Volumetric Absorptive Microsampling in the Analysis of Endogenous Metabolites
Abstract
:1. Introduction
2. VAMS Technology
3. Method
Metabolite (+Secondary Analyte) | Specimen Sampled via VAMs | Analytical Technique | Analytical Validation | Clinical Validation Study | Reference |
---|---|---|---|---|---|
Creatinine (+vancomycin) | Plasma | LC-MS/MS | Table S1 | Comparison of plasma VAMS vs. plasma fluid; 46 patients. | [21] |
Creatinine (+tacrolimus) | Capillary finger blood | LC-MS/MS; Jaffe kinetic method | Comparison of capillary VAMS vs. DBS vs. serum fluid; 152 patients. | [22] | |
Creatinine (+tacrolimus) | Capillary finger blood | LC-MS/MS | Comparison of capillary VAMS vs. serum fluid; 135 patients. | [23] | |
Creatinine (+tacrolimus, mycophenolic acid, iohexol) | Capillary finger blood | LC-MS/MS | Comparison of capillary VAMS vs. DBS vs. serum fluid; 25 patients. | [24] | |
Creatinine (+tacrolimus, mycophenolic acid) | Capillary finger blood | LC-MS/MS; EMIT; COM | Comparison of capillary VAMS vs. DBS vs. serum fluid; 40 patients. | [25] | |
Creatinine (+tacrolimus) | Capillary finger blood | LC-MS/MS | Comparison of capillary VAMS vs. serum fluid; 40 patients. | [26] | |
Testosterone | Venous whole and capillary blood | GC-MS/MS | Table S2 | Comparison of two GC-MS/MS systems; venous whole blood VAMS vs. serum fluid. Feasibility conducted on capillary VAMS (testosterone gel study administration); 40 patients. | [27] |
Testosterone, Epitestosteorne, Dihydrotestoterone, Dehydroepiandrosterone | Urine | LC-MS/MS | Comparison of urine VAMS vs. dried urine spots (DUS) vs. fluid urine. | [28] | |
Cortisol, Cortisone, Corticosterone, 11-Dehydrocorticosterone | Venous whole blood (human and rats) | LC-MS/MS | Comparison of Mitra VAMS vs. Whatman 903 Protein Saver Card segment (DBS) vs. Noviplex Plasma Prep Card disc (dried plasma spot: DPS) vs. EDTA plasma fluid; 5 human and 8 rats. | [29] | |
Testosterone, Androstenedione, 17-Hydroxyprogesterone | Venous whole and capillary finger blood | LC-MS/MS | Comparison of venous whole blood vs. plasma; plasma vs. venous whole blood VAMS; serum vs. capillary blood VAMS; samples were from healthy volunteers. | [30] | |
25-Hydroxyvitamin D2 and D3 | Venous whole and capillary finger blood | LC-MS/MS | Table S3 | Optimization of venous whole blood VAMS using fortified samples; feasibility conducted on capillary VAMS from 20 healthy adults. | [31] |
Thiamine diphosphate | Venous whole blood | LC-MS/MS | Comparison of venous whole blood VAMS vs. venous whole blood fluid at normal and extreme HCT levels; healthy human volunteers. | [32] | |
Thiamine diphosphate | Venous whole and capillary finger blood | LC-MS/MS | Comparison of venous whole blood VAMS vs. venous whole blood fluid; capillary VAMS vs. venous whole blood VAMS; capillary VAMS vs. venous whole blood fluid; 50 healthy volunteers. | [33] | |
Phosphatidylethanol | Venous whole blood | LC-MS/MS | Table S4 | Comparison of venous whole blood VAMS analysis between two laboratories; 59 individual donors. | [34] |
Phenylalanine, Tyrosine | Venous whole blood | Flow injection analysis-MS/MS | Table S5 | Comparison of three VAMS devices (Hemaxis-DB10, Neoteryx-Mitra, and Capitainer-qDBS device) and conventional DBS. | [35] |
Phenylalanine | Capillary finger blood and plasma. | LC-MS/MS | Comparison of capillary VAMS vs. plasma fluid; 24 patients. | [36] | |
Phenylalanine, Tyrosine, Homogentisic acid | Urine | LC-MS/MS | Comparison of urine VAMS and urine fluid. | [37] | |
24 Amino acids, 12 Organic acids | Venous whole blood. | LC-MS/MS | Table S6 | Comparison of spiked and unspiked venous whole blood VAMS. | [38] |
5 Amino acids, 4 Organic acids | Mouse whole blood | LC-MS/MS | Not performed | [39] | |
24 Tryptophan pathway metabolites | Mouse whole blood | LC-MS/MS | Table S7 | Comparison between blank and fortified whole blood VAMS samples from healthy mice; real samples from 3 mice. | [10] |
4. VAMS Application Studies on Endogenous Metabolites
4.1. Creatinine
4.2. Steroids
4.3. Vitamins
4.4. Phosphatidylethanols
4.5. Aminoacids and Other Metabolic Biomarkers
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nys, G.; Kok, M.G.M.; Servais, A.-C.; Fillet, M. Beyond Dried Blood Spot: Current Microsampling Techniques in the Context of Biomedical Applications. TrAC Trends Anal. Chem. 2017, 97, 326–332. [Google Scholar] [CrossRef]
- Protti, M.; Mandrioli, R.; Mercolini, L. Tutorial: Volumetric Absorptive Microsampling (VAMS). Anal. Chim. Acta 2019, 1046, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Londhe, V.; Rajadhyaksha, M. Opportunities and Obstacles for Microsampling Techniques in Bioanalysis: Special Focus on DBS and VAMS. J. Pharm. Biomed. Anal. 2020, 182, 113102. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Lee, M.S. Dried Blood Spots: Applications and Techniques, 1st ed.; Wiley: Hoboken, NJ, USA, 2014; pp. 1–376. [Google Scholar]
- Kok, M.G.M.; Fillet, M. Volumetric Absorptive Microsampling: Current Advances and Applications. J. Pharm. Biomed. Anal. 2018, 147, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Dodeja, P.; Giannoutsos, S.; Caritis, S.; Venkataramanan, R. Applications of Volumetric Absorptive Microsampling Technique: A Systematic Critical Review. Ther. Drug Monit. 2023, 45, 431–462. [Google Scholar] [CrossRef]
- Denniff, P.; Spooner, N. The effect of hematocrit on assay bias when using DBS samples for the quantitative bioanalysis of drugs. Bioanalysis 2010, 2, 1385–1395. [Google Scholar] [CrossRef]
- Nugraha, R.V.; Yunivita, V.; Santoso, P.; Hasanah, A.N.; Aarnoutse, R.E.; Ruslami, R. Analytical and Clinical Validation of Assays for Volumetric Absorptive Microsampling (VAMS) of Drugs in Different Blood Matrices: A Literature Review. Molecules 2023, 28, 6046. [Google Scholar] [CrossRef]
- Mitra|VAMS Microsampling. Available online: https://www.neoteryx.com/volumetrically-accurate-micro-sampling-vams-collection-devices (accessed on 18 September 2023).
- Protti, M.; Cirrincione, M.; Mandrioli, R.; Rudge, J.; Regazzoni, L.; Valsecchi, V.; Volpi, C.; Mercolini, L. Volumetric Absorptive Microsampling (VAMS) for Targeted LC-MS/MS Determination of Tryptophan-Related Biomarkers. Molecules 2022, 27, 5652. [Google Scholar] [CrossRef]
- Denniff, P.; Spooner, N. Volumetric Absorptive Microsampling: A Dried Sample Collection Technique for Quantitative bioanalysis. Anal. Chem. 2014, 86, 8489–8495. [Google Scholar] [CrossRef]
- Denniff, P.; Parry, S.; Dopson, W.; Spooner, N. Quantitative Bioanalysis of Paracetamol in Rats Using Volumetric Absorptive Microsampling (VAMS). J. Pharm. Biomed. Anal. 2015, 108, 61–69. [Google Scholar] [CrossRef]
- Youhnovski, N.; Mayrand-Provencher, L.; Bérubé, E.-R.; Plomley, J.; Montpetit, H.; Furtado, M.; Keyhani, A. Volumetric Absorptive Microsampling Combined with Impact-Assisted Extraction for Hematocrit Effect Free Assays. Bioanalysis 2017, 9, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Kip, A.E.; Kiers, K.C.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H.; Dorlo, T.P.C. Volumetric Absorptive Microsampling (VAMS) as an Alternative to Conventional Dried Blood Spots in the Quantification of Miltefosine in Dried Blood Samples. J. Pharm. Biomed. Anal. 2017, 135, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.L.; Roberts, J.A.; Lipman, J.; Wallis, S.C. Quantitative Bioanalytical Validation of Fosfomycin in Human Whole Blood with Volumetric Absorptive Microsampling. Bioanalysis 2015, 7, 2585–2595. [Google Scholar] [CrossRef] [PubMed]
- De Kesel, P.M.M.; Lambert, W.E.; Stove, C.P. Does Volumetric Absorptive Microsampling Eliminate the Hematocrit Bias for Caffeine and Paraxanthine in Dried Blood Samples? A Comparative Study. Anal. Chim. Acta 2015, 881, 65–73. [Google Scholar] [CrossRef]
- Miao, Z.; Farnham, J.G.; Hanson, G.; Podoll, T.; Reid, M.J. Bioanalysis of Emixustat (ACU-4429) in Whole Blood Collected with Volumetric Absorptive Microsampling by LC-MS/MS. Bioanalysis 2015, 7, 2071–2083. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Gao, H. Evaluation of Sample Extraction Methods for Minimizing Hematocrit Effect on Whole Blood Analysis with Volumetric Absorptive Microsampling. Bioanalysis 2017, 9, 349–357. [Google Scholar] [CrossRef]
- Mano, Y.; Kita, K.; Kusano, K. Hematocrit-Independent Recovery Is a Key for Bioanalysis Using Volumetric Absorptive Microsampling Devices, MitraTM. Bioanalysis 2015, 7, 1821–1829. [Google Scholar] [CrossRef]
- John, H.; Willoh, S.; Hörmann, P.; Siegert, M.; Vondran, A.; Thiermann, H. Procedures for Analysis of Dried Plasma Using Microsampling Devices to Detect Sulfur Mustard-Albumin Adducts for Verification of Poisoning. Anal. Chem. 2016, 88, 8787–8794. [Google Scholar] [CrossRef]
- Andriguetti, N.B.; Lisboa, L.L.; Hahn, S.R.; Pagnussat, L.R.; Antunes, M.V.; Linden, R. Simultaneous Determination of Vancomycin and Creatinine in Plasma Applied to Volumetric Absorptive Microsampling Devices Using Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 165, 315–324. [Google Scholar] [CrossRef]
- Mathew, B.S.; Mathew, S.K.; Aruldhas, B.W.; Prabha, R.; Gangadharan, N.; David, V.G.; Varughese, S.; John, G.T. Analytical and Clinical Validation of Dried Blood Spot and Volumetric Absorptive Microsampling for Measurement of Tacrolimus and Creatinine after Renal Transplantation. Clin. Biochem. 2022, 105–106, 25–34. [Google Scholar] [CrossRef]
- Marshall, D.J.; Kim, J.J.; Brand, S.; Bryne, C.; Keevil, B.G. Assessment of Tacrolimus and Creatinine Concentration Collected Using Mitra Microsampling Devices. Ann. Clin. Biochem. 2020, 57, 389–396. [Google Scholar] [CrossRef]
- Zwart, T.C.; Metscher, E.; van der Boog, P.J.M.; Swen, J.J.; de Fijter, J.W.; Guchelaar, H.-J.; de Vries, A.P.J.; Moes, D.J.A.R. Volumetric Microsampling for Simultaneous Remote Immunosuppressant and Kidney Function Monitoring in Outpatient Kidney Transplant Recipients. Br. J. Clin. Pharmacol. 2022, 88, 4854–4869. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dai, X.; Wan, S.; Fan, Y.; Wu, L.; Xu, H.; Yan, L.; Gong, X.; Li, Y.; Luo, Y.; et al. A Volumetric Absorptive Microsampling UPLC-MS/MS Method for Simultaneous Quantification of Tacrolimus, Mycophenolic Acid and Creatinine in Whole Blood of Renal Transplant Recipients. Pharmaceutics 2022, 14, 2547. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, C.E.; Parker, S.L.; Jacks, M.; John, G.T.; McWhinney, B.; Ungerer, J.; Mallett, A.J.; Healy, H.G.; Roberts, J.A.; Staatz, C.E. Serum Creatinine and Tacrolimus Assessment With VAMS Finger-Prick Microsampling: A Diagnostic Test Study. Kidney Med. 2023, 5, 100610. [Google Scholar] [CrossRef]
- Chang, W.C.-W.; Cowan, D.A.; Walker, C.J.; Wojek, N.; Brailsford, A.D. Determination of Anabolic Steroids in Dried Blood Using Microsampling and Gas Chromatography-Tandem Mass Spectrometry: Application to a Testosterone Gel Administration Study. J. Chromatogr. A 2020, 1628, 461445. [Google Scholar] [CrossRef]
- Protti, M.; Marasca, C.; Cirrincione, M.; Sberna, A.E.; Mandrioli, R.; Mercolini, L. Dried Urine Microsampling Coupled to Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for the Analysis of Unconjugated Anabolic Androgenic Steroids. Molecules 2020, 25, 3210. [Google Scholar] [CrossRef]
- Heussner, K.; Rauh, M.; Cordasic, N.; Menendez-Castro, C.; Huebner, H.; Ruebner, M.; Schmidt, M.; Hartner, A.; Rascher, W.; Fahlbusch, F.B. Adhesive Blood Microsampling Systems for Steroid Measurement via LC-MS/MS in the Rat. Steroids 2017, 120, 1–6. [Google Scholar] [CrossRef]
- Marshall, D.J.; Adaway, J.E.; Hawley, J.M.; Keevil, B.G. Quantification of Testosterone, Androstenedione and 17-Hydroxyprogesterone in Whole Blood Collected Using Mitra Microsampling Devices. Ann. Clin. Biochem. 2020, 57, 351–359. [Google Scholar] [CrossRef]
- Tuma, C.; Thomas, A.; Braun, H.; Thevis, M. Quantification of 25-Hydroxyvitamin D2 and D3 in Mitra® Devices with Volumetric Absorptive Microsampling Technology (VAMS®) by UHPLC-HRMS for Regular Vitamin D Status Monitoring. J. Pharm. Biomed. Anal. 2023, 228, 115314. [Google Scholar] [CrossRef]
- Verstraete, J.; Stove, C. Patient-Centric Assessment of Thiamine Status in Dried Blood Volumetric Absorptive Microsamples Using LC-MS/MS Analysis. Anal. Chem. 2021, 93, 2660–2668. [Google Scholar] [CrossRef]
- Verstraete, J.; Stove, C. Volumetric Absorptive Microsampling (VAMS) as a Reliable Tool to Assess Thiamine Status in Dried Blood Microsamples: A Comparative Study. Am. J. Clin. Nutr. 2021, 114, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Van Uytfanghe, K.; Ramirez Fernandez, M.D.M.; De Vos, A.; Wille, S.M.; Stove, C.P. Quantitation of Phosphatidylethanol in Dried Blood after Volumetric Absorptive Microsampling. Talanta 2021, 223 Pt 1, 121694. [Google Scholar] [CrossRef] [PubMed]
- Carling, R.S.; Emmett, E.C.; Moat, S.J. Evaluation of Volumetric Blood Collection Devices for the Measurement of Phenylalanine and Tyrosine to Monitor Patients with Phenylketonuria. Clin. Chim. Acta 2022, 535, 157–166. [Google Scholar] [CrossRef]
- Gao, L.; Smith, N.; Kaushik, D.; Milner, S.; Kong, R. Validation and Application of Volumetric Absorptive Microsampling (VAMS) Dried Blood Method for Phenylalanine Measurement in Patients with Phenylketonuria. Clin. Biochem. 2023, 116, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.M.; Hughes, A.T.; Milan, A.M.; Rudge, J.; Davison, A.S.; Ranganath, L.R. Evaluation of the Mitra Microsampling Device for Use with Key Urinary Metabolites in Patients with Alkaptonuria. Bioanalysis 2018, 10, 1919–1932. [Google Scholar] [CrossRef]
- Kok, M.G.M.; Nix, C.; Nys, G.; Fillet, M. Targeted Metabolomics of Whole Blood Using Volumetric Absorptive Microsampling. Talanta 2019, 197, 49–58. [Google Scholar] [CrossRef]
- Kapadnis, U.; Locuson, C.; Okamura, H.; Rienzo, G.D.; Cotter, C.; Zhu, D.; Narayanaswami, R.; Castro-Perez, J.; Marathe, P.; Yang, W.-C. Volumetric Absorptive Microsampling as an Effective Microsampling Technique for LC-MS/MS Bioanalysis of Biomarkers in Drug Discovery. Bioanalysis 2023, 15, 1757–6180. [Google Scholar] [CrossRef]
- Gowda, S.; Desai, P.B.; Kulkarni, S.S.; Hull, V.V.; Math, A.A.K.; Vernekar, S.N. Markers of Renal Function Tests. N. Am. J. Med. Sci. 2010, 2, 170–173. [Google Scholar]
- World Anti-Doping Agency. Prohibited List. 2013. Available online: https://www.wada-ama.org/en/prohibited-list (accessed on 18 September 2023).
- World Anti-Doping Agency. World Anti-Doping Code. 2009. Available online: https://www.wada-ama.org/en/resources/world-anti-doping-program/world-anti-doping-code (accessed on 18 September 2023).
- World Anti-Doping Code. Athlete Biological Passport Operating Guidelines and Compilation of Required Elements, Version 8.0. 2021. Available online: http://www.wada-ama.org (accessed on 18 September 2023).
- Fahlbusch, F.B.; Ruebner, M.; Rascher, W.; Rauh, M. Combined Quantification of Corticotropin-Releasing Hormone, Cortisol-to-Cortisone Ratio and Progesterone by Liquid Chromatography-Tandem Mass Spectrometry in Placental Tissue. Steroids 2013, 78, 888–895. [Google Scholar] [CrossRef]
- Millward, D.; Root, A.D.; Dubois, J.; Cohen, R.P.; Valdivia, L.; Helming, B.; Kokoskie, J.; Waterbrook, A.L.; Paul, S. Association of Serum Vitamin D Levels and Stress Fractures in Collegiate Athletes. Orthop. J. Sports Med. 2020, 8, 2325967120966967. [Google Scholar] [CrossRef]
- Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J.B. The Health Effects of Vitamin D Supplementation: Evidence from Human Studies. Nat. Rev. Endocrinol. 2022, 18, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Thacher, T.D.; Clarke, B.L. Vitamin D Insufficiency. Mayo Clin. Proc. 2011, 86, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Larkin, E.K.; Gebretsadik, T.; Koestner, N.; Newman, M.S.; Liu, Z.; Carroll, K.N.; Minton, P.; Woodward, K.; Hartert, T.V. Agreement of Blood Spot Card Measurements of Vitamin D Levels with Serum, Whole Blood Specimen Types and a Dietary Recall Instrument. PLoS ONE 2011, 6, e16602. [Google Scholar] [CrossRef]
- Schröck, A.; Henzi, A.; Bütikofer, P.; König, S.; Weinmann, W. Determination of the formation rate of phosphatidylethanol by phospholipase D (PLD) in blood and test of two selective PLD inhibitors. Alcohol 2018, 73, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Luginbühl, M.; Young, R.S.E.; Stoeth, F.; Weinmann, W.; Blanksby, S.J.; Gaugler, S. Variation in the Relative Isomer Abundance of Synthetic and Biologically Derived Phosphatidylethanols and Its Consequences for Reliable Quantification. J. Anal. Toxicol. 2021, 45, 76–83. [Google Scholar] [CrossRef]
- van Spronsen, F.J.; van Wegberg, A.M.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. Key European Guidelines for the Diagnosis and Management of Patients with Phenylketonuria. Lancet Diabetes Endocrinol. 2017, 5, 743–756. [Google Scholar] [CrossRef]
- Microsampling in Pre-Clinical Research. Available online: https://www.neoteryx.com/blood-microsampling-animal-research?hsCtaTracking=1dc2b846-de1c-4466-a912-bbed54938101%7Cd1f9bef1-9898-424a-a687-b9f2c0d08705 (accessed on 18 September 2023).
- Thangavelu, M.U.; Wouters, B.; Kindt, A.; Reiss, I.K.M.; Hankemeier, T. Blood Microsampling Technologies: Innovations and Applications in 2022. Anal. Sci. Adv. 2023, 4, 154–180. [Google Scholar] [CrossRef]
- Mercolini, L.; Protti, M.; Catapano, M.C.; Rudge, J.; Sberna, A.E. LC-MS/MS and volumetric absorptive microsampling for quantitative bioanalysis of cathinone analogues in dried urine, plasma and oral fluid samples. J. Pharm. Biomed. Anal. 2016, 123, 186–194. [Google Scholar] [CrossRef]
Technique | Pros | Cons |
---|---|---|
VAMS |
|
|
DBS |
|
|
Venipuncture |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Sá e Silva, D.M.; Thaitumu, M.; Theodoridis, G.; Witting, M.; Gika, H. Volumetric Absorptive Microsampling in the Analysis of Endogenous Metabolites. Metabolites 2023, 13, 1038. https://doi.org/10.3390/metabo13101038
de Sá e Silva DM, Thaitumu M, Theodoridis G, Witting M, Gika H. Volumetric Absorptive Microsampling in the Analysis of Endogenous Metabolites. Metabolites. 2023; 13(10):1038. https://doi.org/10.3390/metabo13101038
Chicago/Turabian Stylede Sá e Silva, Daniel Marques, Marlene Thaitumu, Georgios Theodoridis, Michael Witting, and Helen Gika. 2023. "Volumetric Absorptive Microsampling in the Analysis of Endogenous Metabolites" Metabolites 13, no. 10: 1038. https://doi.org/10.3390/metabo13101038
APA Stylede Sá e Silva, D. M., Thaitumu, M., Theodoridis, G., Witting, M., & Gika, H. (2023). Volumetric Absorptive Microsampling in the Analysis of Endogenous Metabolites. Metabolites, 13(10), 1038. https://doi.org/10.3390/metabo13101038