Study on the Common Molecular Mechanism of Metabolic Acidosis and Myocardial Damage Complicated by Neonatal Pneumonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Materials
2.3. Sample Preparation
2.4. UPLC–HRMS Analysis
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Metabolic Profiling Analysis
3.2. Discovery of Differential Metabolites and Further Analysis of Metabolic Pathway
3.3. Study of Common Differential Molecular Characteristics between PN&MA and PN&MD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nascimento-Carvalho, C.M. Community-acquired pneumonia among children: The latest evidence for an updated man-agement. J. Pediatr. (Rio J.) 2020, 96 (Suppl. 1), 29–38. [Google Scholar] [CrossRef]
- le Roux, D.M.; Zar, H.J. Community-acquired pneumonia in children—A changing spectrum of disease. Pediatr. Radiol. Oct. 2017, 47, 1392–1398. [Google Scholar] [CrossRef]
- Leung, A.K.C.; Wong, A.H.C.; Hon, K.L. Community-Acquired Pneumonia in Children. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 136–144. [Google Scholar] [CrossRef]
- Zar, H.J.; Andronikou, S.; Nicol, M.P. Advances in the diagnosis of pneumonia in children. BMJ 2017, 358, j2739. [Google Scholar] [CrossRef]
- Dean, P.; A Florin, T. Factors Associated With Pneumonia Severity in Children: A Systematic Review. J. Pediatr. Infect. Dis. Soc. 2018, 7, 323–334. [Google Scholar] [CrossRef]
- Mujahid, M.; Rustam, F.; Álvarez, R.; Mazón, J.L.V.; Díez, I.D.l.T.; Ashraf, I. Pneumonia Classification from X-ray Images with Inception-V3 and Convolutional Neural Network. Diagnostics 2022, 12, 1280. [Google Scholar] [CrossRef]
- Xin, H.; Li, J.; Hu, H.Y. Is Lung Ultrasound Useful for Diagnosing Pneumonia in Children? A Meta-Analysis and Systematic Review. Ultrasound Q. Mar. 2018, 34, 3–10. [Google Scholar] [CrossRef]
- Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905. [Google Scholar] [CrossRef]
- Cui, L.; Lu, H.; Lee, Y.H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom. Rev. 2018, 37, 772–792. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.; Jing, W.; Li, J.; Wang, X.; Chen, J.; Sun, S.; Yue, H.; Dai, Y. Biomarkers of Mycoplasma pneumoniae pneumonia in children by urine metabolomics based on Q Exactive liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2022, 36, e9234. [Google Scholar] [CrossRef]
- Del Borrello, G.; Stocchero, M.; Giordano, G.; Pirillo, P.; Zanconato, S.; Da Dalt, L.; Carraro, S.; Esposito, S.; Baraldi, E. New insights into pediatric community-acquired pneumonia gained from untargeted metabolomics: A preliminary study. Pediatr. Pulmonol. 2020, 55, 418–425. [Google Scholar] [CrossRef]
- Ning, P.; Zheng, Y.; Luo, Q.; Liu, X.; Kang, Y.; Zhang, Y.; Zhang, R.; Xu, Y.; Yang, D.; Xi, W.; et al. Metabolic profiles in community-acquired pneumonia: Developing assessment tools for disease severity. Crit. Care 2018, 22, 130. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Li, F.; Jia, X.; Jia, N.; Fu, J.; Liu, S.; Zhang, J.; Ge, H.; Tai, J.; et al. Serum-integrated omics reveal the host response landscape for severe pediatric communi-ty-acquired pneumonia. Crit. Care Mar. 2023, 27, 79. [Google Scholar] [CrossRef]
- McDonagh, A.F. Controversies in bilirubin biochemistry and their clinical relevance. Semin. Fetal Neonatal Med. 2010, 15, 141–147. [Google Scholar] [CrossRef]
- Creeden, J.F.; Gordon, D.M.; Stec, D.E.; Hinds, T.D., Jr. Bilirubin as a metabolic hormone: The physiological relevance of low levels. Am. J. Physiol.-Endocrinol. Metab. 2021, 320, E191–E207. [Google Scholar] [CrossRef]
- Soto Conti, C.P. Bilirubin: The toxic mechanisms of an antioxidant molecule. Arch. Argent Pediatr. 2021, 119, e18–e25. [Google Scholar]
- Tan-Chen, S.; Guitton, J.; Bourron, O.; Le Stunff, H.; Hajduch, E. Sphingolipid Metabolism and Signaling in Skeletal Muscle: From Physiology to Physiopathology. Front. Endocrinol. 2020, 11, 491. [Google Scholar] [CrossRef]
- Lai, Y.; Tian, Y.; You, X.; Du, J.; Huang, J. Effects of sphingolipid metabolism disorders on endothelial cells. Lipids Health Dis. 2022, 21, 101. [Google Scholar] [CrossRef]
- Obinata, H.; Hla, T. Sphingosine 1-phosphate and inflammation. Int. Immunol. 2019, 31, 617–625. [Google Scholar] [CrossRef]
- Wang, B.; Tontonoz, P. Phospholipid Remodeling in Physiology and Disease. Annu. Rev. Physiol. 2019, 81, 165–188. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, W.; Chen, C.; Yan, B.; Zhu, L.; Chen, X.; Peng, C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci. 2020, 247, 117443. [Google Scholar] [CrossRef]
- Ren, J.; Lin, J.; Yu, L.; Yan, M. Lysophosphatidylcholine: Potential Target for the Treatment of Chronic Pain. Int. J. Mol. Sci. 2022, 23, 8274. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, Y.; Mai, J.; Guo, G.; Meng, J.; Fang, X.; Chen, X.; Liu, C.; Zhong, S. Comprehensive Metabolic Profiling of Inflammation Indicated Key Roles of Glycerophospholipid and Arginine Metabolism in Coronary Artery Disease. Front. Immunol. 2022, 13, 829425. [Google Scholar] [CrossRef]
- Kabarowski, J.H. G2A and LPC: Regulatory functions in immunity. Prostaglandins Other Lipid Mediat. 2009, 89, 73–81. [Google Scholar] [CrossRef]
- Delmondes, G.D.; Santiago Lemos, I.C.; Dias, D.D.; Cunha, G.L.; Araújo, I.M.; Barbosa, R.; Coutinho, H.D.; Felipe, C.F.; Barbosa-Filho, J.M.; Lima, N.T.; et al. Pharmacological applications of farnesol (C15H26O): A patent review. Expert Opin. Ther. Pat. 2020, 30, 227–234. [Google Scholar] [CrossRef]
- Sell, L.B.; Ramelow, C.C.; Kohl, H.M.; Hoffman, K.; Bains, J.K.; Doyle, W.J.; Strawn, K.D.; Hevrin, T.; Kirby, T.O.; Gibson, K.M.; et al. Farnesol induces protection against murine CNS inflammatory demyelination and modifies gut microbiome. Clin. Immunol. 2022, 235, 108766. [Google Scholar] [CrossRef]
- Jung, Y.Y.; Hwang, S.T.; Sethi, G.; Fan, L.; Arfuso, F.; Ahn, K.S. Potential Anti-Inflammatory and Anti-Cancer Properties of Farnesol. Molecules 2018, 23, 2827. [Google Scholar] [CrossRef]
- Palomer, X.; Pizarro-Delgado, J.; Barroso, E.; Vázquez-Carrera, M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol. Metab. 2018, 29, 178–190. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Guo, X.; Zhu, N.; Niu, L.; Ding, X.; Xie, Z.; Chen, X.; Yang, F. Oleic Acid and Eicosapentaenoic Acid Reverse Palmitic Acid-induced Insulin Resistance in Human HepG2 Cells via the Reactive Oxygen Species/JUN Pathway. Genom. Proteom. Bioinform. 2021, 19, 754–771. [Google Scholar] [CrossRef]
- Kopple, J.D. Phenylalanine and Tyrosine Metabolism in Chronic Kidney Failure. J. Nutr. 2007, 137, 1586S–1590S. [Google Scholar] [CrossRef]
- Møller, N.; Meek, S.; Bigelow, M.; Andrews, J.; Nair, K.S. The kidney is an important site for in vivo phenylalanine-to-tyrosine conversion in adult humans: A metabolic role of the kidney. Proc. Natl. Acad. Sci. USA 2000, 97, 1242–1246. [Google Scholar] [CrossRef]
- Du, Y.; Fan, P.; Zou, L.; Jiang, Y.; Gu, X.; Yu, J.; Zhang, C. Serum Metabolomics Study of Papillary Thyroid Carcinoma Based on HPLC-Q-TOF-MS/MS. Front. Cell Dev. Biol. 2021, 9, 593510. [Google Scholar] [CrossRef]
No. | Compound Name | Concentration (μg/mL) |
---|---|---|
1 | choline-d4 | 2.0 |
2 | cannitine C2:0-d3 | 0.16 |
3 | phenylalanine-d5 | 3.5 |
4 | FFA16:0-d3 | 2.5 |
5 | FFA18:0-d3 | 2.5 |
6 | cannitine C10:0-d3 | 0.1 |
7 | cannitine C8:0-d4 | 0.1 |
8 | CA-d4 | 1.85 |
9 | CDCA-d4 | 1.5 |
10 | cannitine C16:0-d3 | 0.15 |
11 | LPC 19:0 | 0.75 |
12 | SM d30:1 | 0.75 |
13 | glutamic acid-d3 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Y.; Wang, H.; Wu, Z.; Zeng, Z. Study on the Common Molecular Mechanism of Metabolic Acidosis and Myocardial Damage Complicated by Neonatal Pneumonia. Metabolites 2023, 13, 1118. https://doi.org/10.3390/metabo13111118
Zhan Y, Wang H, Wu Z, Zeng Z. Study on the Common Molecular Mechanism of Metabolic Acidosis and Myocardial Damage Complicated by Neonatal Pneumonia. Metabolites. 2023; 13(11):1118. https://doi.org/10.3390/metabo13111118
Chicago/Turabian StyleZhan, Yifei, Huaiyan Wang, Zeying Wu, and Zhongda Zeng. 2023. "Study on the Common Molecular Mechanism of Metabolic Acidosis and Myocardial Damage Complicated by Neonatal Pneumonia" Metabolites 13, no. 11: 1118. https://doi.org/10.3390/metabo13111118
APA StyleZhan, Y., Wang, H., Wu, Z., & Zeng, Z. (2023). Study on the Common Molecular Mechanism of Metabolic Acidosis and Myocardial Damage Complicated by Neonatal Pneumonia. Metabolites, 13(11), 1118. https://doi.org/10.3390/metabo13111118