Hypertriglyceridemic Waist Phenotype and Its Association with Metabolic Syndrome Components, among Greek Children with Excess Body Weight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Anthropometric Measurements and Blood Pressure
2.3. Assays
2.4. Definitions
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Styne, D.M.; Arslanian, S.A.; Connor, E.L.; Farooqi, I.S.; Murad, M.H.; Silverstein, J.H.; Yanovski, J.A. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 709–757. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.S.; Barlow, S.E.; Quiros-Tejeira, R.E.; Scheimann, A.; Skelton, J.; Suskind, D.; Tsai, P.; Uko, V.; Warolin, J.P.; Xanthakos, S.A.; et al. Childhood obesity for pediatric gastroenterologists. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Hassapidou, M.; Tzotzas, T.; Makri, E.; Pagkalos, I.; Kaklamanos, I.; Kapantais, E.; Abrahamian, A.; Polymeris, A.; Tziomalos, K. Prevalence and geographic variation of abdominal obesity in 7- and 9-year-old children in Greece; World Health Organization Childhood Obesity Surveillance Initiative 2010. BMC Public Health 2017, 17, 126. [Google Scholar] [CrossRef] [PubMed]
- Nittari, G.; Scuri, S.; Petrelli, F.; Pirillo, I.; di Luca, N.M.; Grappasonni, I. Fighting obesity in children from European World Health Organization member states. Epidemiological data, medical-social aspects, and prevention programs. Clin. Ter. 2019, 170, e223–e230. [Google Scholar] [CrossRef]
- Serbis, A.; Giapros, V.; Galli-Tsinopoulou, A.; Siomou, E. Metabolic Syndrome in Children and Adolescents: Is There a Universally Accepted Definition? Does it Matter? Metab. Syndr. Relat. Disord. 2020, 18, 462–470. [Google Scholar] [CrossRef]
- De Lamas, C.; Kalen, A.; Anguita-Ruiz, A.; Perez-Ferreiros, A.; Picans-Leis, R.; Flores, K.; Moreno, L.A.; Bueno, G.; Gil, A.; Gil-Campos, M.; et al. Progression of metabolic syndrome and associated cardiometabolic risk factors from prepuberty to puberty in children: The PUBMEP study. Front. Endocrinol. 2022, 13, 1082684. [Google Scholar] [CrossRef]
- Lemieux, I.; Pascot, A.S.; Couillard, C.; Lamarche, B.T.; Tchernof, A.; Alméras, N.; Bergeron, J.; Gaudet, D.; Tremblay, G.; Prud’homme, D. Hypertriglyceridemic waist: A marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation 2000, 102, 179–184. [Google Scholar] [CrossRef]
- Braz, M.A.D.; Vieira, J.N.; Gomes, F.O.; da Silva, P.R.; de Medeiros Santos, O.T.; da Rocha, I.M.G.; de Sousa, I.M.; Fayh, A.P.T. Hypertriglyceridemic waist phenotype in primary health care: Comparison of two cutoff points. Diabetes Metab. Syndr. Obes. 2017, 10, 385. [Google Scholar] [CrossRef]
- Carlsson, A.C.; Risérus, U.; Ärnlöv, J. Hypertriglyceridemic waist phenotype is associated with decreased insulin sensitivity and incident diabetes in elderly men. Obesity 2014, 22, 526–529. [Google Scholar] [CrossRef]
- Gomez-Huelgas, R.; Bernal-López, M.; Villalobos, A.; Mancera-Romero, J.; Baca-Osorio, A.; Jansen, S.; Guijarro, R.; Salgado, F.; Tinahones, F.; Serrano-Rios, M. Hypertriglyceridemic waist: An alternative to the metabolic syndrome? Results of the IMAP Study (multidisciplinary intervention in primary care). Int. J. Obes. 2011, 35, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Fernández-García, J.C.; Muñoz-Garach, A.; Martínez-González, M.Á.; Salas-Salvado, J.; Corella, D.; Hernáez, Á.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; Wärnberg, J. Association Between Lifestyle and Hypertriglyceridemic Waist Phenotype in the PREDIMED-Plus Study. Obesity 2020, 28, 537–543. [Google Scholar] [CrossRef]
- Wang, A.; Li, Z.; Zhou, Y.; Wang, C.; Luo, Y.; Liu, X.; Guo, X.; Wu, S.; Zhao, X. Hypertriglyceridemic waist phenotype and risk of cardiovascular diseases in China: Results from the Kailuan Study. Int. J. Cardiol. 2014, 174, 106–109. [Google Scholar] [CrossRef]
- Chen, S.; Guo, X.; Yu, S.; Yang, H.; Sun, G.; Li, Z.; Sun, Y. Hypertriglyceridemic waist phenotype and metabolic abnormalities in hypertensive adults: A STROBE compliant study. Medicine 2016, 95, e5613. [Google Scholar] [CrossRef]
- Zhao, K.; Yang, S.-S.; Wang, H.-B.; Chen, K.; Lu, Z.-H.; Mu, Y.-M. Association between the hypertriglyceridemic waist phenotype and prediabetes in Chinese adults aged 40 years and older. J. Diabetes. Res. 2018, 2018, 1031939. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, M.; Zhao, J.; Wang, C.; Luo, X.; Zhang, J.; Zhu, T.; Li, X.; Yin, L.; Pang, C. Association of the hypertriglyceridemic waist phenotype and type 2 diabetes mellitus among adults in China. J. Diabetes Investig. 2016, 7, 689–694. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, Y.; Chang, H.; Wang, X.; Liu, D.; Zhu, Z.; Huang, G. Hypertriglyceridemic-waist phenotype predicts diabetes: A cohort study in Chinese urban adults. BMC Public Health 2012, 12, 1081. [Google Scholar] [CrossRef]
- Gasevic, D.; Carlsson, A.C.; Lesser, I.A.; Mancini, G.J.; Lear, S.A. The association between “hypertriglyceridemic waist” and sub-clinical atherosclerosis in a multiethnic population: A cross-sectional study. Lipids Health Dis. 2014, 13, 1–10. [Google Scholar] [CrossRef]
- Moon, B.S.; Park, H.-J.; Lee, M.-K.; Jeon, W.S.; Park, S.E.; Park, C.-Y.; Lee, W.-Y.; Oh, K.-W.; Park, S.-W.; Rhee, E.-J. Increased association of coronary artery calcification in apparently healthy Korean adults with hypertriglyceridemic waist phenotype: The Kangbuk Samsung Health Study. Int. J. Cardiol. 2015, 194, 78–82. [Google Scholar] [CrossRef]
- Onat, A.; Can, G.; Örnek, E.; Sansoy, V.; Aydın, M.; Yüksel, H. Abdominal obesity with hypertriglyceridaemia, lipoprotein (a) and apolipoprotein A-I determine marked cardiometabolic risk. Eur. J. Clin. Investig. 2013, 43, 1129–1139. [Google Scholar] [CrossRef]
- Yu, D.; Yang, W.; Chen, T.; Cai, Y.; Zhao, Z.; Simmons, D. Hypertriglyceridemic-waist is more predictive of abnormal liver and renal function in an Australian population than a Chinese population. Obes. Res. Clin. Pr. 2018, 12, 438–444. [Google Scholar] [CrossRef]
- Guilherme, F.R.; Molena-Fernandes, C.A.; Hintze, L.J.; Fávero, M.T.M.; Cuman, R.K.N.; Rinaldi, W. Hypertriglyceridemic waist and metabolic abnormalities in Brazilian schoolchildren. PLoS ONE 2014, 9, e111724. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Bailey, D.P.; Savory, L.A.; Denton, S.J.; Davies, B.R.; Kerr, C.J. The hypertriglyceridemic waist, waist-to-height ratio, and cardiometabolic risk. J. Pediatr. 2013, 162, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Kaur, Y.; de Souza, R.J.; Gibson, W.T.; Meyre, D. A systematic review of genetic syndromes with obesity. Obes. Rev. 2017, 18, 603–634. [Google Scholar] [CrossRef] [PubMed]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J.; et al. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 2005, 45, 142–161. [Google Scholar] [CrossRef]
- Fryar, C.D.; Gu, Q.; Ogden, C.L. Anthropometric Reference Data for Children and Adults; United States, 2007–2010; Vital and Health Statistics; CDC: Atlanta, GA, USA, 2012.
- Mohd Nor, N.S.; Lee, S.; Bacha, F.; Tfayli, H.; Arslanian, S. Triglyceride glucose index as a surrogate measure of insulin sensitivity in obese adolescents with normoglycemia, prediabetes, and type 2 diabetes mellitus: Comparison with the hyperinsulinemic–euglycemic clamp. Pediatr. Diabetes 2016, 17, 458–465. [Google Scholar] [CrossRef]
- Matthews, D.; Hosker, J.; Rudenski, A.; Naylor, B.; Treacher, D.; Turner, R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Tresaco, B.; Bueno, G.; Pineda, I.; Moreno, L.; Garagorri, J.; Bueno, M. Homeostatic model assessment (HOMA) index cut-off values to identify the metabolic syndrome in children. J. Physiol. Biochem. 2005, 61, 381–388. [Google Scholar] [CrossRef]
- Kostovski, M.; Simeonovski, V.; Mironska, K.; Tasic, V.; Gucev, Z. Metabolic profiles in obese children and adolescents with insulin resistance. Open Access Maced J. Med. Sci. 2018, 6, 511. [Google Scholar] [CrossRef]
- Tang, Q.; Li, X.; Song, P.; Xu, L. Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future. Drug Discov. Ther. 2015, 9, 380–385. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [Green Version]
- Schwimmer, J.B.; Dunn, W.; Norman, G.J.; Pardee, P.E.; Middleton, M.S.; Kerkar, N.; Sirlin, C.B. SAFETY study: Alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease. Gastroenterology 2010, 138, 1357–1364.e1352. [Google Scholar] [CrossRef]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef]
- Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011, 128, S213. [CrossRef]
- Esmaillzadeh, A.; Mirmiran, P.; Azadbakht, L.; Azizi, F. Prevalence of the hypertriglyceridemic waist phenotype in Iranian adolescents. Am. J. Prev. Med. 2006, 30, 52–58. [Google Scholar] [CrossRef]
- Liu, X.-L.; Yin, F.-Z.; Ma, C.-P.; Gao, G.-Q.; Ma, C.-M.; Wang, R.; Lu, Q. Waist-to-height ratio as a screening measure for identifying adolescents with hypertriglyceridemic waist phenotype. J. Pediatr. Endocrinol. Metab. 2015, 28, 1079–1083. [Google Scholar] [CrossRef]
- Alavian, S.-M.; Motlagh, M.E.; Ardalan, G.; Motaghian, M.; Davarpanah, A.H.; Kelishadi, R. Hypertriglyceridemic waist phenotype and associated lifestyle factors in a national population of youths: CASPIAN Study. J. Trop. Pediatr. 2008, 54, 169–177. [Google Scholar] [CrossRef]
- Esmaillzadeh, A.; Mirmiran, P.; Azizi, F. Clustering of metabolic abnormalities in adolescents with the hypertriglyceridemic waist phenotype. Am. J. Clin. Nutr. 2006, 83, 36–46. [Google Scholar] [CrossRef]
- Conceição-Machado, M.E.P.d.; Silva, L.R.; Santana, M.L.P.; Pinto, E.J.; Silva, R.d.C.R.; Moraes, L.T.L.; Couto, R.D.; Assis, A.M.O. Hypertriglyceridemic waist phenotype: Association with metabolic abnormalities in adolescents. J. Pediatr. 2013, 89, 56–63. [Google Scholar] [CrossRef]
- Ribeiro, F.B.; de Cássia da Silva, C.; Vasques, A.C.J.; Zambon, M.P.; De Bernardi Rodrigues, A.M.; Camilo, D.F.; de Góes Monteiro Antonio, M.Â.R.; Neto, B.G.; Ribeiro, F.B.; de Cássia da Silva, C.; et al. Hypertriglyceridemic waist phenotype indicates insulin resistance in adolescents: Validation study front hyperglycemic clamp-Brazilian Metabolic Syndrome Study (BRAMS). Diabetol. Metab. Syndr. 2015, 7, A145. [Google Scholar] [CrossRef]
- Buchan, D.S.; Boddy, L.M.; Despres, J.P.; Grace, F.M.; Sculthorpe, N.; Mahoney, C.; Baker, J.S. Utility of the hypertriglyceridemic waist phenotype in the cardiometabolic risk assessment of youth stratified by body mass index. Pediatr. Obes. 2016, 11, 292–298. [Google Scholar] [CrossRef]
- Haas, G.M.; Liepold, E.; Schwandt, P. Predicting Cardiovascular Risk Factors by dIfferent Body Fat Patterns in 3850 German Children: The PEP Family Heart Study. Int. J. Prev. Med. 2011, 2, 15–19. [Google Scholar] [PubMed]
- Vlachopapadopoulou, E.; Dikaiakou, E.; Anagnostou, E.; Athanasouli, F.; Patinioti, I. Early Clinical Indicators of Metabolic Syndrome and Insulin Resistance in A Cohort of Greek Children with Obesity. J. Obes. Chronic Dis. 2020, 4, 6–12. [Google Scholar] [CrossRef]
- Papandreou, D.; Karavetian, M.; Karabouta, Z.; Andreou, E. Obese children with metabolic syndrome have 3 times higher risk to have nonalcoholic fatty liver disease compared with those without metabolic syndrome. Int. J. Endocrinol. 2017, 2017, 2671692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | N = 145 |
---|---|
Age [years, mean ± SD] | 10.2 ± 2.31 |
Sex [Boys, n (%)] | 68 (46.9) |
Puberty [n (%)] | 47 (32.4) |
BMI [Obese, n (%)] | 141 (97.2) |
WHR [≥0.5, n (%)] | 144 (99.3) |
WC ≥ 90th [n (%)] | 113 (77.9) |
BP ≥ 90th [n (%)] | 67 (46.9) |
HOMA-IR ≥ 2.5 [n (%)] | 79 (54.5) |
MetS [n (%)] | 27 (18.6) |
HTGW phenotype [n (%)] | 28 (19.3) |
HTGW Phenotype | |||
---|---|---|---|
Characteristics | No | Yes | p-Value |
Age (years, mean ± SD) | 10.2 ± 2.30 | 9.94 ± 2.57 | 0.581 |
Sex [Boys, n (%)] | 56 (47.9) | 12 (42.9) | 0.633 |
Puberty [n (%)] | 37 (31.6) | 10 (35.7) | 0.678 |
BMI [Obese, n (%)] | 114 (97.4) | 27 (96.4) | 0.770 |
WHR [≥0.5, n (%)] | 116 (99.2) | 28 (100) | 0.624 |
BP ≥ 90th [n (%)] | 52 (44.8) | 15 (55.6) | 0.314 |
SBP (mmHg, mean ± SD) | 112.0 (10.2) | 112.4 (9.41) | 0.840 |
DBP (mmHg, mean ± SD) | 67.2 (10.2) | 68.8 (12.9) | 0.497 |
Chol (mg/dL, mean ± SD) | 163.9 ± 29.9 | 172.6 ± 19.2 | 0.154 |
HDL (mg/dL, mean ± SD) | 52.5 ± 12.3 | 43.3 ± 8.81 | <0.001 |
LDL (mg/dL, mean ± SD) | 98.6 ± 27.6 | 102.5 ± 18.3 | 0.506 |
HOMA-IR ≥ 2.5 [n (%)] | 59 (50.4) | 20 (71.4) | 0.045 |
Elevated ALT [n (%)] | 34 (32.1) | 11 (42.3) | 0.324 |
TyG (mean ± SD) | 7.92 ± 0.41 | 8.64 ± 0.24 | <0.001 |
MetS [n (%)] | 6 (5.13) | 21 (75) | <0.001 |
Independent Variables | OR (95% CI) | p Value |
---|---|---|
HTGW phenotype Normal One Two | reference 4.27 (1.42,12.9) 7.9 (1.94, 32.1) | 0.010 0.004 |
Age (years) | 1.29 (0.479, 2.85) | 0.033 |
Sex (boys vs. girls) | 1.17 (0.479, 2.85) | 0.732 |
Puberty (No vs. Yes) | 1.91(0.579, 6.30) | 0.288 |
HDL (mg/dL) | 0.970 (0.935, 1.01) | 0.102 |
BP > 90th (No vs. Yes) | 1.03 (0.988, 1.08) | 0.156 |
Independent Variables | OR (95% CI) | p Value |
---|---|---|
HTGW phenotype (no vs. yes) | 81.4 (13.5, 488.7) | <0.001 |
Age (years) | 1.44 (0.884, 2.362) | 0.142 |
Sex (boys vs. girls) | 1.75 (0.293, 10.4) | 0.539 |
Puberty (no vs. yes) | 1.11 (0.130, 9.5) | 0.923 |
HDL (mg/dL) | 0.872 (0.791, 0.961) | 0.006 |
Total Cholesterol (mg/dL) | 1.03 (1.00, 1.06) | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikaiakou, E.; Athanasouli, F.; Fotiadou, A.; Kafetzi, M.; Fakiolas, S.; Michalacos, S.; Vlachopapadopoulou, E.A. Hypertriglyceridemic Waist Phenotype and Its Association with Metabolic Syndrome Components, among Greek Children with Excess Body Weight. Metabolites 2023, 13, 230. https://doi.org/10.3390/metabo13020230
Dikaiakou E, Athanasouli F, Fotiadou A, Kafetzi M, Fakiolas S, Michalacos S, Vlachopapadopoulou EA. Hypertriglyceridemic Waist Phenotype and Its Association with Metabolic Syndrome Components, among Greek Children with Excess Body Weight. Metabolites. 2023; 13(2):230. https://doi.org/10.3390/metabo13020230
Chicago/Turabian StyleDikaiakou, Eirini, Fani Athanasouli, Anatoli Fotiadou, Maria Kafetzi, Stefanos Fakiolas, Stefanos Michalacos, and Elpis Athina Vlachopapadopoulou. 2023. "Hypertriglyceridemic Waist Phenotype and Its Association with Metabolic Syndrome Components, among Greek Children with Excess Body Weight" Metabolites 13, no. 2: 230. https://doi.org/10.3390/metabo13020230
APA StyleDikaiakou, E., Athanasouli, F., Fotiadou, A., Kafetzi, M., Fakiolas, S., Michalacos, S., & Vlachopapadopoulou, E. A. (2023). Hypertriglyceridemic Waist Phenotype and Its Association with Metabolic Syndrome Components, among Greek Children with Excess Body Weight. Metabolites, 13(2), 230. https://doi.org/10.3390/metabo13020230