Non-Invasive Differential Diagnosis of Cervical Neoplastic Lesions by the Lipid Profile Analysis of Cervical Scrapings
Abstract
:1. Introduction
2. Materials and Methods
- Age from 21 to 45 years;
- High-risk HPV;
- Low and high-grade squamous intraepithelial lesions, cervical cancer confirmed by histology examination;
- Regular menstrual cycle;
- Ability to comply with protocol requirements;
- Providing written informed consent to participate in the study.
- Pregnancy;
- Lactation period;
- Hormone therapy;
- Acute inflammation;
- Dysfunction of the kidneys, liver, lungs in the stage of decompensation;
- Psychoneurological conditions.
- Group 1 (control)—NILM and HPV-positive (n = 8; 7.2%);
- Group 2—Chronical cervicitis and HPV-positive (n = 29; 26.1%);
- Group 3—LSIL (n = 32; 28.8%);
- Group 4—HSIL (n = 19; 17.1%);
- Group 5—Cervical cancer (n = 23; 20.7%).
3. Results
3.1. Lipidomic Profile
3.2. Clinical Cases
3.2.1. Clinical Case No. 1
3.2.2. Clinical case No. 2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruni, L.; Albero, G.; Serrano, B.; Mena, M.; Collado, J.J.; Gómez, D.; Muñoz, J.; Bosch, F.X.; Sanjosé, S. Human Papillomavirus and Related Diseases in the World. 2021. Available online: https://hpvcentre.net/statistics/reports/XWX.pdf (accessed on 22 October 2021).
- Lee, M.H.; Finlayson, S.J.; Gukova, K.; Hanley, G.; Miller, D.; Sadownik, L.A. Outcomes of Conservative Management of High Grade Squamous Intraepithelial Lesions in Young Women. J. Low. Genit. Tract Dis. 2018, 22, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Alanbay, I.; Öztürk, M.; Fıratlıgil, F.B.; Karaşahin, K.E.; Yenen, M.C.; Bodur, S. Cytohistological discrepancies of cervico-vaginal smears and HPV status. Ginekol. Polska 2017, 88, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Hariprasad, R.; Dhanasekaran, K.; Sodhani, P.; Mehrotra, R.; Kumar, N.; Gupta, S. Reappraisal of cytology-histology correlation in cervical cytology based on the recent American Society of Cytopathology guidelines (2017) at a cancer research centre. Cytopathology 2019, 31, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Crothers, B.A.; Ghofrani, M.; Zhao, C.; Dodd, L.G.; Goodrich, K.; Husain, M.; Kurtycz, D.F.; Russell, D.K.; Shen, R.Z.; Souers, R.J.; et al. Low-Grade Squamous Intraepithelial Lesion or High-Grade Squamous Intraepithelial Lesion? Concordance Between the Interpretation of Low-Grade Squamous Intraepithelial Lesion and High-Grade Squamous Intraepithelial Lesion in Papanicolaou Tests: Results from the College of American Pathologists PAP Education Program. Arch. Pathol. Lab. Med. 2018, 143, 81–85. [Google Scholar] [CrossRef]
- Ouh, Y.-T.; Park, J.J.; Kang, M.; Kim, M.; Song, J.Y.; Shin, S.J.; Shim, S.-H.; Yoo, H.J.; Lee, M.; Lee, S.-J.; et al. Discrepancy between Cytology and Histology in Cervical Cancer Screening: A Multicenter Retrospective Study (KGOG 1040). J. Korean Med Sci. 2021, 36, e164. [Google Scholar] [CrossRef] [PubMed]
- Güzel, C.; Hoff, J.v.S.-V.; de Kok, I.M.; Govorukhina, N.I.; Boychenko, A.; Luider, T.M.; Bischoff, R. Molecular markers for cervical cancer screening. Expert Rev. Proteom. 2021, 18, 675–691. [Google Scholar] [CrossRef]
- Boers, A.; Wang, R.; van Leeuwen, R.W.; Klip, H.G.; de Bock, G.H.; Hollema, H.; van Criekinge, W.; de Meyer, T.; Denil, S.; van der Zee, A.G.J.; et al. Discovery of new methylation markers to improve screening for cervical intraepithelial neoplasia grade 2/3. Clin. Epigenetics 2016, 8, 2262. [Google Scholar] [CrossRef]
- del Pino, M.; Sierra, A.; Marimon, L.; Delgado, C.M.; Rodriguez-Trujillo, A.; Barnadas, E.; Saco, A.; Torné, A.; Ordi, J. CADM1, MAL, and miR124 Promoter Methylation as Biomarkers of Transforming Cervical Intrapithelial Lesions. Int. J. Mol. Sci. 2019, 20, 2262. [Google Scholar] [CrossRef]
- Duraipandian, S.; Mo, J.; Zheng, W.; Huang, Z. Near-infrared Raman spectroscopy for assessing biochemical changes of cervical tissue associated with precarcinogenic transformation. Analyst 2014, 139, 5379–5386. [Google Scholar] [CrossRef]
- Paraskevaidi, M.; Cameron, S.J.; Whelan, E.; Bowden, S.; Tzafetas, M.; Mitra, A.; Semertzidou, A.; Athanasiou, A.; Bennett, P.R.; MacIntyre, D.A.; et al. Laser-assisted rapid evaporative ionisation mass spectrometry (LA-REIMS) as a metabolomics platform in cervical cancer screening. eBioMedicine 2020, 60, 103017. [Google Scholar] [CrossRef]
- Porcari, A.M.; Negrão, F.; Tripodi, G.L.; Pitta, D.R.; Campos, E.A.; Montis, D.M.; Martins, A.M.A.; Eberlin, M.N.; Derchain, S.F.M. Molecular Signatures of High-Grade Cervical Lesions. Front. Oncol. 2018, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Brügger, B. Lipidomics: Analysis of the Lipid Composition of Cells and Subcellular Organelles by Electrospray Ionization Mass Spectrometry. Annu. Rev. Biochem. 2014, 83, 79–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feider, C.L.; Nagi, C.; Yu, W.; Carter, S.A.; Suliburk, J.; Cao, H.S.T.; Eberlin, L.S. Detection of Metastatic Breast and Thyroid Cancer in Lymph Nodes by Desorption Electrospray Ionization Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2017, 28, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Snaebjornsson, M.T.; Janaki-Raman, S.; Schulze, A. Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metab. 2019, 31, 62–76. [Google Scholar] [CrossRef]
- Starodubtseva, N.L.; Chagovets, V.V.; Nekrasova, M.E.; Nazarova, N.M.; Tokareva, A.O.; Bourmenskaya, O.V.; Attoeva, D.I.; Kukaev, E.N.; Trofimov, D.Y.; Frankevich, V.E.; et al. Shotgun Lipidomics for Differential Diagnosis of HPV-Associated Cervix Transformation. Metabolites 2022, 12, 503. [Google Scholar] [CrossRef] [PubMed]
- Iurova, M.V.; Chagovets, V.V.; Pavlovich, S.V.; Starodubtseva, N.L.; Khabas, G.N.; Chingin, K.S.; Tokareva, A.O.; Sukhikh, G.T.; Frankevich, V.E. Lipid Alterations in Early-Stage High-Grade Serous Ovarian Cancer. Front. Mol. Biosci. 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Tonoyan, N.M.; Chagovets, V.V.; Starodubtseva, N.L.; Tokareva, A.O.; Chingin, K.; Kozachenko, I.F.; Adamyan, L.V.; Frankevich, V.E. Alterations in lipid profile upon uterine fibroids and its recurrence. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Koelmel, J.P.; Kroeger, N.M.; Ulmer, C.Z.; Bowden, J.A.; Patterson, R.E.; Cochran, J.A.; Beecher, C.W.W.; Garrett, T.J.; Yost, R.A. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinform. 2017, 18, 1–11. [Google Scholar] [CrossRef]
- Sud, M.; Fahy, E.; Cotter, D.; Brown, A.; Dennis, E.A.; Glass, C.K.; Merrill, A.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.; et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 2006, 35, D527–D532. [Google Scholar] [CrossRef]
- Tokareva, A.O.; Chagovets, V.V.; Kononikhin, A.S.; Starodubtseva, N.L.; Nikolaev, E.N.; Frankevich, V.E. Normalization methods for reducing interbatch effect without quality control samples in liquid chromatography-mass spectrometry-based studies. Anal. Bioanal. Chem. 2021, 413, 3479–3486. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Version 4.1.1; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R. Version 1.1.463; RStudio, Inc.: Boston, MA, USA, 2016. [Google Scholar]
- Tokareva, A.O.; Chagovets, V.V.; Kononikhin, A.S.; Starodubtseva, N.L.; Nikolaev, E.N.; Frankevich, V.E. Comparison of the effectiveness of variable selection method for creating a diagnostic panel of biomarkers for mass spectrometric lipidome analysis. J. Biol. Mass Spectrom. 2021, 56, e4702. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Bobryshev, Y.V.; Orekhov, A.N. Macrophage-mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med. 2016, 20, 17–28. [Google Scholar] [CrossRef]
- Gebhard, R.L.; Clayman, R.V.; Prigge, W.F.; Figenshau, R.; Staley, N.A.; Reesey, C.; Bear, A. Abnormal cholesterol metabolism in renal clear cell carcinoma. J. Lipid Res. 1987, 28, 1177–1184. [Google Scholar] [CrossRef]
- Shamseddine, A.A.; Airola, M.V.; Hannun, Y.A. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 2014, 57, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2017, 19, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H.; Canty, D.J. Choline phospholipids: Molecular mechanisms for human diseases: A meeting report. J. Nutr. Biochem. 1993, 4, 258–263. [Google Scholar] [CrossRef]
- Podo, F. Tumour phospholipid metabolism. NMR Biomed. 1999, 12, 413–439. [Google Scholar] [CrossRef]
- Frega, A.; Pavone, M.; Sesti, F.; Leone, C.; Bianchi, P.; Cozza, G.; Colombrino, C.; Lukic, A.; Marziani, R.; Sanctis, L.D.E.; et al. Sensitivity and specificity values of high-risk HPV DNA, p16/ki-67 and HPV mRNA in young women with atypical squamous cells of undetermined significance (ASCUS) or low-grade squamous intraepithelial lesion (LSIL). Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 10672–10677. [Google Scholar] [CrossRef]
- Traynor, D.; Duraipandian, S.; Bhatia, R.; Cuschieri, K.; Tewari, P.; Kearney, P.; D’Arcy, T.; O’Leary, J.J.; Martin, C.M.; Lyng, F.M. Development and Validation of a Raman Spectroscopic Classification Model for Cervical Intraepithelial Neoplasia (CIN). Cancers 2022, 14, 1836. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, C.-X.; Ma, C.-L.; Zheng, X.-X.; Lv, X.-Y.; Lv, G.-D.; Tang, J.; Wu, G.-H. Raman spectroscopic study of cervical precancerous lesions and cervical cancer. Lasers Med Sci. 2021, 36, 1855–1864. [Google Scholar] [CrossRef]
- Cheng, F.; Wen, Z.; Feng, X.; Wang, X.; Chen, Y. A serum lipidomic strategy revealed potential lipid biomarkers for early-stage cervical cancer. Life Sci. 2020, 260, 118489. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.; Seo, S.-S.; Jung, S.; Jang, S.Y.; Lee, J.; Kwon, M.; Khan, I.; Ryu, D.H.; Kim, M.K.; Hwang, G.-S. Comparable Plasma Lipid Changes in Patients with High-Grade Cervical Intraepithelial Neoplasia and Patients with Cervical Cancer. J. Proteome Res. 2020, 20, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Nam, M.; Kwon, M.; Seo, S.-S.; Jung, S.; Han, J.S.; Hwang, G.-S.; Kim, M.K. LC/MS-Based Polar Metabolite Profiling Identified Unique Biomarker Signatures for Cervical Cancer and Cervical Intraepithelial Neoplasia Using Global and Targeted Metabolomics. Cancers 2019, 11, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Histological Diagnosis | Cytological Diagnosis | ||||
---|---|---|---|---|---|
NILM | Cervicitis | LSIL | HSIL | Cancer | |
NILM | 8 (29) | 0 | 0 | 0 | 0 |
Cervicitis | 12 | 8 (53) | 7 | 2 | 0 |
LSIL | 3 | 5 | 18 (64) | 6 | 0 |
HSIL | 4 | 2 | 3 | 10 (45) | 0 |
Cancer | 1 | 0 | 0 | 4 | 18 (100) |
Ion Mode | Model | AUC (CI AUC) | Thr. 1 | Sens. 2, % | Spec. 3, % |
---|---|---|---|---|---|
Positive mode | NILM/cervicitis | 0.89 (0.79–1.00) | 0.97 | 100 | 67 |
NILM/LSIL | 0.93 (0.85–1.00) | 0.96 | 100 | 57 | |
NILM/HSIL | 0.68 (0.46–0.89) | 0.81 | 100 | 44 | |
NILM/cancer | 0.94 (0.87–1.00) | 0.99 | 100 | 80 | |
Cervicitis/LSIL | 0.81 (0.70–0.93) | 0.13 | 74 | 95 | |
Cervicitis/HSIL | 0.63 (0.46–0.81) | 0.46 | 61 | 73 | |
Cervicitis/Cancer | 0.90 (0.76–1.00) | 0.99 | 00 | 85 | |
LSIL/HSIL | 0.68 (0.52–0.84) | 0.37 | 67 | 75 | |
LSIL/Cancer | 0.89 (0.71–0.98) | 0.01 | 91 | 88 | |
HSIL/Cancer | 0.95 (0.85–1.00) | 0.99 | 100 | 86 | |
Negative mode | NILM/cervicitis | 0.81 (0.56–1.00) | 0.49 | 93 | 86 |
NILM/LSIL | 0.78 (0.56–1.00) | 0.50 | 91 | 71 | |
NILM/HSIL | 0.81 (0.66–1.00) | 0.48 | 89 | 75 | |
NILM/cancer | 0.75 (0.40–1.00) | 0.99 | 87 | 63 | |
Cervicitis/LSIL | 0.65 (0.51–0.79) | 0.51 | 67 | 63 | |
Cervicitis/HSIL | 0.82 (0.67–0.95) | 0.15 | 64 | 87 | |
Cervicitis/Cancer | 0.94 (0.86–1.00) | 0.01 | 92 | 96 | |
LSIL/HSIL | 0.64 (0.48–0.81) | 0.39 | 56 | 73 | |
LSIL/Cancer | 0.89 (0.73–0.99) | 0.99 | 95 | 89 | |
HSIL/Cancer | 0.77 (0.63–0.92) | 0.27 | 76 | 76 |
NILM | Cervicitis | LSIL | HSIL | Cancer | |
---|---|---|---|---|---|
NILM | 8 (0.89) | 0 | 0 | 0 | 0 |
Cervicitis | 0 | 23 (0.82) | 2 | 4 | 0 |
LSIL | 0 | 5 | 23 (0.74) | 4 | 0 |
HSIL | 1 | 0 | 6 | 12 (0.57) | 0 |
Cancer | 0 | 0 | 0 | 1 | 22 (1.00) |
Patients | Histology | Cytology | Lipidome |
---|---|---|---|
I | HSIL | Cervicitis | LSIL |
II | Cervicitis | HSIL | Cervicitis |
III | HSIL | NILM | LSIL |
IV | HSIL | LSIL | HSIL |
V | HSIL | NILM | Cervicitis |
VI | HSIL | NILM | LSIL |
VII | HSIL | LSIL | Cervicitis |
VIII | HSIL | LSIL | HSIL |
Patient | NILM | Cervicitis | LSIL | HSIL | Cancer | Probability of Low Lesions, % | Probability of High Lesions, % |
---|---|---|---|---|---|---|---|
II | 3 | 8 | 6 | 2 | 1 | 85 | 15 |
VIII | 4 | 3 | 1 | 7 | 5 | 40 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokareva, A.; Chagovets, V.; Attoeva, D.; Starodubtseva, N.; Nazarova, N.; Gusakov, K.; Kukaev, E.; Frankevich, V.; Sukhikh, G. Non-Invasive Differential Diagnosis of Cervical Neoplastic Lesions by the Lipid Profile Analysis of Cervical Scrapings. Metabolites 2022, 12, 883. https://doi.org/10.3390/metabo12090883
Tokareva A, Chagovets V, Attoeva D, Starodubtseva N, Nazarova N, Gusakov K, Kukaev E, Frankevich V, Sukhikh G. Non-Invasive Differential Diagnosis of Cervical Neoplastic Lesions by the Lipid Profile Analysis of Cervical Scrapings. Metabolites. 2022; 12(9):883. https://doi.org/10.3390/metabo12090883
Chicago/Turabian StyleTokareva, Alisa, Vitaliy Chagovets, Djamilja Attoeva, Natalia Starodubtseva, Niso Nazarova, Kirill Gusakov, Eugenii Kukaev, Vladimir Frankevich, and Gennady Sukhikh. 2022. "Non-Invasive Differential Diagnosis of Cervical Neoplastic Lesions by the Lipid Profile Analysis of Cervical Scrapings" Metabolites 12, no. 9: 883. https://doi.org/10.3390/metabo12090883
APA StyleTokareva, A., Chagovets, V., Attoeva, D., Starodubtseva, N., Nazarova, N., Gusakov, K., Kukaev, E., Frankevich, V., & Sukhikh, G. (2022). Non-Invasive Differential Diagnosis of Cervical Neoplastic Lesions by the Lipid Profile Analysis of Cervical Scrapings. Metabolites, 12(9), 883. https://doi.org/10.3390/metabo12090883