Predictive Equations Overestimate Resting Metabolic Rate in Young Chilean Women with Excess Body Fat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study
2.2. Population and Sample
2.3. Anthropometric Measurements and Body Composition
2.4. Indirect Calorimetry (IC)
2.5. Predictive Equations
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Redondo, R.B. Resting energy expenditure; assessment methods and applications. Nutr Hosp. 2015, 31, 245–254. [Google Scholar] [CrossRef]
- Noreik, M.; Maurmann, M.; Meier, V.; Becker, I.; Rohrig, G.; Polidori, M.C.; Shulz, R.-J. Resting energy expenditure (REE) in and old-old population: Implications for metabolic stress. Exp. Gerentol. 2014, 59, 47–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, M.; Blundell, J.E. Energy balance, body composition, sedentariness and appetite regulation: Pathways to obesity. Clin. Sci. 2016, 130, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Rising, R.; Harper, I.; Fontvielle, A.; Ferraro, R.; Spraul, M.; Ravussin, E. Determinants of total daily energy expenditure: Variability in physical activity. Am. J. Clin. Nutr. 1994, 59, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.; Ravussin, E. Analysis of energy metabolism in humans: A review of methodologies. Mol Metab. 2016, 20, 1057–1071. [Google Scholar] [CrossRef]
- Esteves de Oliveira, F.C.; de Mello Cruz, A.C.; Goncalves Oliveira, C.; Rodriguez Ferreira Cruz, A.C.; Mayumi Nakajima, V.; Bressan, J. Gasto energético de adultos brasileños saludables: Una comparación de métodos. Nutr. Hosp. 2008, 23, 554–561. [Google Scholar]
- Doros, R.; Delcea, A.; Mardar, L.; Petcu, L. Basal metabolic rate in metabolic disorders. Proc. Rom. Acad. Ser. B 2015, 17, 137–143. [Google Scholar]
- Achamrah, N.; Delsoglio, M.; De Waele, E.; Berger, M. Indirect calorimetry: The 6 main issues. Clin. Nutr. 2021, 40, 4–14. [Google Scholar] [CrossRef]
- Compher, C.; Frankenfield, D.; Keim, N.; Roth-Yousey, L. Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. J. Am. Diet. Assoc. 2006, 106, 881–903. [Google Scholar] [CrossRef]
- Harris, J.A.B.F. A Biometric Study of Basal Metabolism in Man; Carnegie Institute of Washington: Washington, DC, USA, 1919. [Google Scholar]
- FAO/WHO/UNU. Energy and Protein Requirements; World Health Organization Technical Report Series 724; World Health Organization: Geneva, Switzerland, 1985. [Google Scholar]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. J. Am. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Seagle, H.M.; Strain, G.W.; Makris, A.; Reeves, R.S. American Dietetic Association. Position of the American Dietetic Association: Weight management. J. Am. Diet. Assoc. 2009, 109, 330–346. [Google Scholar] [CrossRef]
- Disse, E.; Ledoux, S.; Bétry, C.; Caussy, C.; Maitrepierre, C.; Coupaye, M.; Laville, M.; Simon, C. An artificial neural network to predict resting energy expenditure in obesity. Clin. Nutr. 2018, 37, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.J.; Bosy-Westpha, A.L.; Klau, S.; Kreymann, G.; Luhrmann, P.M.; Neuhauser-Berthold, M.; Noack, R.; Pirke, K.; Platte, P.; Selberg, O.; et al. World Health Organization equations have shortcomings for predicting resting energy expenditure in person from a moderm, affluent population: Generation of a new reference standard from a retrospective analysis of a German database of resting energy expenditure. Am. J. Clin. Nutr. 2004, 80, 1379–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galgani, J.; Castro-Sepúlveda, M.; Pérez-Luco, C.; Fernández-Verdejo, R. Validity of predictive equations for resting metabolic rate in healthy humans. Clin. Sci. 2018, 132, 1741–1751. [Google Scholar] [CrossRef]
- Maury-Sintjago, E.; Rodríguez-Fernández, A.; Parra-Flores, J.; Ruíz-De la Fuente, M. Obese Women Have a High Carbohydrate Intake without Changes in the Resting Metabolic Rate in the Luteal Phase. Nutrients 2022, 14, 1997. [Google Scholar] [CrossRef] [PubMed]
- Lohoman, T.G.; Roche, A.F.; Martorell, R. (Eds.) Anthropometric Standardization Reference Manual; Human Kinetics: Champaing, France, 1988. [Google Scholar]
- World Health Organization (WHO). Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Cáceres, D.; Messagi-Sartor, M.; Rodríguez, D.; Escalada, F.; Gea, J.; Orozco-Levi, M.; Ester, M. Variability in bioelectrical impedance assessment of body composition depending on measurement conditions: Influence of fast and rest. Nutr. Hosp. 2014, 30, 1359–1365. [Google Scholar] [CrossRef]
- American Association of Clinical Endocrinologist/American College of Endocrinology (AACE/ACE) Obesity Task Force. AACE/ACE Position statement on the prevention, diagnosis, and treatment of obesity. Endocr. Pract. 1998, 4, 297–330. [Google Scholar]
- Jequier, E.; Acheson, K.; Schutz, Y. Assessment of energy expenditure and fuel utilization in man. Annu. Rev. Nutr. 1987, 7, 187–208. [Google Scholar] [CrossRef]
- Melanson, K.; Saltzman, E.; Vinken, A.; Russel, R.; Roberts, S. The effects of age on postprandial thermogenesis at four graded energetic challenges: Findings in young and older women. J. Gerontol. A Biol. Sci. Med. Sci. 1998, 53, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Fullmer, S.; Benson-Davies, S.; Earthman, C.; Frankenfield, D.; Gradwell, E.; Lee, P.; Piemonte, T.; Trabulsi, J. Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals. J. Acad. Nutr. Diet. 2015, 115, 1417–1446. [Google Scholar] [CrossRef]
- Wasyluk, W.; Zwolak, A.; Jonckheer, J.; DeWaele, E.; Dabrowski, W. Methodological Aspects of Indirect Calorimetry in Pa- 295 tients with Sepsis—Possibilities and Limitations. Nutrients 2022, 14, 930. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Lowen, C.C.; Kleber, M.J.; McConnell, J.W.; Jung, L.Y.; Goldsmith, L.J. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN 2003, 27, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Boullata, J.; Williamns, J.; Cottrell, F.; Hudson, L.; Compher, C. Accurate Determination of energy need in hospitalized patient. J. Am. Diet. Assoc. 2007, 107, 393–401. [Google Scholar] [CrossRef]
- Frankenfield, D.; Roth-Yousey, L.; Compher, C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. J. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Burge, J.C.; Matarese, L.; Gottschlich, M. Nutrición Clínica Práctica; Editorial Elsevier: Madrid, España, 2004; pp. 606–611. [Google Scholar]
- Van Gaal, L.; Mertens, I.; Ballaux, D.; Verkade, H.J. Modern, new pharmacotherapy for obesity. A gastrointestinal approach. Best Pr. Res. Clin. Gastroenterol. 2004, 18, 1049–1072. [Google Scholar] [CrossRef] [PubMed]
- Maury-Sintjago, E.; Muñoz-Mendoza, C.; Rodríguez-Fernández, A.; Ruíz-De la Fuente, M. Predictive Equation to Estimate Resting Metabolic Rate in Older Chilean Women. Nutrients 2022, 14, 3199. [Google Scholar] [CrossRef] [PubMed]
- Frankenfield, D.C.; Rowe, W.A.; Cooney, R.N.; Smith, J.S.; Becker, D. Limits of Body Mass Index to Detect Obesity and Predict Body Composition. Nutrition 2001, 17, 26–30. [Google Scholar] [CrossRef]
- Carrera-Gil, F.; Bunout, D.; Jimenez, T.; De la Maza, P.; Hirsch, S. Predictive equations are inaccurate to assess caloric needs in non-white adults from chile. Nutrition 2020, 78, 110840. [Google Scholar] [CrossRef]
- De la F Marcela, R.; Rodríguez, F.A. Comparison of resting metabolic rate measured by indirect calorimetry and predictive equations in young adult and elderly women with normal body weight. Rev. Chil. Nutr. 2014, 41, 17–22. [Google Scholar]
- Frankenfield, D.C. Bias and accuracy of resting metabolic rate equations in non-obese and obese adults. Clin. Nutr. 2013, 32, 976–982. [Google Scholar] [CrossRef]
- Ravelli, M.N.; Schoeller, D.A.; Crisp, A.H.; Racine, N.M.; Pfrimer, K.; Rasera Junior, I.; Marques de Oliveira, M.R. Accuracy of total energy expenditure predictive equations after a massive weight loss induced by bariatric surgery. Clin. Nutr. ESPEN 2018, 26, 57–65. [Google Scholar] [CrossRef]
- Madden, A.M.; Mulrooney, H.M.; Shah, S. Estimation of energy expenditure using prediction equations in overweight and obese adults: A systematic review. J. Hum. Nutr. Diet. 2016, 29, 458–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madden, A.M.; Mulrooney, H.H.; Shah, S. Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for energy. EFSA J. 2013, 11, 3005. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, F.; Rojas, P.; Ruz, M.; Rebolledo, A.; Mizón, C.; Inostroza, J.; Papapietro, K. A Csendes Agreement between measured and calculated by predictive formulas resting energy expenditure in severe and morbid obese women. Nutr. Hosp. 2007, 22, 410–416. [Google Scholar] [PubMed]
- Carrasco, F.; Reyes, E.; Núñez, C.; Riedemann, K.; Rimler, O.; Sánchez, G.; Sarrat, G. Resting energy expenditure in obese and non-obese Chilean subjects: Comparison with predictive equations for the Chilean population. Rev. Med. Chil. 2002, 130, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Parra-Carriedo, A.; Cherem-Cherem, L.; Galindo-De Noriega, D.; Díaz-Gutiérrez, M.; Pérez-Lizaur, A.; Hernández-Guerrero, C. Comparison of resting energy expenditure determined by indirect calorimetry and estimated by predictive formulas in women with obesity degrees I to III. Nutr. Hosp. 2013, 28, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Prado de Oliveira, E.; Lera, F.; Teixeira, O.; Maestá, N.; Burini, R. Comparision of Predictive Equations for Resting Energy Expenditure in Overweight and Obese Adults. J. Obes. 2011, 2011, 534714. [Google Scholar] [CrossRef] [Green Version]
- Dietitians of Canada. Healthy Weight/Obesity Practice Guidance Toolkit. Available online: https://www.pennutrition.com/KnowledgePathway.aspx?kpid=803&tkid=20328 (accessed on 1 December 2022).
- Thom, G.; Gerasimidis, K.; Rizou, E.; Alfheeaid, H.; Barwell, N.; Manthou, E.; Fatima, S.; Gill, J.M.R.; Lean, M.E.J.; Malkova, D. Validity of predictive equations to estimate RMR in females with varying BMI. J. Nutr. Sci. 2020, 9, e17. [Google Scholar] [CrossRef]
- FAO/WHO/UNU. Energy and Protein Requirements. 2001. Available online: https://www.fao.org/3/y5686e/y5686e.pdf (accessed on 1 December 2022).
- Ireton-Jones, C.S.; Jones, J.D. Improved Equations for Predicting Energy Expenditure in Patients: The Ireton-Jones Equations. Nutr. Clin. Pract. 2002, 17, 29–31. [Google Scholar] [CrossRef]
- Horton, T.J.; Drougas, H.; Brachey, A.; Reed, G.W.; Peters, J.C.; Hill, J.O. Fat and carbohydrate overfeeding in humans: Different effects on energy storage. Am. J. Clin. Nutr. 1995, 62, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Diaz, E.; Pretince, A.M.; Goldberg, C.R.; Murgatryd, P.R.; Coward, W. Metabolic response to experimental overfeeding in lean and overweight healthy volunteers. Am. J. Clin. Nutr. 1992, 56, 641–655. [Google Scholar] [CrossRef] [PubMed]
- Druet, C.; Ong, K.K. Early childhood predictors of adult body composition. Best Pract. Res. Clin Endocrinol. Metab. 2008, 22, 489–502. [Google Scholar] [CrossRef] [PubMed]
Equation | Subjects | Nutritional Status | Age | Equation for Female Subjects |
---|---|---|---|---|
FAO (1985) | 247 | Normal Overweight Obesity | 19–82 | (14.7 × W) + 496 (18 to 30 years) |
FAO (2004) | 247 | Normal Overweight Obesity | 19–82 | (14.818 × W) + 886.6 (18 to 30 years) |
Harris–Benedict | 239 | Normal | 15–74 | (9.563 × W) + (1.84 × H) − (4.676 × E) + 655.09 |
Mifflin–St Jeor | 498 | Normal Overweight Obesity | 19–78 | (9.99 × W) + (6.25 × H) − (5 × A) − 161 |
Nutritional Status | Percentile (P) | Age (Years) | Weight (kg) | Height (m) | Fat Mass (%) | Fat-Free Mass (%) | BMI (kg/m2) | Waist Circumference | Waist/Hip Ratio | RMR IC (Calories) |
---|---|---|---|---|---|---|---|---|---|---|
Overweight (n = 23) | P25 | 21 | 61.0 | 1.57 | 30.6 | 67.7 | 24.0 | 74.5 | 0.76 | 1116 |
P50 | 22 | 66.0 | 1.59 | 30.9 | 69.1 | 25.1 | 76.5 | 0.78 | 1183 | |
P75 | 23 | 68.6 | 1.64 | 32.0 | 69.4 | 26.4 | 81.0 | 0.81 | 1295 | |
Obesity (n = 18) | P25 | 22 | 61.0 | 1.55 | 34.3 | 64.6 | 25.4 | 82.0 | 0.75 | 1115 |
P50 | 23.5 | 67.5 | 1.58 | 35.3 | 65.1 | 26.9 | 83.6 | 0.78 | 1192 | |
P75 | 26 | 75.5 | 1.60 | 36.0 | 66.3 | 29.5 | 88.0 | 0.84 | 1346 | |
p-value | 0.031 | 0.226 | 0.252 | <0.001 | <0.001 | 0.0191 | <0.001 | 0.4732 | 0.5993 |
Predictive Equation | Adequacy (90% to 110%) | Overestimation (>110%) | Underestimation (<90%) |
---|---|---|---|
Mifflin–St Jeor | 30.4 | 69.5 | 0 |
Harris–Benedict | 13.0 | 86.9 | 0 |
FAO (1985) | 17.3 | 82.6 | 0 |
FAO (2004) | 8.6 | 91.3 | 0 |
Predictive Equation | Adequacy (90% to 110%) | Overestimation (>110%) | Underestimation (<90%) |
---|---|---|---|
Mifflin–St Jeor | 55.5 | 44.4 | 0 |
Harris–Benedict | 22.2 | 77.7 | 0 |
Harris–Benedict AW 0.25 | 44.4 | 55.5 | 0 |
Harris–Benedict AW 0.50 | 11.1 | 22.2 | 66.7 |
FAO (1985) | 16.6 | 83.3 | 0 |
FAO (2004) | 11.1 | 88.8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maury-Sintjago, E.; Rodríguez-Fernández, A.; Ruíz-De la Fuente, M. Predictive Equations Overestimate Resting Metabolic Rate in Young Chilean Women with Excess Body Fat. Metabolites 2023, 13, 188. https://doi.org/10.3390/metabo13020188
Maury-Sintjago E, Rodríguez-Fernández A, Ruíz-De la Fuente M. Predictive Equations Overestimate Resting Metabolic Rate in Young Chilean Women with Excess Body Fat. Metabolites. 2023; 13(2):188. https://doi.org/10.3390/metabo13020188
Chicago/Turabian StyleMaury-Sintjago, Eduard, Alejandra Rodríguez-Fernández, and Marcela Ruíz-De la Fuente. 2023. "Predictive Equations Overestimate Resting Metabolic Rate in Young Chilean Women with Excess Body Fat" Metabolites 13, no. 2: 188. https://doi.org/10.3390/metabo13020188
APA StyleMaury-Sintjago, E., Rodríguez-Fernández, A., & Ruíz-De la Fuente, M. (2023). Predictive Equations Overestimate Resting Metabolic Rate in Young Chilean Women with Excess Body Fat. Metabolites, 13(2), 188. https://doi.org/10.3390/metabo13020188