scholar] [CrossRef]
- Costa, F.N.; Borges, R.M.; Leitão, G.G.; Jerz, G. Preparative mass-spectrometry profiling of minor concentrated metabolites in Salicornia gaudichaudiana Moq by high-speed countercurrent chromatography and off-line electrospray mass-spectrometry injection. J. Sep. Sci. 2019, 42, 1528–1541. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC–DAD-ESI-QTOF-MS. Food Chem. 2013, 141, 2269–2277. [Google Scholar] [CrossRef]
- Farag, M.A.; El-Ahmady, S.H.; Elian, F.S.; Wessjohann, L.A. Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC–q-TOF-MS and chemometrics. Phytochemistry 2013, 95, 177–187. [Google Scholar] [CrossRef]
- Ge, L.; Wan, H.; Tang, S.; Chen, H.; Li, J.; Zhang, K.; Zhou, B.; Fei, J.; Wu, S.; Zeng, X. Novel caffeoylquinic acid derivatives from Lonicera japonica Thunb. flower buds exert pronounced anti-HBV activities. RSC Adv. 2018, 8, 35374–35385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawidowicz, A.L.; Typek, R. Transformation of chlorogenic acids during the coffee beans roasting process. Eur. Food Res. Technol. 2017, 243, 379–390. [Google Scholar] [CrossRef]
- Scavo, A.; Rial, C.; Molinillo, J.M.; Varela, R.M.; Mauromicale, G.; Macías, F.A. Effect of shading on the sesquiterpene lactone content and phytotoxicity of cultivated cardoon leaf extracts. J. Agric. Food Chem. 2020, 68, 11946–11953. [Google Scholar] [CrossRef] [PubMed]
- Martini, S.; Conte, A.; Cattivelli, A.; Tagliazucchi, D. Domestic cooking methods affect the stability and bioaccessibility of dark purple eggplant (Solanum melongena) phenolic compounds. Food Chem. 2021, 341, 128298. [Google Scholar] [CrossRef] [PubMed]
No | Name | Formula [M-H]- | Exp. MW [M-H]- | Calculated MW [M-H]- | ∆, ppm | Score | Unbl. PIL | Bl. PIL | Boil. PIL | Unbl. PBI | Bl. PBI | Boil. PBI | Refs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Quinic acid I | C7H12O6 | 191.0575 | 191.0561 | −7.15 | 87.28 | + | + | + | + | + | [17] | |
2 | Unknown | C13H17O12 | 365.0737 | 365.0725 | −3.15 | 73.66 | + | - | |||||
3 | Poly-galacturonic acid methyl ester | C20H27O18 | 555.1198 | 555.1203 | 0.96 | 83.66 | + | [18] | |||||
4 | Poly-galacturonic acid | C27H37O24 | 745.1655 | 745.1680 | 3.44 | 74.5 | + | [18] | |||||
5 | Dihydroxybenzene | C6H6O2 | 109.0291 | 109.295 | 3.47 | 86.14 | + | [4] | |||||
6 | Quinic acid II | C7H11O6 | 191.0574 | 191.0561 | −6.52 | 88.32 | + | + | + | [17] | |||
7 | Caffeic acid I * | C9H8O4 | 179.0361 | 179.0350 | −6.09 | 87.24 | + | + | + | [4,17] | |||
8 | Chlorogenic acid * | C16H18O9 | 353.0907 | 353.0878 | −8.34 | 78.95 | + | + | [4] | ||||
9 | Unknown | C8H8O2 | 135.0463 | 135.0452 | −8.61 | 85.41 | - | ||||||
10 | Unknown | C8H7O2 | 135.458 | 135.452 | −4.56 | 93.19 | + | - | |||||
11 | Caffeic acid II | C9H8O4 | 179.0373 | 179.0350 | −12.9 | 70.1 | + | [4,17] | |||||
12 | Caffeoyl-di(dihydro)caffeoylquinic acid methyl ester | C35H35O15 | 695.1865 | 695.1888 | 3.22 | 85.2 | + | [19] | |||||
13 | Caffeoyl-Hexoside | C15H17O9 | 341.0876 | 341.0878 | 0.71 | 86.67 | + | + | [4] | ||||
14 | Chlorogenic acid hexoside | C22H27O14 | 515.1441 | 515.1465 | 4.71 | 81.76 | + | [20,21] | |||||
15 | Monocaffeoylquinic acid I | C16H18O9 | 353.0899 | 353.0878 | −6.04 | 81.99 | + | + | [20] | ||||
16 | Monocaffeoylquinic acid dimer I | C16H18O9 | 707.1885 | 707.1829 | −7.92 | 70.32 | + | + | + | + | [20] | ||
17 | Quinic acid III | C7H12O6 | 191.0541 | 191.0561 | −10.31 | 65.63 | + | + | + | [17] | |||
18 | Caffeic acid III | C9H8O4 | 179.0362 | 179.0350 | −6.95 | 85.63 | + | + | [17,20] | ||||
19 | Unknown | C18H25O11 | 417.1445 | 417.1402 | −10.31 | 56.95 | + | - | |||||
20 | Monocaffeoylquinic acid I | C16H18O9 | 353.0895 | 353.0878 | −4.68 | 81.04 | + | [4] | |||||
21 | Quinic acid IV | C7H12O6 | 191.0578 | 191.0561 | −8.99 | 80.7 | + | + | + | [4,17] | |||
22 | Monocaffeoylquinic acid dimer I | C16H18O9 | 707.1885 | 707.1829 | −7.92 | 70.32 | + | + | [20] | ||||
23 | Unknown | C19H30O8 | 385.1883 | 385.1868. | −3.82 | 84.23 | + | - | |||||
24 | Shikimic acid * | C7H10O5 | 173.0467 | 173.0455 | −6.74 | 87.81 | + | + | - | ||||
25 | p-Coumaroylquinic acid | C22H31O11 | 471.1911 | 471.1872 | −8.39 | 70.15 | + | + | + | + | [19] | ||
26 | Cynaroside | C21H19O11 | 447.1034 | 447.0992 | −9.51 | 81.23 | + | + | [4,17,21] | ||||
27 | Monocaffeoylquinic acid III | C16H18O9 | 353.0895 | 353.0878 | −4.68 | 81.04 | + | + | [20] | ||||
28 | Monocaffeoylquinic acid IV | C16H18O9 | 353.0904 | 353.0878 | −7.42 | 66.29 | + | [20] | |||||
29 | Monocaffeoylquinic acid V | C16H18O9 | 353.0899 | 353.0878 | −5.79 | 72.14 | + | [20] | |||||
30 | Dicaffeoylquinic acid hexoside | C31H34O17 | 677.1726 | 677.1723 | −0.46 | 80.3 | + | [20] | |||||
31 | Luteolin-7-O-glucoside * | C21H19O11 | 447.0943 | 447.0933 | −2.38 | 78.41 | + | + | + | [4,17,21] | |||
32 | Dicaffeoylquinic acid I | C25H24O12 | 515.1223 | 515.1195 | −5.37 | 79.06 | + | + | + | + | + | [4] | |
33 | Dicaffeoylquinic acid III | C18H28O17 | 515.1225 | 515.1254 | 5.54 | 80.21 | + | + | [20] | ||||
34 | Unknown | C25H26O13 | 533.1317 | 533.1301 | −2.97 | 75.99 | + | - | |||||
35 | Myricetin galloylhexoside I | C29H28O16 | 631.1309 | 631.1305 | −0.77 | 79.27 | + | + | [20] | ||||
36 | Myricetin galloylhexoside II | C29H28O16 | 631.1309 | 631.1305 | −0.77 | 79.27 | + | [20] | |||||
37 | Myricetin galloylhexoside III | C29H28O16 | 631.1308 | 631.1305 | −0.54 | 79.09 | + | [20] | |||||
38 | Dicaffeoylquinic acid II | C18H28O17 | 515.1225 | 515.1254 | 5.54 | 80.21 | + | + | + | + | [4] | ||
39 | Caffeoylquinic acid II | C18H28O17 | 515.1225 | 515.1195 | −5.73 | 79.89 | + | + | [20] | ||||
40 | Quinic acid V | C7H12O6 | 191.0575 | 191.0561 | −7.15 | 88.03 | + | + | + | + | [17] | ||
41 | Monocaffeoylquinic acid II | C16H18O9 | 353.0904 | 353.0878 | −7.42 | 66.29 | + | + | + | [4] | |||
42 | Apigenin glucuronide | C21H17O11 | 445.0771 | 445.0776 | 1.2 | 79.34 | + | + | [9] | ||||
43 | Caffeoylquinic acid I | C18H28O17 | 515.1225 | 515.1195 | −5.73 | 79.89 | + | + | + | + | [4] | ||
44 | Apigeninacetyl glucoside | C23H22O12 | 489.1032 | 489.1038 | 1.31 | 77.72 | + | + | [9] | ||||
45 | 4-O-Caffeoyl-5-O-[3-methoxy-3-(3,4-dihydroxyphenyl)-propionyl] quinic acid methyl ester I | C27H29O13 | 561.1613 | 561.1614 | 0.07 | 82.21 | + | [22] | |||||
46 | 4-O-Caffeoyl-5-O-[3-methoxy-3-(3,4-dihydroxyphenyl) -propionyl] quinic acid methyl ester II | C27H29O13 | 561.1613 | 561.1614 | 0.05 | 82.45 | + | [22] | |||||
47 | Dicaffeoylquinic acid IV | C18H28O17 | 515.1209 | 515.1195 | −2.74 | 76.53 | + | [20] | |||||
48 | Caffeoyl-dihydrocaffeoyl-sinapoyl quinic acid II | C36H35O16 | 723.1901 | 723.1931 | 4.08 | 74.8 | + | [19] | |||||
49 | Caffeoyl-dihydrocaffeoyl-sinapoyl quinic acid II | C36H35O16 | 723.1901 | 723.1931 | 4.08 | 74.8 | + | [19] | |||||
50 | Apigenin * | C15H9O5 | 269.0459 | 269.0455 | −1.45 | 87.78 | + | [21] | |||||
51 | Kaempferol * | C15H9O6 | 285.0417 | 285.0405 | −4.37 | 88.32 | + | + | - | ||||
52 | Unknown | C35H55O13 | 683.3629 | 683.3648 | 2.79 | 73.81 | + | + | - | ||||
53 | Trihydroxy-octradecenoic acid | C18H33O5 | 329.2324 | 329.2333 | 2.91 | 85.72 | + | [19] | |||||
54 | Dihydroxy-octradecenoic acid | C18H31O4 | 311.2220 | 311.2228 | 2.47 | 74.33 | + | + | [21] | ||||
55 | Unknown | C18H29O4 | 313.2422 | 313.2384 | −11.88 | 55.84 | + | - | |||||
56 | Unknown | C29H45O7 | 564.3321 | 564.3093 | −0.87 | 74.37 | + | - | |||||
57 | Unknown | C15H22O3 | 249.1522 | 249.1496 | −10.25 | 67.16 | + | - |
Cardoon Cultivar | Treatment | 1 Monocaffeoylquinic Acid | Caffeic Acid | 1 Monocaffeoylquinic Acid Dimer | 1 Dicaffeoylquinic Acid | Luteolin Glucoside |
---|---|---|---|---|---|---|
Pieno Inerme Lucchese (PIL) | Control | <LOD | <LOD | <LOD | <LOD | <LOD |
Blanching | <LOD | <LOD | <LOD | <LOD | <LOD | |
Blanching+Boiling | 11.54 ± 0.85 | 3.12 ± 0.36 | 43.54 ± 1.08 | 29.67 ± 1.15 | 0.05 ± 0.09 | |
Plain Blanc Inerme (PBI) | Control | <LOD | 0.09 ± 0.05 | 42.20 ± 0.76 a | 13.30 ± 0.61 a | 0.035 ± 0.06 |
Blanching | <LOD | <LOD | 19.12 ± 0.48 b | 5.01 ± 0.50 b | <LOD | |
Blanching+Boiling | 0.77 ± 0.31 | 0.14 ± 0.08 | 3.26 ± 0.86 c | 11.91 ± 1.39 a | 0.02 ± 0.08 | |
Significance (ANOVA) | ns | *** | *** | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceccanti, C.; De Bellis, L.; Guidi, L.; Negro, C.; Pardossi, A.; Incrocci, L. Effect of Blanching and Boiling on the Secondary Metabolism of Cultivated Cardoon Stalks: A Case Study of the Tuscany Region (Italy). Metabolites 2022, 12, 728. https://doi.org/10.3390/metabo12080728
Ceccanti C, De Bellis L, Guidi L, Negro C, Pardossi A, Incrocci L. Effect of Blanching and Boiling on the Secondary Metabolism of Cultivated Cardoon Stalks: A Case Study of the Tuscany Region (Italy). Metabolites. 2022; 12(8):728. https://doi.org/10.3390/metabo12080728
Chicago/Turabian StyleCeccanti, Costanza, Luigi De Bellis, Lucia Guidi, Carmine Negro, Alberto Pardossi, and Luca Incrocci. 2022. "Effect of Blanching and Boiling on the Secondary Metabolism of Cultivated Cardoon Stalks: A Case Study of the Tuscany Region (Italy)" Metabolites 12, no. 8: 728. https://doi.org/10.3390/metabo12080728
APA StyleCeccanti, C., De Bellis, L., Guidi, L., Negro, C., Pardossi, A., & Incrocci, L. (2022). Effect of Blanching and Boiling on the Secondary Metabolism of Cultivated Cardoon Stalks: A Case Study of the Tuscany Region (Italy). Metabolites, 12(8), 728. https://doi.org/10.3390/metabo12080728