Salivary Metabolomics for Systemic Cancer Diagnosis: A Systematic Review
Abstract
:1. Introduction
- −
- Physical agents (physical carcinogens, e.g., ultraviolet and ionising radiation)
- −
- Chemical agents (chemical carcinogens, e.g., asbestos, components of tobacco smoke, alcohol, aflatoxin as food contamination, and arsenic as drinking water contamination)
- −
2. Materials and Methods
2.1. Search Strategy and Data Extraction
- −
- For PubMed: (cancer OR carcinoma OR neoplasm OR tumour OR tumor OR oncology) AND saliva AND (metabolite OR metabolomics)
- −
- For Scopus: TITLE-ABS-KEY((cancer OR carcinoma OR neoplasm OR tumour OR tumor OR oncology) AND saliva AND (metabolite OR metabolomics))
- −
- For Web of Science: TS=((cancer OR carcinoma OR neoplasm OR tumour OR tumor OR oncology) AND saliva AND (metabolite OR metabolomics)).
2.2. Quality Assessment and Critical Appraisal for the Systematic Review of Included Studies
3. Results
4. Discussion
4.1. Breast Cancer
4.2. Gastrointestinal Cancers
4.3. Lung Cancer
4.4. Other Tumours
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- D’Arcy, M.S. Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Stacker, S.A.; Baldwin, M.E.; Achen, M.G. The Role of Tumor Lymphangiogenesis in Metastatic Spread. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2002, 16. [Google Scholar] [CrossRef] [PubMed]
- Bostwick, D.G.; Burke, H.B.; Djakiew, D.; Euling, S.; Ho, S.; Landolph, J.; Morrison, H.; Sonawane, B.; Shifflett, T.; Waters, D.J.; et al. Human Prostate Cancer Risk Factors. Cancer 2004, 101, 2371–2490. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-S.; Zhao, Z.; Yang, Z.-N.; Xu, F.; Lu, H.-J.; Zhu, Z.-Y.; Shi, W.; Jiang, J.; Yao, P.-P.; Zhu, H.-P. Risk Factors and Preventions of Breast Cancer. Int. J. Biol. Sci. 2017, 13, 1387–1397. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk Factors for Lung Cancer Worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA. Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Loud, J.T.; Murphy, J. Cancer Screening and Early Detection in the 21st Century. Semin. Oncol. Nurs. 2017, 33, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Nooreldeen, R.; Bach, H. Current and Future Development in Lung Cancer Diagnosis. Int. J. Mol. Sci. 2021, 22, 8661. [Google Scholar] [CrossRef]
- Yakob, M.; Fuentes, L.; Wang, M.B.; Abemayor, E.; Wong, D.T.W. Salivary Biomarkers for Detection of Oral Squamous Cell Carcinoma - Current State and Recent Advances. Curr. Oral Health Rep. 2014, 1, 133–141. [Google Scholar] [CrossRef]
- Singh, P.; Verma, J.K.; Singh, J.K. Validation of Salivary Markers, IL-1β, IL-8 and Lgals3bp for Detection of Oral Squamous Cell Carcinoma in an Indian Population. Sci. Rep. 2020, 10, 7365. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Aguilar, M.; Díaz de León-Martínez, L.; Gorocica-Rosete, P.; Pérez-Padilla, R.; Domínguez-Reyes, C.A.; Tenorio-Torres, J.A.; Ornelas-Rebolledo, O.; Mehta, G.; Zamora-Mendoza, B.N.; Flores-Ramírez, R. Application of Chemoresistive Gas Sensors and Chemometric Analysis to Differentiate the Fingerprints of Global Volatile Organic Compounds from Diseases. Preliminary Results of COPD, Lung Cancer and Breast Cancer. Clin. Chim. Acta 2021, 518, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gao, P.; Cheng, F.; Wang, X.; Duan, Y. Measurement of Salivary Metabolite Biomarkers for Early Monitoring of Oral Cancer with Ultra Performance Liquid Chromatography-Mass Spectrometry. Talanta 2014, 119, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Wu, S.; Hua, Q.; Bao, C.; Liu, H. Volatile Organic Compounds in Human Exhaled Breath to Diagnose Gastrointestinal Cancer: A Meta-Analysis. Front. Oncol. 2021, 11, 606915. [Google Scholar] [CrossRef]
- Nijakowski, K.; Surdacka, A. Salivary Biomarkers for Diagnosis of Inflammatory Bowel Diseases: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 7477. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Zhou, X.; Yuan, M.; Qu, D.; Zheng, Y.; Vishinkin, R.; Khatib, M.; Wu, W.; Haick, H. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chem. Rev. 2019, 119, 11761–11817. [Google Scholar] [CrossRef]
- Kaczor-Urbanowicz, K.E.; Wei, F.; Rao, S.L.; Kim, J.; Shin, H.; Cheng, J.; Tu, M.; Wong, D.T.W.; Kim, Y. Clinical Validity of Saliva and Novel Technology for Cancer Detection. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 49–59. [Google Scholar] [CrossRef]
- Chiappin, S.; Antonelli, G.; Gatti, R.; De Palo, E.F. Saliva Specimen: A New Laboratory Tool for Diagnostic and Basic Investigation. Clin. Chim. Acta 2007, 383, 30–40. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; Costela-Ruiz, V.J.; Manzano-Moreno, F.J.; Ruiz, C.; Illescas-Montes, R. Salivary Biomarkers and Their Application in the Diagnosis and Monitoring of the Most Common Oral Pathologies. Int. J. Mol. Sci. 2020, 21, 5173. [Google Scholar] [CrossRef]
- Nijakowski, K.; Rutkowski, R.; Eder, P.; Simon, M.; Korybalska, K.; Witowski, J.; Surdacka, A. Potential Salivary Markers for Differential Diagnosis of Crohn’s Disease and Ulcerative Colitis. Life Basel Switz. 2021, 11, 943. [Google Scholar] [CrossRef]
- Nijakowski, K.; Rutkowski, R.; Eder, P.; Korybalska, K.; Witowski, J.; Surdacka, A. Changes in Salivary Parameters of Oral Immunity after Biologic Therapy for Inflammatory Bowel Disease. Life Basel Switz. 2021, 11, 1409. [Google Scholar] [CrossRef] [PubMed]
- Aharoni, A.; Ric de Vos, C.H.; Verhoeven, H.A.; Maliepaard, C.A.; Kruppa, G.; Bino, R.; Goodenowe, D.B. Nontargeted Metabolome Analysis by Use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics J. Integr. Biol. 2002, 6, 217–234. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Z.; Lazar, L.; Fang, Z.; Tang, C.; Zhao, J. Metabolomics Workflow for Lung Cancer: Discovery of Biomarkers. Clin. Chim. Acta 2019, 495, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, L.-Y.; Xie, C.; Zhang, M.-L.; Wang, Y.-J.; Liu, G.-H. Metabolomics as a Potential Method for Predicting Thyroid Malignancy in Children and Adolescents. Pediatr. Surg. Int. 2020, 36, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Nijakowski, K.; Gruszczyński, D.; Kopała, D.; Surdacka, A. Salivary Metabolomics for Oral Squamous Cell Carcinoma Diagnosis: A Systematic Review. Metabolites 2022, 12, 294. [Google Scholar] [CrossRef] [PubMed]
- Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino Acids in Cancer. Exp. Mol. Med. 2020, 52, 15–30. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, X.; Cheng, C.; Yu, W.; Yi, P. Metabolism of Amino Acids in Cancer. Front. Cell Dev. Biol. 2021, 8, 603837. [Google Scholar] [CrossRef]
- Ragni, M.; Fornelli, C.; Nisoli, E.; Penna, F. Amino Acids in Cancer and Cachexia: An Integrated View. Cancers 2022, 14, 5691. [Google Scholar] [CrossRef]
- Li, J.; Meng, Y.; Wu, X.; Sun, Y. Polyamines and Related Signaling Pathways in Cancer. Cancer Cell Int. 2020, 20, 539. [Google Scholar] [CrossRef]
- Novita Sari, I.; Setiawan, T.; Seock Kim, K.; Toni Wijaya, Y.; Won Cho, K.; Young Kwon, H. Metabolism and Function of Polyamines in Cancer Progression. Cancer Lett. 2021, 519, 91–104. [Google Scholar] [CrossRef]
- Chia, T.; Zolp, A.; Miska, J. Polyamine Immunometabolism: Central Regulators of Inflammation, Cancer and Autoimmunity. Cells 2022, 11, 896. [Google Scholar] [CrossRef] [PubMed]
- Glunde, K.; Bhujwalla, Z.M.; Ronen, S.M. Choline Metabolism in Malignant Transformation. Nat. Rev. Cancer 2011, 11, 835–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Study Quality Assessment Tools|NHLBI, NIH. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 22 August 2020).
- OCEBM Levels of Evidence. Available online: https://www.cebm.net/2016/05/ocebm-levels-of-evidence/ (accessed on 22 August 2020).
- Bel’skaya, L.V.; Sarf, E.A. Prognostic Value of Salivary Biochemical Indicators in Primary Resectable Breast Cancer. Metabolites 2022, 12, 552. [Google Scholar] [CrossRef]
- Bel’skaya, L.V.; Sarf, E.A.; Solomatin, D.V.; Kosenok, V.K. Metabolic Features of Saliva in Breast Cancer Patients. Metabolites 2022, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Cavaco, C.; Pereira, J.A.M.; Taunk, K.; Taware, R.; Rapole, S.; Nagarajaram, H.; Camara, J.S. Screening of Salivary Volatiles for Putative Breast Cancer Discrimination: An Exploratory Study Involving Geographically Distant Populations. Anal. Bioanal. Chem. 2018, 410, 4459–4468. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Yanagisawa, T.; Kurihara, T.; Kaneko, M.; Ota, S.; Enomoto, A.; Tomita, M.; Sugimoto, M.; Sunamura, M.; Hayashida, T.; et al. Salivary Metabolomics with Alternative Decision Tree-Based Machine Learning Methods for Breast Cancer Discrimination. Breast Cancer Res. Treat. 2019, 177, 591–601. [Google Scholar] [CrossRef]
- Ragusa, A.; Romano, P.; Lenucci, M.S.; Civino, E.; Vergara, D.; Pitotti, E.; Neglia, C.; Distante, A.; Romano, G.D.; Di Renzo, N.; et al. Differential Glycosylation Levels in Saliva from Patients with Lung or Breast Cancer: A Preliminary Assessment for Early Diagnostic Purposes. Metabolites 2021, 11, 566. [Google Scholar] [CrossRef]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary Electrophoresis Mass Spectrometry-Based Saliva Metabolomics Identified Oral, Breast and Pancreatic Cancer-Specific Profiles. Metabolomics Off. J. Metabolomic Soc. 2010, 6, 78–95. [Google Scholar] [CrossRef] [Green Version]
- Takayama, T.; Tsutsui, H.; Shimizu, I.; Toyama, T.; Yoshimoto, N.; Endo, Y.; Inoue, K.; Todoroki, K.; Min, J.Z.; Mizuno, H.; et al. Diagnostic Approach to Breast Cancer Patients Based on Target Metabolomics in Saliva by Liquid Chromatography with Tandem Mass Spectrometry. Clin. Chim. Acta Int. J. Clin. Chem. 2016, 452, 18–26. [Google Scholar] [CrossRef]
- Xavier Assad, D.; Acevedo, A.C.; Cançado Porto Mascarenhas, E.; Costa Normando, A.G.; Pichon, V.; Chardin, H.; Neves Silva Guerra, E.; Combes, A. Using an Untargeted Metabolomics Approach to Identify Salivary Metabolites in Women with Breast Cancer. Metabolites 2020, 10, 506. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Cheng, F.; Lu, X.; Duan, Y.; Wang, X. Untargeted Saliva Metabonomics Study of Breast Cancer Based on Ultra Performance Liquid Chromatography Coupled to Mass Spectrometry with HILIC and RPLC Separations. Talanta 2016, 158, 351–360. [Google Scholar] [CrossRef]
- Asai, Y.; Itoi, T.; Sugimoto, M.; Sofuni, A.; Tsuchiya, T.; Tanaka, R.; Tonozuka, R.; Honjo, M.; Mukai, S.; Fujita, M.; et al. Elevated Polyamines in Saliva of Pancreatic Cancer. Cancers 2018, 10, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Cheng, S.; Zhang, A.; Song, J.; Chang, J.; Wang, K.; Zhang, Y.; Li, S.; Liu, H.; Alfranca, G.; et al. Salivary Analysis Based on Surface Enhanced Raman Scattering Sensors Distinguishes Early and Advanced Gastric Cancer Patients from Healthy Persons. J. Biomed. Nanotechnol. 2018, 14, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Bel’skaya, L.V.; Sarf, E.A.; Shalygin, S.P.; Postnova, T.V.; Kosenok, V.K. Identification of Salivary Volatile Organic Compounds as Potential Markers of Stomach and Colorectal Cancer: A Pilot Study. J. ORAL Biosci. 2020, 62, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, H.; Katsumata, K.; Iwabuchi, A.; Udo, R.; Tago, T.; Kasahara, K.; Mazaki, J.; Enomoto, M.; Ishizaki, T.; Soya, R.; et al. Salivary Metabolomics with Machine Learning for Colorectal Cancer Detection. Cancer Sci. 2022, 113, 3234–3243. [Google Scholar] [CrossRef]
- Hershberger, C.E.; Rodarte, A.I.; Siddiqi, S.; Moro, A.; Acevedo-Moreno, L.-A.; Brown, J.M.; Allende, D.S.; Aucejo, F.; Rotroff, D.M. Salivary Metabolites Are Promising Non-Invasive Biomarkers of Hepatocellular Carcinoma and Chronic Liver Disease. Liver Cancer Int. 2021, 2, 33–44. [Google Scholar] [CrossRef]
- Bel’skaya, L.V.; Sarf, E.A.; Solomatin, D.V.; Kosenok, V.K. Features of the Metabolic Profile of Saliva in Lung Cancer and COPD: The Effect of Smoking Status. Metabolites 2021, 11, 289. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, X.; Chen, Z.; Yu, J.; Lou, H.; Wu, J. High-Throughput Salivary Metabolite Profiling on an Ultralow Noise Tip-Enhanced Laser Desorption Ionization Mass Spectrometry Platform for Noninvasive Diagnosis of Early Lung Cancer. J. Proteome Res. 2021, 20, 4346–4356. [Google Scholar] [CrossRef]
- Takamori, S.; Ishikawa, S.; Suzuki, J.; Oizumi, H.; Uchida, T.; Ueda, S.; Edamatsu, K.; Iino, M.; Sugimoto, M. Differential Diagnosis of Lung Cancer and Benign Lung Lesion Using Salivary Metabolites: A Preliminary Study. Thorac. Cancer 2022, 13, 460–465. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, X.; Li, Y.; Zhang, J.; Li, X.; Qian, C.; Tian, Y.; Ling, R.; Duan, Y. Diagnostic Approach to Thyroid Cancer Based on Amino Acid Metabolomics in Saliva by Ultra-Performance Liquid Chromatography with High Resolution Mass Spectrometry. Talanta 2021, 235, 122729. [Google Scholar] [CrossRef] [PubMed]
- García-Villaescusa, A.; Morales-Tatay, J.M.; Monleón-Salvadó, D.; González-Darder, J.M.; Bellot-Arcis, C.; Montiel-Company, J.M.; Almerich-Silla, J.M. Using NMR in Saliva to Identify Possible Biomarkers of Glioblastoma and Chronic Periodontitis. PloS One 2018, 13, e0188710. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Early Diagnosis of Breast Cancer. Sensors 2017, 17, 1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, S.H.; Saadatpour, Z.; Salmaninejad, A.; Momeni, F.; Mokhtari, M.; Nahand, J.S.; Rahmati, M.; Mirzaei, H.; Kianmehr, M. Breast Cancer Diagnosis: Imaging Techniques and Biochemical Markers. J. Cell. Physiol. 2018, 233, 5200–5213. [Google Scholar] [CrossRef]
- McDonald, E.S.; Clark, A.S.; Tchou, J.; Zhang, P.; Freedman, G.M. Clinical Diagnosis and Management of Breast Cancer. J. Nucl. Med. 2016, 57, 9S–16S. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global Burden of 5 Major Types Of Gastrointestinal Cancer. Gastroenterology 2020, 159, 335–349.e15. [Google Scholar] [CrossRef]
- Pozzi, V.; Campagna, R.; Sartini, D.; Emanuelli, M. Nicotinamide N-Methyltransferase as Promising Tool for Management of Gastrointestinal Neoplasms. Biomolecules 2022, 12, 1173. [Google Scholar] [CrossRef]
- Brunner, M.; Wu, Z.; Krautz, C.; Pilarsky, C.; Grützmann, R.; Weber, G.F. Current Clinical Strategies of Pancreatic Cancer Treatment and Open Molecular Questions. Int. J. Mol. Sci. 2019, 20, 4543. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Feng, Z.; Miao, R.; Liu, X.; Liu, C.; Liu, Z. Prognosis and Survival Analysis of Patients with Pancreatic Cancer: Retrospective Experience of a Single Institution. World J. Surg. Oncol. 2022, 20, 11. [Google Scholar] [CrossRef]
- Itakura, J.; Sugimoto, M.; Sunamura, M.; Takahashi, K.; Saito, R.; Hosomura, N.; Amemiya, H.; Kawaida, H.; Okamoto, H.; Kohno, H.; et al. Analysis of Saliva Metabolites to Develop Early Detection System for Pancreatic Cancer. PANCREAS 2019, 48, 1451–1452. [Google Scholar]
- Thandra, K.C.; Barsouk, A.; Saginala, K.; Aluru, J.S.; Barsouk, A. Epidemiology of Lung Cancer. Contemp. Oncol. Onkol. 2021, 25, 45–52. [Google Scholar] [CrossRef]
- Latimer, K.M.; Mott, T.F. Lung Cancer: Diagnosis, Treatment Principles, and Screening. Am. Fam. Physician 2015, 91, 250–256. [Google Scholar] [PubMed]
Parameter | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | patientsaged from 0 to 99 years, both genders | |
Exposure | systemic cancers | other neoplasms (e.g., oral cancers) |
Comparison | not applicable | |
Outcomes | salivary metabolites as markers | other salivary components as markers |
Study design | case–control, cohort and cross-sectional studies | literature reviews, case reports, expert opinion, letters to the editor, conference reports |
published after 2000 | not published in English |
Author, Year | Setting | Study Group (F/M); Age | Control Group (F/M); Age | Oncological Diagnosis | Inclusion Criteria | Exclusion Criteria | TNM Stages |
---|---|---|---|---|---|---|---|
Bel’skaya & Sarf, 2022 [36] | Russia | 355 (355/0); 30–39: 34 (9.6%), 40–49: 68 (19.2%), 50–59: 117 (33.0%), 60–69: 105 (29.6%), >70: 31 (8.6%) | – | breast cancer | diagnosis of primary resectable BC | NR | pT1–133 (37.5%), pT2–172 (48.5%), pT3–50 (14.0%); pN0–245 (69.0%), pN1–110 (31.0%) |
Bel’skaya et al., 2022 [37] | Russia | 487 (487/0); 54.5 (47.0–56.0) | 298 (298/0); 49.3 (43.8–56.1) | breast cancer | histologically diagnosed with BC; age 30–70 years; absence of any treatment at the time of the study; absence of signs of active infection (including purulent processes); good oral hygiene; absence of untreated dental caries and periodontal disease; absence of clinically significant concomitant diseases other than cancer pathology (in particular, diabetes mellitus, cardiovascular pathologies, etc.) | any prior treatment, including hormone therapy, chemotherapy, molecularly targeted therapy, radiotherapy, surgery; lack of histological verification of the diagnosis | I–119 (24.4%), IIA–123 (25.3%), IIB–88 (18.1%), IIIA–55 (11.3%), IIIB–47 (9.6%), IV–55 (11.3%) |
Cavaco et al., 2018 [38] | Portugal, India | Portugal: 36 (36/0); range: 39–73; India: 30 (30/0); range: 25–76 | Portugal: 16 (16/0); range: 18–63, India: 24 (24/0); range: 23–65 | breast cancer | NR | NR | NR |
Murata et al., 2019 [39] | Japan | IC: 101 (101/0); 54 (34–89); DCIS: 23 (23/0); 49 (39–80) | 42 (42/0); 51 (23–80) | breast cancer | histologically diagnosed with BC | any prior treatment, including hormone therapy, chemotherapy, molecularly targeted therapy, radiotherapy, surgery, or alternative therapy; Ctrl: absence of history of any cancer | 0–23 (DCIS), IC: I–44 (45.4%), II– 46 (47.4%), III–5 (5.1%), IV–2 (2.1%) |
Ragusa et al., 2021 [40] | Italy | BC: 38 (38/0); 54.2 ± 13.0; LC: 30 (8/22); 69.8 ± 10.3 | 34 (18/16); 46.2 ± 10.8 | breast cancer, lung cancer | age > 18 years; BMI of about 25–26 kg/m2; established clinical diagnosis of either BC or LC (including mesothelioma) | pregnancy; previous history of other malignancies; in the terminal stage (expected less than 4 weeks old); conditions that might have potentially interfer from a metabolic point of view; simultaneous liver cirrhosis, gastric ulcers, diabetes mellitus, periodontitis | NR |
Sugimoto et al., 2010 [41] | U.S.A. | BC: 30 (30/0); 57 (29–77); PC: 18 (NR); 67 (11–87) | 87 (27/42, 18 missing); 43 (20–75) | breast cancer, pancreatic cancer | diagnosed with primary disease without metastasis | prior chemotherapy, radiotherapy, surgery or alternative therapy, history of prior malignancy, immunodeficiency, autoimmune disorders, hepatitis or HIV infection | NR |
Takayama et al., 2016 [42] | Japan | 111 (NR); range: 36–90 | 61 (NR) | breast cancer | NR | NR | 0–16 (14.4%), I–50 (45.0%), IIA–32 (28.8%), IIB–10 (9.0%), IIIA–1 (0.9%), unknown–2 (1.8%) |
Xavier Assad et al., 2020 [43] | Brazil | 23 (23/0); 47.52 ± 9.79 | 35 (35/0); 42.00 ± 13.83 | breast cancer | not pregnant or lactating; no active oral/dental disease; no prior neoplasia, except for non-melanomatous skin cancers, cervical carcinoma in situ, or benign tumors (e.g., adenomas); no impaired renal function, congestive heart failure, or active infection (e.g., hepatitis and HIV); histopathological diagnosis of BC; Ctrl: normal clinical and imaging findings | Ctrl: abnormal imaging or clinical findings; history of cancer treatment | I–2 (8.7%), II–12 (52.2%), III–5 (21.7%), IV–4 (17.4%) |
Zhong et al., 2016 [44] | China | 30 (30/0); 53 (32–79) | 25 (25/0); NR | breast cancer | diagnosis of BC based on clinical and histopathological criteria; Ctrl: no history of malignancy or relevant breast diseases | History of receiving surgical operation and medication, including chemotherapy, radiotherapy, or alternative therapy | I–7 (23.3%), II–14 (46.7%), III–8 (26.7%), IV–1 (3.3%) |
Asai et al., 2018 [45] | Japan | PC: 39 (18/21); 66.1 ± 9.86 | Ctrl: 26 (13/13); 50.8 ± 16.4; CP: 14 (3/11); 51.1 ± 12.4 | pancreatic cancer | histologically diagnosed with PC | prior treatment in the form of chemotherapy, radiotherapy, surgery, or alternative therapy; prior malignancy | III–6 (15.4%), IVA–12 (30.8%), IVB–21 (53.8%) |
Chen et al., 2018 [46] | China | EGC: 20 (7/13); 60 ± 8.6; AGC: 84 (34/50); 53 ± 9 | 116 (49/67); 35.0 ± 10.0 | gastric cancer | clinical diagnosis of GC | diagnosis of other malignancies; metabolic diseases (mainly including diabetes) | EGC: stage I and II, defined as that the tumour invasion confined to the mucosa or submucosa; AGC: stage III and IV, defined as that the tumour invading into the muscularis propria or deeper gastric wall |
Bel’skaya et al., 2020 [47] | Russia | GC: 11 (3/8); 56.8 ± 5.5; CRC: 18 (7/11); 58.2 ± 3.8 | 16 (6/10); 57.1 ± 6.4 | gastric cancer, colorectal cancer | age 30–70 years; the absence of signs of active infection (including purulent processes); absence of clinically significant concomitant diseases other than cancer pathology (in particular, diabetes, cardiovascular pathologies); good oral hygiene | any treatment at the time of the study, including surgery, chemotherapy or radiation; lack of histological verification of the diagnosis | GC: IIA–4 (36.4%), IIIA–2 (18.2%), IIIB–3 (27.3%), IV–2 (18.2%); CRC: I–2 (11.0%), IIB–3 (16.7%), IIC–5 (27.8%), IIIC–3 (16.7%), IV–5 (27.8%) |
Kuwabara et al., 2022 [48] | Japan | training data: CRC: 117 (53/64); 67.42 ± 11.24; validation data: CRC: 118 (52/66); 69.63 ± 12.14 | Ctrl: training data: 1159 (841/318); 45.65 ± 10.15; validation data: 1158 (820/338); 45.19 ± 10.10; AD: training data: 25 (4/21); 66.30 ± 11.07; validation data: 25 (5/20); 61.81 ± 10.40 | colorectal cancer | histopathological diagnosis of CRC | prior treatment in the form of chemotherapy; chronic metabolic diseases, e.g., diabetes; histopathological diagnosis of all other types of cancer (adenosquamous cell carcinoma, endocrine carcinoma, lymphoma, etc.) | training data: 0–2, I–30, II (N1)–36, II (N2)–25, III–14, IVa–10; validation data: 0–2, I–31, II (N1)–36, II (N2)–25, III–14, IVa–10 |
Hershberger et al., 2021 [49] | U.S.A. | 37 (7/30); 67.3 (44–94) | Crtl: 43 (16/27); 57.6 (36–77); cirrhosis: 30 (18/12); 58 (33–80) | hepatocellular carcinoma | age > 18 years; liver transplantation for HCC or cirrhosis; surgical resection for HCC or liver biopsy with confirmed cirrhosis and/or HCC; Ctrl: patients attending treatment for hernia with no history of liver disease or liver cancer | NR | NR |
Bel’skaya et al., 2021 [50] | Russia | LC: 392 (85/244): ADC: 189 (60/129); 61.0 (56.0–65.0), SCC: 135 (7/128); 59.0 (55.0–66.5), NEC: 68 (18/50); 55.0 (52.0–60.0) | - | lung cancer | age 30–75 years; histological verification of the diagnosis | any treatment at the time of inclusion in the study, including surgery, chemotherapy or radiation | ADC: IA–16 (8.5%), IB–52 (27.5%), IIA + B–23 (12.2%), IIIA–25 (13.2%), IIIB–17 (9.0%), IV–56 (29.6%); SCC: IA–3 (2.2%), IB–28 (20.7%), IIA + B–19 (14.1%), IIIA–34 (25.2%), IIIB–24 (17.8%), IV–27 (20.0%); NEC: IA–5 (7.4%), IB–10 (14.7%), IIA + B–6 (8.8%), IIIA–10 (14.7%), IIIB–17 (25.0%), IV–20 (29.4%) |
Jiang et al., 2021 [51] | China | ELC: discovery set: 45 (29/16); 57.8 (13.4); validation set: 44 (29/15); 55.3 (10.9); ALC: 11 (4/7); 70.2 (6.9) | discovery set: 25 (15/10); 52.9 (12.3); validation set: 25 (16/9); 57.3 (15.8) | lung cancer | NR | NR | I–89 (ELC), III–1 and IV–10 (ALC) |
Takamori et al., 2022 [52] | Japan | 42 (14/28); 63 (39–86) | BLL: 21 (6/15); 62 (43–86) | lung cancer | confirmation of clinical or pathological diagnosis; consulted a dental surgeon before lung surgery; underwent PET/CT for LC | history of malignancy; prior treatment in the form of chemotherapy or radiotherapy at the time of pathological and clinical diagnosis | I–31 (73.8%), II–4 (9.5%), III–4 (9.5%), IV–3 (7.2%) |
Zhang et al., 2021 [53] | China | 61 (44/17); 44 ± 11 | 61 (42/19); NR | papillary thyroid cancer | newly diagnosed with PTC; no history of malignancy and immunodeficiency disease; normal thyroid gland function | prior treatment in the form of surgery, long-term chemotherapy, radiation, and drug therapy | NR |
García-Villaescusa et al., 2018 [54] | Spain | 10 (9/1); 54.7 (26–78) | 120 (71/49); 51.8 (19–81) | glioblastoma | age ≥ 18 years; diagnosis of glioblastoma; at least eight teeth | Ctrl: antibiotics intake in the past six months; fewer than eight teeth (excluding third molars); pregnancy; presenting cardiovascular diseases, diabetes mellitus, rheumatoid arthritis, chronic obstructive pulmonary disease, pneumonia, chronic kidney disease, metabolic syndrome, obesity and Alzheimer’s disease | NR |
Author, Year | Oncological Diagnosis | Type of Saliva and Method of Collection | Centrifugation and Storing | Method of Analysis | Potential Discriminant Metabolites in Saliva |
---|---|---|---|---|---|
Bel’skaya & Sarf, 2022 [36] | breast cancer | unstimulated whole saliva 5 mL collected by spitting into sterile polypropylene tubes; collection of saliva samples was carried out on an empty stomach after rinsing the mouth with water at 8:00–10:00 a.m. | centrifuged at 10,000× g for 10 min, biochemical analysis immediately performed without storage and freezing | StatFax 3300 semi-automatic biochemical analyser | prognostic marker: diene conjugates (level above 3.93 c.u.) |
Bel’skaya et al., 2022 [37] | breast cancer | unstimulated whole saliva 5 mL collected by spitting into sterile polypropylene tubes; collection of saliva samples was carried out on an empty stomach after rinsing the mouth with water at 8:00–10:00 a.m. | centrifuged at 10,000× g for 10 min, biochemical analysis immediately performed without storage and freezing | StatFax 3300 semi-automatic biochemical analyser | up: total content of α-amino acids, urea; down: total protein, uric acid |
Cavaco et al., 2018 [38] | breast cancer | unstimulated whole saliva collected in an 8–mL sterilised glass vials after rinsing the mouth with water in the morning | stored at –80 °C in aliquots of 2 mL until analysis | HS-SPME/GC-MS | Portugal: down: 3-methyl-butanoic acid, 4-methyl-pentanoic acid, phenol, acetic acid, propanoic acid, butanoic acid; India: up: acetic acid, propanoic acid, butanoic acid, 3-methyl-butanoic acid, 4-methyl-pentanoic acid down: 1,2-decanediol, pentanoic acid |
Murata et al., 2019 [39] | breast cancer | unstimulated saliva 400 μL collected in a 50 cc polypropylene tube (a polypropylene straw 1.1 cm in diameter was used to assist the saliva collection) after rinsing the mouth with water at 9:00–11:00 a.m. | immediately stored at −80 °C until analysis | CE-TOF-MS | among 31 metabolites the top eight ranked included spermine, N1-acetylspermine, leucine, glutamine, serine, spermidine, isoleucine, and N1-acetylspermidine |
Ragusa et al., 2021 [40] | breast cancer, lung cancer | unstimulated whole saliva 3 mL collected in a sterilised plastic vial, early in the morning, immediately transferred and centrifuged | centrifuged at 1500 rcf for 10 min, the supernatant was aliquoted in sterilised screw cap plastic vials (0.4 mL of saliva sample each) and stored at −80 °C until analysis | HPAEC-PAD | BC: up: fucose, mannose and galactose, down: glucosamine (p-value < 0.001); LC: up: fucose and mannose (p-value < 0.001), down: galactose (p-value < 0.01), and galactosamine (p-value < 0.05) |
Sugimoto et al., 2010 [41] | breast cancer, pancreatic cancer | unstimulated whole saliva 5 mL for 5–10 min, spitted into 50 mL Falcon tubes, placed in a Styrofoam cup filled with crushed ice | centrifuged at 2600× g for 15 min at 4 °C and spun for 20 min in case of incomplete separation, transferred to two fresh tubes and frozen within 30 min | CE-TOF-MS | BC: C2H6N2, C30H62N19O2S3, taurine, C8H9N, lysine, glycerophosphocholine and C7H8O3S (p-value < 0.001), C32H48O13, C4H12N5, cadaverine, putrescine, leucine + isoleucine, tyrosine, proline, aspartic acid, glutamic acid and threonine (p-value < 0.01), C30H55N27O3S, alpha-aminobutyric acid, alanine, piperideine, phenylalanine, ethanolamine, glycine, ornithine, valine, and serine (p-value < 0.05); PC: C2H6N2, C3H7NO2, C4H12N5, C4H9NO2, C30H62N19O2S3, alpha-aminobutyric acid, alanine, putrescine, methylimidazoleacetic acid, trimethylamine, C5H14N5, taurine, C4H9N, C6H6N2O2, leucine + isoleucine, phenyloalanine, tyrosine, lysine, ethanolamine, gamma-aminobutyric acid, aspartic acid, valine, tryptophan, beta-alanine, glutamic acid, threonine, serine, glutamine, hypoxantine, choline and C5H11NO2 (p-value < 0.001), cadaverine, histidine, proline, glycine, Pro-Gly-Pro/Pro-Pro-Gly, C7H12N2O3, citrulline, carnitine, glycerophosphocholine and C7H8O3S (p-value < 0.01), C30H55N27O3S, C18H32N6O6, piperidine, ornithine, C17H26N4O5, and burimamide (p-value < 0.05) |
Takayama et al., 2016 [42] | breast cancer | unstimulated whole saliva 1 mL collected into a tube | stored < −20 °C until analysis, centrifuged at 3000× g for 10 min after thawing | UPLC-ESI-MS/MS | up: spermine, N1-acetylspermine and N1-acetylspermidine (p-value < 0.0001), N8-acetylspermidine and N1-acetylputrescine (p-value < 0.005), N1N8-diacetylspermidine, N1N12-diacetylspermine, and cadaverine (p-value < 0.05) |
Xavier Assad et al., 2020 [43] | breast cancer | stimulated whole saliva 5–10 mL collected with a cotton swab (Salivette®) for 2 min, placed in a plastic container and packaged in a Styrofoam box with recyclable ice packets for less than 4 h before transport and processing | centrifuged at 3000 rpm for 5 min at 8 °C, stored at −80 °C until analysis | LC-Q-TOF-MS | up: 31 metabolites, including 7 oligopeptides and 6 glycerophospholipids (PG 14:2, PA 32:1, PS 28:0, PS 40:6, PI 31:1, and PI 38:7) |
Zhong et al., 2016 [44] | breast cancer | unstimulated whole saliva 2 mL collected at 8:30–10:30 a.m. | centrifuged at 13,500 rpm for 20 min and at 4 °C, stored at −40 °C until analysis | HILIC-UPLC-ESI-MS, RP-UPLC-ESI-MS | up: lysophosphatidylcholine (18:1, 22:6), monoacylglycerol (0:0/14:0/0:0), lysophosphatidylethanolamine (18:2/0:0), histidine, and N-acetylneuraminic acid (p-value < 0.001), lysophosphatidylcholine (16:0), phosphatidylserine (14:1/16:1) phosphatidylcholine (18:1/16:0), phenylalanine, citrulline, phosphatidylethanolamine (22:/20:4), and 4-hydroxyphenylpyruvic acid (p-value < 0.05); down: lysophosphatidylcholine (18:2) and phytosphingosine (p-value < 0.001), palmitic amide, acetylphenylalanine, and propionylcholine (p-value < 0.05) |
Asai et al., 2018 [45] | pancreatic cancer | unstimulated whole saliva 400 µL collected in a 50 cc polypropylene tube (a polypropylene straw 1.1 cm in diameter was used to assist the saliva collection) after rinsing the mouth with water at 8:00–11:00 a.m. | immediately stored at −80 °C until analysis | CE-TOF-MS | up: spermine, N1-acetylspermidine, N1-acetylspermine, 2-aminobutanoate |
Chen et al., 2018 [46] | gastric cancer | unstimulated whole saliva 4 mL collected after cleaning the mouth | centrifuged at 12,000 rpm for 30 min at 4 °C, 2 mL of the supernatant transferred into centrifuge tubes and stored at –70 °C | HPLC-MS, SERS | both EGC and AGC: up: taurine, glutamine, ethanolamine, histidine, alanine, glutamic acid, proline |
Bel’skaya et al., 2020 [47] | gastric cancer, colorectal cancer | unstimulated whole saliva 2 mL collected on an empty stomach after rinsing the mouth with water at 8:00–10:00 a.m. | centrifuged at 10,000× g for 10 min, biochemical analysis immediately performed without storage and freezing | capillary gas chromatography | GC: up: acetaldehyde, acetone, methanol, ethanol, 1-propanol, 2-propanol and triene conjugates, down: diene conjugates; CRC: up: acetone, ethanol and triene conjugates, down: 1-propanol, 2-propanol, diene conjugates |
Kuwabara et al., 2022 [48] | colorectal cancer | unstimulated saliva 400 μL collected and stored in 50 mL polypropylene tubes (a polypropylene straw 1.1 cm in diameter was used to assist the saliva collection) at 9:00–11:00 a.m. | immediately stored at −80 °C until analysis | CE-TOF-MS, LC-QQQ-MS | up: N-acetylputrescine, N1N8-diacetylspermidine, alanine, 5-oxoproline, N1-acetylspermine, N8-acetylspermidine, succinate, 5-hydroxy-4-methylpentanoate and 2-hydroxypentanoate; down: N-acetylneuraminate, hexanoate, urate, dihydroxyacetone phosphate, aspartate, and beta-alanine |
Hershberger et al., 2021 [49] | hepatocellular carcinoma | unstimulated whole saliva collected using the DNA Genotek OMNIgene ORAL OM-505 after a standard mouth rinse | NR | GC-TOF-MS | down: acetophenone, octadecanol, lauric acid, 3-hydroxybutyric acid, threonic acid, glycerol-alpha-phosphate, butylamine, alphatocopherol |
Bel’skaya et al., 2021 [50] | lung cancer | unstimulated whole saliva 5 mL collected by spitting into sterile polypropylene tubes; collection of saliva samples was carried out on an empty stomach after rinsing the mouth with water at 8:00–10:00 a.m. | centrifuged at 10,000× g for 10 min, biochemical analysis immediately performed without storage and freezing | StatFax 3300 semi-automatic biochemical analyser | diene conjugates, uric acid (depending on the smoking history and the severity of COPD) |
Jiang et al., 2021 [51] | lung cancer | unstimulated whole saliva collected in SalivaGetinTM device by passive drooling at 8:30–10:30 a.m. | centrifuged at 8000× g for 10 min at 4 °C, then the resulting supernatant mixed with ACN and ultrapure water; the mixture vortexed for 10 min and centrifuged at 8000× g for 10 min at 4 °C once again and stored in the refrigerator at −80 °C until analysis | ultralow noise TELDI-MS | ELC: up: adenine, guanine, cytosine, uracil, creatinine, γ-aminobutyric acid, allysine, gentisic acid, imidazolepropionic acid, ketoleucine, N-acetylhistidine, N-acetylproline, 3-hydroxyanthranilic acid, and pyroglutamic acid; down: glycyl-phenylalanine, N-acetyltaurine, acetyl-L-glutamic acid, phenylgloxylic acid, proline, valine, arginine, serine, and xanthine |
Takamori et al., 2022 [52] | lung cancer | unstimulated whole saliva 4–5 mL collected into 50-cc Falcon tubes kept in paper cups filled with crushed ice for 5–15 min after rinsing the mouth with water | centrifuged and immediately stored at −80 °C | CE-TOF-MS | up: diethanolamine; down: tryptophan (p-value < 0.05), choline, thymine, cytosine, phenylalanine, leucine, isoleucine, lysine, tyrosine |
Zhang et al., 2021 [53] | papillary thyroid cancer | unstimulated whole saliva 1.5 mL collected with Salivette® polyester swabs held in mouth for 5 min after rinsing the mouth with water at 8:30–10:30 a.m. | centrifuged at 3000 rpm for 3 min and at 4 °C, stored at −35 °C until analysis | UPLC-HRMS | Down: L-valine and L-alanine (p-value < 0.001), L-phenylalanine, L-proline, L-leucine, L-tryptophan, L-threonine and L-glycine (p-value < 0.01), L-methionine, and L-isoleucine (p-value < 0.05) |
García-Villaescusa et al., 2018 [54] | glioblastoma | unstimulated whole saliva collected in a wide-necked sterile container (“draining method”) in the morning, then transferred with a pipette to a sterile 1.5 mL Eppendorf tube | immediately stored at −80 °C until analysis | NMR spectroscopy | up: propionate and acetate; down: leucine, valine, isoleucine, alanine, ethanolamine, and sucrose |
Study | Oncological Diagnosis | Most Discriminant Metabolites | AUC | −95% CI | +95% CI | Sensitivity [%] | Specificity [%] |
---|---|---|---|---|---|---|---|
Murata et al., 2019 [39] | breast cancer | Spermine | 0.766 | 0.671 | 0.840 | - | - |
Spermine + ribulose-5-phosphate | 0.790 | 0.699 | 0.859 | - | - | ||
Ragusa et al., 2021 [40] | breast cancer | Glucosamine + mannose | 0.981 | 0.911 | 1.000 | - | - |
Glucosamine + mannose + galactose | 0.980 | 0.934 | 1.000 | - | - | ||
Glucosamine + mannose + galactose + fucose | 0.986 | 0.957 | 1.000 | - | - | ||
Glucosamine + mannose + galactose + fucose + galactose + galactosamine | 0.997 | 0.989 | 1.000 | - | - | ||
lung cancer | Mannose + fucose | 0.869 | 0.781 | 0.943 | - | - | |
Mannose + fucose + galactose | 0.917 | 0.835 | 0.982 | - | - | ||
Mannose + fucose + galactose + galactosamine + glucosamine | 0.918 | 0.829 | 0.976 | - | - | ||
Sugimoto et al., 2010 [41] | breast cancer | C7H8O3S + lysine + C30H62N19O2S3 + threonine + “leucine + isoleucine” + putrescine + C4H12N5 + glutamic acid + tyrosine + piperideine + valine + glycine + C30H55N27O3S | 0.973 | - | - | - | - |
pancreatic cancer | Phenylalanine + tryptophan + ethanolamine + carnitine + C7H12N2O3 | 0.993 | - | - | - | - | |
Takayama et al., 2016 [42] | breast cancer | Spermine | 0.744 | 0.666 | 0.823 | 68.9 | 74.4 |
Acetylputrescine | 0.704 | 0.624 | 0.784 | 60.7 | 53.5 | ||
Cadaverine | 0.693 | 0.627 | 0.758 | 65.6 | 67.4 | ||
Putrescine | 0.688 | 0.608 | 0.769 | 62.3 | 51.2 | ||
N1-acetylspermidine | 0.678 | 0.596 | 0.760 | 63.9 | 53.5 | ||
Xavier Assad et al., 2020 [43] | breast cancer | PG 14:2 | 0.733 | 0.596 | 0.870 | 65.22 | 77.14 |
PI 38:7 | 0.661 | 0.513 | 0.809 | 60.87 | 71.43 | ||
PS 28:0 | 0.627 | 0.464 | 0.790 | 47.83 | 88.57 | ||
Zhong et al., 2016 [44] | breast cancer | Monoacylglycerol (0:0/14:0/0:0) | 0.929 | 0.844 | 1.000 | 92.6 | 91.7 |
Lysophosphatidylcholine (22:6) | 0.920 | 0.839 | 1.000 | 81.5 | 91.7 | ||
Lysophosphatidylcholine (18:1) | 0.920 | 0.836 | 1.000 | 77.8 | 100.0 | ||
Phytosphingosine | 0.879 | 0.777 | 0.981 | 80.8 | 92.6 | ||
Lysophosphatidylcholine (18:2) | 0.868 | 0.758 | 0.977 | 84.6 | 92.6 | ||
Histidine | 0.847 | 0.736 | 0.958 | 96.3 | 62.5 | ||
Lysophosphatidylethanolamine (18:2/0:0) | 0.821 | 0.706 | 0.902 | 92.6 | 62.5 | ||
N-Acetylneuraminic acid | 0.795 | 0.669 | 0.921 | 92.6 | 58.3 | ||
Phosphatidylethanolamine (22:0/20:4) | 0.762 | 0.630 | 0.894 | 70.4 | 75.0 | ||
Phosphatidylcholine (18:1/16:0) | 0.750 | 0.612 | 0.885 | 59.3 | 91.7 | ||
Asai et al., 2018 [45] | pancreatic cancer | Alanine + N1-acetylspermidine + 2-oxobutyrate + 2-hydroxybutyrate | 0.887 | 0.784 | 0.944 | - | - |
Chen et al., 2018 [46] | gastric cancer | Taurine + glycine + glutamine + ethanolamine + histidine + alanine + glutamic acid + hydroxylysine + proline + tyrosine | 0.900 | - | - | - | - |
Bel’skaya et al., 2020 [47] | gastric cancer | Acetaldehyde + acetone + methanol + 2-propanol + ethanol | 0.839 | - | - | - | - |
colorectal cancer | 0.857 | - | - | - | - | ||
Kuwabara et al., 2022 [48] | colorectal cancer | 4-Methyl-2-oxopentanoate + N-acetylputrescine + isoleucine + malate | 0.840 | 0.796 | 0.883 | - | - |
N1N8-Diacetylspermidine | 0.764 | 0.718 | 0.809 | - | - | ||
N8-Acetylspermidine | 0.745 | 0.699 | 0.790 | - | - | ||
N1-Acetylspermine | 0.727 | 0.675 | 0.780 | - | - | ||
N1N2-Diacetylspermine | 0.684 | 0.633 | 0.735 | - | - | ||
N1-Acetylspermidine | 0.667 | 0.615 | 0.725 | - | - | ||
Hershberger et al., 2021 [49] | hepatocellular carcinoma | Octadecanol + acetophenone + 1-monopalmitin + 1-monostearin | - | - | - | 87.9 | 95.4 |
Octadecanol + 1-monopalmatin + 1-monostearin + 4-hydroxybutyric acid | - | - | - | 87.9 | 93.5 | ||
Jiang et al., 2021 [51] | lung cancer | N-Acetyltaurine | 0.990 | - | - | - | - |
Xanthine | 0.938 | - | - | - | - | ||
N-Acetyl-L-glutamic acid | 0.927 | - | - | - | - | ||
Glycyl-Phenylalanine | 0.914 | - | - | - | - | ||
Gentisic acid | 0.905 | - | - | - | - | ||
Cytosine | 0.849 | - | - | - | - | ||
Serine | 0.847 | - | - | - | - | ||
Imidazolepropionic acid | 0.847 | - | - | - | - | ||
Adenine | 0.845 | - | - | - | - | ||
Ketoleucine | 0.817 | - | - | - | - | ||
Takamori et al., 2022 [52] | lung cancer | Tryptophan | 0.663 | - | - | - | - |
Phenylalanine | 0.634 | - | - | - | - | ||
Choline | 0.632 | - | - | - | - | ||
Leucine | 0.621 | - | - | - | - | ||
Isoleucine | 0.620 | - | - | - | - | ||
Lysine | 0.620 | - | - | - | - | ||
Zhang et al., 2021 [53] | papillary thyroid cancer | Alanine + valine + proline + phenylalanine | 0.936 | 0.894 | 0.977 | 91.2 | 85.2 |
Valine | 0.833 | 0.758 | 0.907 | 80.3 | 78.4 | ||
Alanine | 0.814 | 0.736 | 0.891 | 72.1 | 76.5 | ||
Threonine | 0.755 | 0.663 | 0.848 | 63.9 | 92.2 | ||
Proline | 0.754 | 0.665 | 0.843 | 50.8 | 92.2 | ||
Phenylalanine | 0.749 | 0.658 | 0.839 | 98.4 | 43.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nijakowski, K.; Zdrojewski, J.; Nowak, M.; Gruszczyński, D.; Knoll, F.; Surdacka, A. Salivary Metabolomics for Systemic Cancer Diagnosis: A Systematic Review. Metabolites 2023, 13, 28. https://doi.org/10.3390/metabo13010028
Nijakowski K, Zdrojewski J, Nowak M, Gruszczyński D, Knoll F, Surdacka A. Salivary Metabolomics for Systemic Cancer Diagnosis: A Systematic Review. Metabolites. 2023; 13(1):28. https://doi.org/10.3390/metabo13010028
Chicago/Turabian StyleNijakowski, Kacper, Jakub Zdrojewski, Monika Nowak, Dawid Gruszczyński, Filip Knoll, and Anna Surdacka. 2023. "Salivary Metabolomics for Systemic Cancer Diagnosis: A Systematic Review" Metabolites 13, no. 1: 28. https://doi.org/10.3390/metabo13010028
APA StyleNijakowski, K., Zdrojewski, J., Nowak, M., Gruszczyński, D., Knoll, F., & Surdacka, A. (2023). Salivary Metabolomics for Systemic Cancer Diagnosis: A Systematic Review. Metabolites, 13(1), 28. https://doi.org/10.3390/metabo13010028