Fibroblast Growth Factor 21 in Chronic Hepatitis C: A Potential Non-Invasive Biomarker of Liver Status upon Viral Eradication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Treatment Protocol
2.2. Study Population
2.3. Measurement of Data
2.4. Biochemical Assessment
2.5. Liver Elastometry
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, D.Q.; Terrault, N.A.; Tacke, F.; Gluud, L.L.; Arrese, M.; Bugianesi, E.; Loomba, R. Global epidemiology of cirrhosis-aetiology, trends and predictions. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 388–398. [Google Scholar] [CrossRef]
- Cheemerla, S.; Balakrishnan, M. Global Epidemiology of Chronic Liver Disease. Clin. Liver Dis. 2021, 17, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, G. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 245–266. [Google Scholar] [CrossRef]
- Wang, S.; Toy, M.; Hang Pham, T.T.; So, S. Causes and trends in liver disease and hepatocellular carcinoma among men and women who received liver transplants in the U.S., 2010–2019. PLoS ONE 2020, 15, e0239393. [Google Scholar] [CrossRef] [PubMed]
- Blach, S.; Terrault, N.A.; Tacke, F.; Gamkrelidze, I.; Craxi, A.; Tanaka, J.; Waked, I.; Dore, G.J.; Abbas, Z.; Abdallah, A.R.; et al. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: A modelling study. Lancet Gastroenterol. Hepatol. 2022, 7, 396–415. [Google Scholar] [CrossRef]
- Axley, P.; Ahmed, Z.; Ravi, S.; Singal, A.K. Hepatitis C Virus and Hepatocellular Carcinoma: A Narrative Review. J. Clin. Transl. Hepatol. 2018, 6, 79–84. [Google Scholar] [CrossRef]
- Chaudhari, R.; Fouda, S.; Sainu, A.; Pappachan, J.M. Metabolic complications of hepatitis C virus infection. World J. Gastroenterol. 2021, 27, 1267–1282. [Google Scholar] [CrossRef]
- Shiffman, M.L.; Gunn, N.T. Impact of hepatitis C virus therapy on metabolism and public health. Liver Int. Off. J. Int. Assoc. Study Liver 2017, 37, 13–18. [Google Scholar] [CrossRef]
- Negro, F. Facts and fictions of HCV and comorbidities: Steatosis, diabetes mellitus, and cardiovascular diseases. J. Hepatol. 2014, 61, S69–S78. [Google Scholar] [CrossRef]
- Grassi, A.; Cipriano, V.; Quarneti, C.; Bianchini, F.; Susca, M.; Zauli, D.; Lenzi, M.; Bianchi, G.; Bianchi, F.B.; Ballardini, G. Liver HCV-antigens and steatosis in chronic hepatitis C: Role of different genotypes. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2009, 41, 659–664. [Google Scholar] [CrossRef]
- Smith, D.B.; Bukh, J.; Kuiken, C.; Muerhoff, A.S.; Rice, C.M.; Stapleton, J.T.; Simmonds, P. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: Updated criteria and genotype assignment web resource. Hepatology 2014, 59, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Kumada, T.; Toyoda, H.; Sone, Y.; Takeshima, K.; Ogawa, S.; Goto, T.; Wakahata, A.; Nakashima, M.; Nakamuta, M.; et al. Viral eradication reduces both liver stiffness and steatosis in patients with chronic hepatitis C virus infection who received direct-acting anti-viral therapy. Aliment. Pharmacol. Ther. 2018, 47, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Gilroy, R.; Taylor, R.; Olyaee, M.; Abdulkarim, B.; Forster, J.; O’Neil, M.; Damjanov, I.; Wan, Y.-J.Y. Alteration of hepatic nuclear receptor-mediated signaling pathways in hepatitis C virus patients with and without a history of alcohol drinking. Hepatology 2011, 54, 1966–1974. [Google Scholar] [CrossRef] [PubMed]
- De Gottardi, A.; Pazienza, V.; Pugnale, P.; Bruttin, F.; Rubbia-Brandt, L.; Juge-Aubry, C.E.; Meier, C.A.; Hadengue, A.; Negro, F. Peroxisome proliferator-activated receptor-α and -γ mRNA levels are reduced in chronic hepatitis C with steatosis and genotype 3 infection. Aliment. Pharmacol. Ther. 2006, 23, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Dharancy, S.; Lemoine, M.; Mathurin, P.; Serfaty, L.; Dubuquoy, L. Peroxisome proliferator-activated receptors in HCV-related infection. PPAR Res. 2009, 2009, 357204. [Google Scholar] [CrossRef]
- Dharancy, S.; Malapel, M.; Perlemuter, G.; Roskams, T.; Cheng, Y.; Dubuquoy, L.; Podevin, P.; Conti, F.; Canva, V.; Philippe, D.; et al. Impaired expression of the peroxisome proliferator-activated receptor alpha during hepatitis C virus infection. Gastroenterology 2005, 128, 334–342. [Google Scholar] [CrossRef]
- Fantacuzzi, M.; Amoroso, R.; Ammazzalorso, A. PPAR Ligands Induce Antiviral Effects Targeting Perturbed Lipid Metabolism during SARS-CoV-2, HCV, and HCMV Infection. Biology 2022, 11, 114. [Google Scholar] [CrossRef]
- Basyte-Bacevice, V.; Kupcinskas, J. Evolution and Revolution of Hepatitis C Management: From Non-A, Non-B Hepatitis Toward Global Elimination. Dig. Dis. 2020, 38, 137–142. [Google Scholar] [CrossRef]
- Lombardi, A.; Mondelli, M.U. Hepatitis C: Is eradication possible? Liver Int. Off. J. Int. Assoc. Study Liver 2019, 39, 416–426. [Google Scholar] [CrossRef]
- Bailey, J.R.; Barnes, E.; Cox, A.L. Approaches, Progress, and Challenges to Hepatitis C Vaccine Development. Gastroenterology 2019, 156, 418–430. [Google Scholar] [CrossRef]
- Antonelli, A.; Ferri, C.; Galeazzi, M.; Giannitti, C.; Manno, D.; Mieli-Vergani, G.; Menegatti, E.; Olivieri, I.; Puoti, M.; Palazzi, C.; et al. HCV infection: Pathogenesis, clinical manifestations and therapy. Clin. Exp. Rheumatol. 2008, 26, S39–S47. [Google Scholar] [PubMed]
- Medvedev, R.; Ploen, D.; Hildt, E. HCV and Oxidative Stress: Implications for HCV Life Cycle and HCV-Associated Pathogenesis. Oxid. Med. Cell. Longev. 2016, 2016, 9012580. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Ijaz, B.; Gull, S.; Asad, S.; Khaliq, S.; Jahan, S.; Sarwar, M.T.; Kausar, H.; Sumrin, A.; Shahid, I.; et al. A brief review on molecular, genetic and imaging techniques for HCV fibrosis evaluation. Virol. J. 2011, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Eren, F.; Yonal, O.; Kurt, R.; Aktas, B.; Celikel, C.A.; Ozdogan, O.; Imeryuz, N.; Kalayci, C.; Avsar, E. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur. J. Clin. Investig. 2010, 40, 887–892. [Google Scholar] [CrossRef]
- Tucker, B.; Li, H.; Long, X.; Rye, K.A.; Ong, K.L. Fibroblast growth factor 21 in non-alcoholic fatty liver disease. Metabolism 2019, 101, 153994. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Risi, R.; Camajani, E.; Contini, S.; Persichetti, A.; Tuccinardi, D.; Ernesti, I.; Mariani, S.; Lubrano, C.; Genco, A.; et al. Baseline HOMA IR and Circulating FGF21 Levels Predict NAFLD Improvement in Patients Undergoing a Low Carbohydrate Dietary Intervention for Weight Loss: A Prospective Observational Pilot Study. Nutrients 2020, 12, 2141. [Google Scholar] [CrossRef]
- Ruiz-Margáin, A.; Pohlmann, A.; Ryan, P.; Schierwagen, R.; Chi-Cervera, L.A.; Jansen, C.; Mendez-Guerrero, O.; Flores-García, N.C.; Lehmann, J.; Torre, A.; et al. Fibroblast growth factor 21 is an early predictor of acute-on-chronic liver failure in critically ill patients with cirrhosis. Liver Transplant. 2018, 24, 595–605. [Google Scholar] [CrossRef]
- Yang, C.; Lu, W.; Lin, T.; You, P.; Ye, M.; Huang, Y.; Jiang, X.; Wang, C.; Wang, F.; Lee, M.H.; et al. Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress. BMC Gastroenterol. 2013, 13, 67. [Google Scholar] [CrossRef]
- Desai, B.N.; Singhal, G.; Watanabe, M.; Stevanovic, D.; Lundasen, T.; Fisher, F.M.; Mather, M.L.; Vardeh, H.G.; Douris, N.; Adams, A.C.; et al. Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury. Mol. Metab. 2017, 6, 1395–1406. [Google Scholar] [CrossRef]
- Watanabe, M.; Singhal, G.; Fisher, F.M.; Beck, T.C.; Morgan, D.A.; Socciarelli, F.; Mather, M.L.; Risi, R.; Bourke, J.; Rahmouni, K.; et al. Liver-derived FGF21 is essential for full adaptation to ketogenic diet but does not regulate glucose homeostasis. Endocrine 2020, 67, 95–108. [Google Scholar] [CrossRef]
- El Sagheer, G.M.; Ahmad, A.K.; Abd-El Fattah, A.S.; Saad, Z.M.; Hamdi, L. A study of the circulating fibroblast growth factor 21 as a novel noninvasive biomarker of hepatic injury in genotype-4 chronic hepatitis C: Egyptian patients and their response to direct-acting antiviral agents. Clin. Exp. Gastroenterol. 2018, 11, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Pawlotsky, J.M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H. European Association for the Study of the Liver EASL Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 2018, 69, 461–511. [Google Scholar] [CrossRef] [PubMed]
- Ghany, M.G.; Morgan, T.R. Hepatitis C Guidance 2019 Update: American Association for the Study of Liver Diseases-Infectious Diseases Society of America Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Hepatology 2020, 71, 686–721. [Google Scholar] [CrossRef]
- Amado, C.A.; Martín-Audera, P.; Agüero, J.; Lavín, B.A.; Guerra, A.R.; Muñoz, P.; Berja, A.; Casanova, C.; García-Unzueta, M. Associations between serum mitokine levels and outcomes in stable COPD: An observational prospective study. Sci. Rep. 2022, 12, 17315. [Google Scholar] [CrossRef] [PubMed]
- Fisher, F.M.; Maratos-Flier, E. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Salgado, J.V.; Goes, M.A.; Salgado Filho, N. FGF21 and Chronic Kidney Disease. Metabolism. 2021, 118, 154738. [Google Scholar] [CrossRef] [PubMed]
- Tucker, W.; Tucker, B.; Rye, K.-A.; Ong, K.L. Fibroblast growth factor 21 in heart failure. Heart Fail. Rev. 2023, 28, 261–272. [Google Scholar] [CrossRef]
- Ye, D.; Li, H.; Wang, Y.; Jia, W.; Zhou, J.; Fan, J.; Man, K.; Lo, C.; Wong, C.; Wang, Y.; et al. Circulating Fibroblast Growth Factor 21 Is A Sensitive Biomarker for Severe Ischemia/reperfusion Injury in Patients with Liver Transplantation. Sci. Rep. 2016, 6, 19776. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Tuccinardi, D.; Di Mauro, A.; Lattanzi, G.; Rossini, G.; Monte, L.; Beato, I.; Spiezia, C.; Bravo, M.; Watanabe, M.; Soare, A.; et al. An extra virgin olive oil-enriched chocolate spread positively modulates insulin-resistance markers compared with a palm oil-enriched one in healthy young adults: A double-blind, cross-over, randomised controlled trial. Diabetes Metab. Res. Rev. 2022, 38, e3492. [Google Scholar] [CrossRef]
- Burgess, S.V.; Hussaini, T.; Yoshida, E.M. Concordance of sustained virologic response at weeks 4, 12 and 24 post-treatment of hepatitis c in the era of new oral direct-acting antivirals: A concise review. Ann. Hepatol. 2016, 15, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res. Rev. 2017, 37, 79–93. [Google Scholar] [CrossRef]
- Markan, K.R.; Naber, M.C.; Small, S.M.; Peltekian, L.; Kessler, R.L.; Potthoff, M.J. FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue. Mol. Metab. 2017, 6, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Markan, K.R. Defining “FGF21 Resistance” during obesity: Controversy, criteria and unresolved questions. F1000Research 2018, 7, 289. [Google Scholar] [CrossRef] [PubMed]
- Dushay, J.; Chui, P.C.; Gopalakrishnan, G.S.; Varela-Rey, M.; Crawley, M.; Fisher, F.M.; Badman, M.K.; Martinez-Chantar, M.L.; Maratos-Flier, E. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 2010, 139, 456–463. [Google Scholar] [CrossRef]
- Ernesti, I.; Baratta, F.; Watanabe, M.; Risi, R.; Camajani, E.; Persichetti, A.; Tuccinardi, D.; Mariani, S.; Lubrano, C.; Genco, A.; et al. Predictors of weight loss in patients with obesity treated with a Very Low-Calorie Ketogenic Diet. Front. Nutr. 2023, 10, 1058364. [Google Scholar] [CrossRef]
- Kukla, M.; Berdowska, A.; Stygar, D.; Gabriel, A.; Mazur, W.; Łogiewa-Bazger, B.; Sobala-Szczygieł, B.; Bułdak, R.J.; Rokitka, M.; Zajecki, W.; et al. Serum FGF21 and RBP4 levels in patients with chronic hepatitis C. Scand. J. Gastroenterol. 2012, 47, 1037–1047. [Google Scholar] [CrossRef]
- Risi, R.; Postic, C.; Watanabe, M. Editorial: The liver as an endocrine organ: Hepatokines and ketone bodies, novel hormones to be acknowledged. Front. Endocrinol. 2022, 13, 1117773. [Google Scholar] [CrossRef]
- Chuaypen, N.; Siripongsakun, S.; Hiranrat, P.; Tanpowpong, N.; Avihingsanon, A.; Tangkijvanich, P. Improvement of liver fibrosis, but not steatosis, after HCV eradication as assessment by MR-based imaging: Role of metabolic derangement and host genetic variants. PLoS ONE 2022, 17, e0269641. [Google Scholar] [CrossRef]
- Soliman, H.; Ziada, D.; Hamisa, M.; Badawi, R.; Hawash, N.; Salama, M.; Abd-Elsalam, S. The Effect of HCV Eradication after Direct-Acting Antiviral Agents on Hepatic Steatosis: A Prospective Observational Study. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 100–107. [Google Scholar] [CrossRef]
- Ucar, F.; Sezer, S.; Ginis, Z.; Ozturk, G.; Albayrak, A.; Basar, O.; Ekiz, F.; Coban, S.; Yuksel, O.; Armutcu, F.; et al. APRI, the FIB-4 score, and Forn’s index have noninvasive diagnostic value for liver fibrosis in patients with chronic hepatitis B. Eur. J. Gastroenterol. Hepatol. 2013, 25, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Khoso, M.H.; Kang, K.; He, Q.; Cao, Y.; Jiang, X.; Xiao, W.; Li, D. FGF21 ameliorates hepatic fibrosis by multiple mechanisms. Mol. Biol. Rep. 2021, 48, 7153–7163. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J. Serum Marker Panels for Predicting Liver Fibrosis–An Update. Clin. Biochem. Rev. 2020, 41, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Wang, Y.; Li, H.; Jia, W.; Man, K.; Lo, C.M.; Wang, Y.; Lam, K.S.L.; Xu, A. Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1α-mediated antioxidant capacity in mice. Hepatology 2014, 60, 977–989. [Google Scholar] [CrossRef]
- Gómez-Sámano, M.Á.; Grajales-Gómez, M.; Zuarth-Vázquez, J.M.; Navarro-Flores, M.F.; Martínez-Saavedra, M.; Juárez-León, Ó.A.; Morales-García, M.G.; Enríquez-Estrada, V.M.; Gómez-Pérez, F.J.; Cuevas-Ramos, D. Fibroblast growth factor 21 and its novel association with oxidative stress. Redox Biol. 2017, 11, 335–341. [Google Scholar] [CrossRef]
- Wang, T.; Weinman, S.A. Interactions Between Hepatitis C Virus and Mitochondria: Impact on Pathogenesis and Innate Immunity. Curr. Pathobiol. Rep. 2013, 1, 179–187. [Google Scholar] [CrossRef]
Mean ± SD, Median (IQR), % or N (n = 45) before DAA | Mean ± SD, Median (IQR), % or N (n = 45) after DAA | p | |
---|---|---|---|
Age (years) | 63 ± 12 | 63 ± 12 | |
BMI (kg/m2) | 26.2 ± 3.5 | 26.5± 3.5 | |
Disease duration (years) | 18 ± 10 | 18 ± 10 | |
HCV-RNA (UI/mL) | 3,794,855 ± 4,849,106 | Undetectable | <0.0001 |
ARFI (kPa) * | 7.12 (6.6) | 4.9 (2.7) | 0.027 |
FGF-21 (ng/mL) * | 156 (118) | 168 (128) | 0.019 |
ALT (U/L) | 86.9 ± 74.9 | 22.7 ±9.1 | <0.0001 |
AST (U/L) | 57.4 ± 45.0 | 22.1 ± 13.4 | <0.0001 |
Albumin (g/dL) | 4.22 ± 0.38 | 4.26 ± 0.43 | 0.47 |
TNF-α (pg/mL) | 13.2 ± 6.74 | 11.56 ± 2.93 | 0.23 |
IL-6 (pg/mL) | 3.8 ± 2.8 | 3.34 ± 2.48 | 0.52 |
HSI | 39.31 ±5.01 | 35.25 ± 4.25 | 0.0004 |
Male (%) | 80 | 80 | |
Cirrhosis (%) | 28.9% | 28.9% | |
Diabetes (%) | 8.9 | 8.9 | |
Unspecified HCV Genotype (N) | 4 | 4 | |
HCV Genotype 1 (N) | 20 | 20 | |
HCV Genotype 2 (N) | 16 | 16 | |
HCV Genotype 3 (N) | 2 | 2 | |
HCV Genotype 4 (N) | 2 | 2 | |
HCV Genotype 5 (N) | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biagi, F.; Carlomagno, F.; Carbone, M.; Veralli, R.; Vespasiani-Gentilucci, U.; Riva, E.; Manfrini, S.; Tuccinardi, D.; De Santis, A.; Gnessi, L.; et al. Fibroblast Growth Factor 21 in Chronic Hepatitis C: A Potential Non-Invasive Biomarker of Liver Status upon Viral Eradication. Metabolites 2023, 13, 1119. https://doi.org/10.3390/metabo13111119
Biagi F, Carlomagno F, Carbone M, Veralli R, Vespasiani-Gentilucci U, Riva E, Manfrini S, Tuccinardi D, De Santis A, Gnessi L, et al. Fibroblast Growth Factor 21 in Chronic Hepatitis C: A Potential Non-Invasive Biomarker of Liver Status upon Viral Eradication. Metabolites. 2023; 13(11):1119. https://doi.org/10.3390/metabo13111119
Chicago/Turabian StyleBiagi, Filippo, Francesco Carlomagno, Martina Carbone, Roberta Veralli, Umberto Vespasiani-Gentilucci, Elisabetta Riva, Silvia Manfrini, Dario Tuccinardi, Adriano De Santis, Lucio Gnessi, and et al. 2023. "Fibroblast Growth Factor 21 in Chronic Hepatitis C: A Potential Non-Invasive Biomarker of Liver Status upon Viral Eradication" Metabolites 13, no. 11: 1119. https://doi.org/10.3390/metabo13111119
APA StyleBiagi, F., Carlomagno, F., Carbone, M., Veralli, R., Vespasiani-Gentilucci, U., Riva, E., Manfrini, S., Tuccinardi, D., De Santis, A., Gnessi, L., & Watanabe, M. (2023). Fibroblast Growth Factor 21 in Chronic Hepatitis C: A Potential Non-Invasive Biomarker of Liver Status upon Viral Eradication. Metabolites, 13(11), 1119. https://doi.org/10.3390/metabo13111119