Lutein-Rich Beverage Alleviates Visual Fatigue in the Hyperglycemia Model of Sprague–Dawley Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Extraction and Saponification of Lutein from Marigold
2.3. Identification and Quantification of Lutein by HPLC Analysis
2.4. Preparation of the Lutein Beverage
2.5. Animal Experiments
2.6. Morphological Observation of Rat Lenses
2.7. Determination of Liver Biochemical Indicators in Rats
2.8. Statistical Analysis
3. Results
3.1. Identification of Marigold Lutein (ML)
3.2. Effects of Lutein-Rich Beverage on Body Weight and Blood Glucose Level
3.3. Effects of the Lutein-Rich Beverage on the Lens Morphology of Rats
3.4. Effects of Lutein-Rich Beverage on the Liver Biochemical Indexes in Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Ma, T.; Ye, Z.; Li, Z.H. Effect of illuminance and colour temperature of LED lighting on asthenopia during reading. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2023, 43, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.Z.; Tian, L.; Sun, X.Q.; Zhang, J.F.; Lin, N.; Lin, Y.Y.; Lyu, F. Development of an asthenopia survey questionnaire for general surveys. Chin. J. Ophthalmol. 2023, 59, 452–459. [Google Scholar]
- Zhao, H.L.; Jiang, J.; Yu, J.; Xu, H.M. Role of short-wavelength filtering lenses in delaying myopia progression and amelioration of asthenopia in juveniles. Int. J. Ophthalmol. 2017, 10, 79–85. [Google Scholar]
- Fan, L.; Wang, J.; Li, Q.; Song, Z.H.; Dong, J.H.; Bao, F.J.; Wang, X.F. Eye movement characteristics and visual fatigue assessment of virtual reality games with different interaction modes. Front. Neurosci. 2023, 17, 1173127. [Google Scholar] [CrossRef]
- Guo, F.; Ren, Z.; Liu, L.; Wang, X.; Cai, W. Effects of lying posture and task type on muscle fatigue, visual fatigue, and discomfort while using a smartphone on the bed. Work 2023. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, P.; Deng, X.W.; Liang, J.Q.; Liao, Y.R.; Fan, S.X.; Xiao, J.H. Eye Habits Affect the Prevalence of Asthenopia in Patients with Myopia. J. Ophthalmol. 2022, 2022. [Google Scholar] [CrossRef]
- Yoshida, K.; Sakai, O.; Honda, T.; Kikuya, T.; Takeda, R.; Sawabe, A.; Inaba, M.; Koike, C. Effects of Astaxanthin, Lutein, and Zeaxanthin on Eye-Hand Coordination and Smooth-Pursuit Eye Movement after Visual Display Terminal Operation in Healthy Subjects: A Randomized, Double-Blind Placebo-Controlled Intergroup Trial. Nutrients 2023, 15, 1459. [Google Scholar] [CrossRef]
- Qiu, J.; Zheng, B.; Zhou, H.; Zhou, H.; Ye, C.; Shi, M.; Shi, S.; Wu, S. Network Pharmacology, Molecular Docking, and Molecular Dynamic-Based Investigation on the Mechanism of Compound Chrysanthemum in the Treatment of Asthenopia. Comput. Math. Methods Med. 2022. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, Q.; Fan, M.N.; Ma, L.; Chen, C.; Liu, X.H.; Jiang, H.; Liu, Y. Fruit and vegetable consumption and its relation to risk of asthenopia among Chinese college students. Int. J. Ophthalmol. 2018, 11, 1020–1027. [Google Scholar]
- Kan, J.; Li, A.; Zou, H.; Chen, L.; Du, J. A Machine Learning Based Dose Prediction of Lutein Supplements for Individuals with Eye Fatigue. Front. Nutr. 2020, 7, 577923. [Google Scholar] [CrossRef]
- Fiedorowicz, J.; Dobrzynska, M.M. Lutein and zeaxanthin-radio- and chemoprotective properties. Mechanism and possible use. Rocz. Panstw. Zakl. Hig. 2023, 74, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Parklak, W.; Ounjaijean, S.; Kulprachakarn, K.; Boonyapranai, K. In Vitro alpha-Amylase and alpha-Glucosidase Inhibitory Effects, Antioxidant Activities, and Lutein Content of Nine Different Cultivars of Marigold Flowers (Tagetes spp.). Molecules 2023, 28, 3314. [Google Scholar] [CrossRef] [PubMed]
- Grudzinski, W.; Luchowski, R.; Ostrowski, J.; Sek, A.; Pinto, M.M.M.; Welc-Stanowska, R.; Zubik-Duda, M.; Teresinski, G.; Rejdak, R.; Gruszecki, W.I. Physiological Significance of the Heterogeneous Distribution of Zeaxanthin and Lutein in the Retina of the Human Eye. Int. J. Mol. Sci. 2023, 24, 10702. [Google Scholar] [CrossRef] [PubMed]
- Nurkolis, F.; Taslim, N.A.; Hardinsyah, H. The importance of lutein-plant based nanoencapsulation studies—An effort to improve clinical studies on the stability and bioaccessibility of lutein for health vision. Clin. Nutr. ESPEN 2023, 56, 81–82. [Google Scholar] [CrossRef]
- Kizawa, Y.; Sekikawa, T.; Kageyama, M.; Tomobe, H.; Kobashi, R.; Yamada, T. Effects of anthocyanin, astaxanthin, and lutein on eye functions: A randomized, double-blind, placebo-controlled study. J. Clin. Biochem. Nutr. 2021, 69, 77–90. [Google Scholar] [CrossRef]
- Manzoor, S.; Rashid, R.; Panda, B.P.; Sharma, V.; Azhar, M. Green extraction of lutein from marigold flower petals, process optimization and its potential to improve the oxidative stability of sunflower oil. Ultrason. Sonochemistry 2022, 85, 105994. [Google Scholar] [CrossRef]
- Kawabata, F.; Tsuji, T. Effects of dietary supplementation with a combination of fish oil, bilberry extract, and lutein on subjective symptoms of asthenopia in humans. Biomed. Res. 2011, 32, 387–393. [Google Scholar] [CrossRef]
- Kashyap, P.K.; Singh, S.; Singh, M.K.; Gupta, A.; Tandon, S.; Shanker, K.; Verma, R.K.; Verma, R.S. An efficient process for the extraction of lutein and chemical characterization of other organic volatiles from marigold (Tagetes erecta L.) flower. Food Chem. 2022, 396, 133647. [Google Scholar] [CrossRef]
- Carneiro, A.M.; Lima, B.R.; Chibli, L.A.; Carneiro, R.L.; Funari, C.S. An updated procedure for zeaxanthin and lutein quantification in corn grains based only in water and ethanol. Food Chem. 2023, 427, 136589. [Google Scholar] [CrossRef]
- Kruger, C.L.; Murphy, M.; Defreitas, Z.; Pfannkuch, F.; Heimbach, J. An innovative approach to the determination of safety for a dietary ingredient derived from a new source: Case study using a crystalline lutein product. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2002, 40, 1535–1549. [Google Scholar] [CrossRef]
- Kurniawan, J.M.; Yusuf, M.M.; Heriyanto, H.; Brotosudarmo, T.H.P. Literature Review on the Potential of Lutein from Local Marigold Flowers as a Health Supplement. Media Penelitian dan Pengembangan Kesehatan. 2020, 30, 147–162. [Google Scholar] [CrossRef]
- Li, L.H.; Lee, J.C.-Y.; Leung, H.H.; Lam, W.C.; Fu, Z.; Lo, A.C.Y. Lutein Supplementation for Eye Diseases. Nutrients 2020, 12, 1721. [Google Scholar] [CrossRef]
- Dai, L.; Zhou, L.; Zhou, H.; Zheng, B.J.; Ji, N.; Xu, X.F.; He, X.Y.; Xiong, L.; McClements, D.J.; Sun, Q.J. Comparison of Lutein Bioaccessibility from Dietary Supplement-Excipient Nanoemulsions and Nanoemulsion-Based Delivery Systems. J. Agric. Food Chem. 2021, 69, 13925–13932. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; Zhao, Y.; Hu, S.; Ma, A.; Ma, Y. Dose-Response Relationship between Oral Lutein Intake and Plasma Lutein Concentration: A Randomized Controlled Trial. Front. Nutr. 2022, 9, 924997. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, B.; Liang, W.; Liu, X.; Zheng, J.; Ge, X.; Shen, H.; Lu, Y.; Zhang, X.; Sun, Z.; et al. Lutein encapsulated in whey protein and citric acid potato starch ester: Construction and characterization of microcapsules. Int. J. Biol. Macromol. 2022, 220, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Han, D.G.; Choi, E.; Seo, M.; Song, I.M.; Yoon, I. Factors determining the oral absorption and systemic disposition of zeaxanthin in rats: In vitro, in situ, and in vivo evaluations. Pharm. Biol. 2022, 60, 2266–2275. [Google Scholar] [CrossRef]
- Lyu, K.; Yue, W.; Ran, J.; Liu, Y.; Zhu, X. In vivo therapeutic exploring for Mori folium extract against type 2 diabetes mellitus in rats. Biosci. Rep. 2021, 41, BSR20210977. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, S.; Meng, J.; Li, L. Protective effect of nimbolide against streptozotocin induced gestational diabetes mellitus in rats via alteration of inflammatory reaction, oxidative stress, and gut microbiota. Environ. Toxicol. 2022, 37, 1382–1393. [Google Scholar] [CrossRef]
- Tekeli, M.Y.; Eraslan, G.; Bayram, L.C.; Aslan, C.; Calimli, S. The protective effects of baicalin and chrysin against emamectin benzoate-induced toxicity in Wistar albino rats. Environ. Sci. Pollut. Res. Int. 2023, 30, 53997–54021. [Google Scholar] [CrossRef]
- Alves, L.R.; Rodrigues dos Reis, A.; Prado, E.R.; Lavres, J.; Pompeu, G.B.; Azevedo, R.A.; Gratao, P.L. New insights into cadmium stressful-conditions: Role of ethylene on selenium-mediated antioxidant enzymes. Ecotoxicol. Environ. Saf. 2019, 186. [Google Scholar] [CrossRef]
- Hu, S.S.; Cai, S.Z.; Kong, X.Z. Chronic Lead Exposure Results in Auditory Deficits and Disruption of Hair Cells in Postweaning Rats. Oxidative Med. Cell. Longev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Aslam, F.; Iqbal, S.; Nasir, M.; Anjum, A.A. White Sesame Seed Oil Mitigates Blood Glucose Level, Reduces Oxidative Stress, and Improves Biomarkers of Hepatic and Renal Function in Participants with Type 2 Diabetes Mellitus. J. Am. Coll. Nutr. 2019, 38, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Kasozi, K.I.; Namubiru, S.; Safiriyu, A.A.; Ninsiima, H.I.; Nakimbugwe, D.; Namayanja, M.; Valladares, M.B. Grain Amaranth Is Associated with Improved Hepatic and Renal Calcium Metabolism in Type 2 Diabetes Mellitus of Male Wistar Rats. Evid.-Based Complement. Altern. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.H.; Cui, W.X.; Gao, L.; Shi, X.T.; Yang, H.Y.; Hu, Y.; Li, M. Serum lutein is a promising biomarker for type 2 diabetes mellitus and diabetic kidney disease in the elderly. J. Clin. Lab. Anal. 2022, 36, e24350. [Google Scholar] [CrossRef]
Groups | Lutein Mass Concentration of Beverage/mg/mL | Gavage Volume mL | Lutein Quantity of Gavage mg/kgb | Lutein Quantity in the Human Body/mg/kgb |
---|---|---|---|---|
Normal group | 0 | 1 | 0 | 0 |
Model group | 0 | 1 | 0 | 0 |
High-dosage group | 1.44 | 1 | 1.44 | 0.24 |
Medium-dosage group | 0.72 | 1 | 0.72 | 0.12 |
Low-dosage group | 0.36 | 1 | 0.36 | 0.06 |
Groups | Average Weight before Test | Average Weight on the 7th Day | Average Weight on the 15th Day | Average Weight on the 28th Day |
---|---|---|---|---|
Normal group | 214.9 ± 7.3 | 234.9 ± 8.1 ** | 272.8 ± 4.9 ** | 288.6 ± 6.4 ** |
Model group | 217.1 ± 9.1 | 207.4 ± 7.2 | 232.6 ± 12.5 | 243.4 ± 12.3 |
High-dosage group | 216.1 ± 8.9 | 204.3 ± 6.4 | 241.0 ± 24.5 | 256.1 ± 9.4 * |
Medium-dosage group | 212.1 ± 12.3 | 205.0 ± 9.1 * | 227.7 ± 24.7 | 247.9 ± 8.6 |
Low-dosage group | 214.8 ± 8.7 | 209.8 ± 10.2 * | 216.3 ± 28.7 * | 233.8 ± 11.1 * |
Groups | Blood Sugar Content/mmol/L on the 3rd Day | Blood Sugar Content/mmol/L on the 15th Day | Blood Sugar Content/mmol/L on the 28th Day |
---|---|---|---|
Normal group | 3.81 ± 0.26 | 3.85 ± 0.18 | 3.76 ± 0.21 |
Model group | 15.06 ± 2.26 ** | 14.93 ± 1.98 ** | 14.68 ± 2.29 ** |
High-dosage group | 13.06 ± 2.62 ** | 13.46 ± 3.12 ** | 13.91 ± 4.15 ** |
Medium-dosage group | 13.88 ± 2.17 ** | 11.95 ± 3.47 ** | 10.23 ± 4.67 ** |
Low-dosage group | 14.30 ± 1.50 ** | 13.87 ± 2.18 ** | 13.65 ± 2.04 ** |
Groups | Sample Number | Crystalline State | Positive Rate (%) | |
---|---|---|---|---|
Positive | Negative | |||
Normal group | 8 | 0 | 8 | 0 ** |
Model group | 8 | 6 | 2 | 75 |
High-dosage group | 8 | 1 | 7 | 12.5 * |
Medium-dosage group | 8 | 2 | 6 | 25 |
Low-dosage group | 8 | 4 | 4 | 50 |
Groups | MDA (nmol/mg Protein) | SOD (U/mg Protein) | CAT (U/g Protein) |
---|---|---|---|
Normal group | 10.4 ± 1.49 ** | 5.4 ± 0.4 ** | 48.9 ± 2.3 ** |
Model group | 32.1 ± 2.5 | 2.7 ± 0.6 | 27.4 ± 2.2 |
High-dosage group | 16.2 ± 1.6 ** | 4.3 ± 0.3 ** | 43.9 ± 2.6 ** |
Medium-dosage group | 20.8 ± 1.6 ** | 3.9 ± 0.7 ** | 39.8 ± 1.9 * |
Low-dosage group | 26.3 ± 1.8 * | 3.6 ± 0.6 * | 34.6 ± 1.9 * |
Groups | GSH (mol/g Protein) | GR (U/g Protein) | GSH-Px (U/mg Protein) |
---|---|---|---|
Normal group | 2.1 ± 0.2 ** | 3.9 ± 0.1 ** | 68.4 ± 3.7 ** |
Model group | 0.9 ± 0.1 | 2.4 ± 0.2 | 32.6 ± 3.0 |
High-dosage group | 1.8 ± 0.1 ** | 3.3 ± 0.4 ** | 54.3 ± 2.9 ** |
Medium-dosage group | 1.5 ± 0.12 ** | 3.0 ± 0.1 * | 43.8 ± 4.1 ** |
Low-dosage group | 1.2 ± 0.05 * | 2.8 ± 0.1 * | 38.6 ± 2.9 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Wei, S.; He, X.; Zheng, X.; Tao, F.; Tu, P.; Gao, B. Lutein-Rich Beverage Alleviates Visual Fatigue in the Hyperglycemia Model of Sprague–Dawley Rats. Metabolites 2023, 13, 1110. https://doi.org/10.3390/metabo13111110
Tang Q, Wei S, He X, Zheng X, Tao F, Tu P, Gao B. Lutein-Rich Beverage Alleviates Visual Fatigue in the Hyperglycemia Model of Sprague–Dawley Rats. Metabolites. 2023; 13(11):1110. https://doi.org/10.3390/metabo13111110
Chicago/Turabian StyleTang, Qiong, Sishan Wei, Xiangyi He, Xiaodong Zheng, Fei Tao, Pengcheng Tu, and Bei Gao. 2023. "Lutein-Rich Beverage Alleviates Visual Fatigue in the Hyperglycemia Model of Sprague–Dawley Rats" Metabolites 13, no. 11: 1110. https://doi.org/10.3390/metabo13111110
APA StyleTang, Q., Wei, S., He, X., Zheng, X., Tao, F., Tu, P., & Gao, B. (2023). Lutein-Rich Beverage Alleviates Visual Fatigue in the Hyperglycemia Model of Sprague–Dawley Rats. Metabolites, 13(11), 1110. https://doi.org/10.3390/metabo13111110