Anti-Inflammatory Activity of Compounds Derived from Vitex rotundifolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction and Separation
2.3. Modified Mosher’s Method
Spectroscopic Data of MTPA Diester Derivatives
2.4. Antioxidant Assay
2.5. NO Assay
2.5.1. Cell Culture and Viability
2.5.2. Measurement of NO Production
2.6. IL-8 Assay
2.6.1. Cell Culture and Viability
2.6.2. Measurement of IL-8 Production
2.7. In silico Assay
2.8. Statistical Analysis
3. Results
3.1. Separation and Identification of Chemical Constituents
3.2. Structural Determination of Compounds (1−20)
3.3. Biological Activities of Isolated Compounds
3.4. In silico Approach Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sairenji, T.; Collins, K.L.; Evans, D.V. An update on inflammatory bowel disease. Prim. Care 2017, 44, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Peyrin-Biroulet, L.; Eisenhut, M.; Shin, J.I. IBD immunopathogenesis: A comprehensive review of inflammatory molecules. Autoimmun. Rev. 2017, 16, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Lacy, P. Editorial: Secretion of cytokines and chemokines by innate immune cells. Front. Immunol. 2015, 6, 190. [Google Scholar] [CrossRef] [PubMed]
- Meena, A.K.; Singh, U.; Yadav, A.K.; Singh, B.; Meda, M. Pharmacological and phytochemical evidences for the extracts from plants of the genus Vitex-A review. Int. J. Pharm. Clin. Res. 2010, 2, 1–9. [Google Scholar]
- Zheng, C.J.; Li, H.Q.; Ren, S.C.; Xu, C.L.; Rahman, K.; Qin, L.P.; Sun, Y.H. Phytochemical and pharmacological profile of Vitex negundo. Phytother. Res. 2015, 29, 633–647. [Google Scholar] [CrossRef]
- Ono, M.; Nishida, Y.; Masuoka, C.; Li, J.C.; Okawa, M.; Ikeda, T.; Nohara, T. Lignan derivatives and a norditerpene from the seeds of Vitex negundo. J. Nat. Prod. 2004, 67, 2073–2075. [Google Scholar] [CrossRef]
- Hu, Y.; Hou, T.T.; Xin, H.L.; Zhang, Q.Y.; Zheng, H.C.; Rahman, K. Estrogen-like activity of volatile components from Vitex rotundifolia L. Indian J. Med. Res. 2007, 126, 68–72. [Google Scholar]
- Le, D.D.; Han, S.; Ahn, J.; Yu, J.; Kim, C.-K.; Lee, M. Analysis of antioxidant phytochemicals and anti-Inflammatory effect from Vitex rotundifolia L.f. Antioxidants 2022, 11, 454. [Google Scholar] [CrossRef]
- Hu, Y.; Hou, T.T.; Zhang, Q.Y.; Xin, H.L.; Zheng, H.C.; Qin, L.P. Evaluation of the estrogenic activity of the constituents in the fruits of Vitex rotundifolia L. for the potential treatment of premenstrual syndrome. J. Pharm. Pharmacol. 2007, 59, 1307–1312. [Google Scholar] [CrossRef]
- Liou, C.J.; Huang, W.C. Casticin inhibits interleukin-1β–induced ICAM-1 and MUC5AC expression by blocking NF-κB, PI3K-Akt, and MAPK signaling in human lung epithelial cells. Oncotarget 2017, 8, 101175–101188. [Google Scholar] [CrossRef]
- Cousins, M.M.; Briggs, J.; Whitwell, T. Beach Vitex (Vitex rotundifolia): Medicinal properties, biology, invasive characteristics and management options. J. Environ. Horticul. 2017, 35, 128–137. [Google Scholar] [CrossRef]
- Boreak, N.; Bhandi, S. In-silico modulation of Interleukin-8 (IL8) for the therapeutic management of endodontic pulpitis. Saudi J. Biol. Sci. 2022, 29, 905–910. [Google Scholar] [CrossRef]
- Hu, P.; Li, D.; Wang, K.; Wang, H.; Wang, Z.; Li, Z. New phenolic compounds from Vitex negundo var. heterophylla and their antioxidant and NO inhibitory activities. J. Funct. Foods 2015, 19, 174–181. [Google Scholar] [CrossRef]
- Kondo, Y.; Sugiyama, K.; Nozoe, S. Studies on the constituents of Vitex rotundifolia L. fil. Chem. Pharm. Bull. 1986, 34, 4829–4832. [Google Scholar] [CrossRef]
- Yoshioka, T.; Inokuchi, T.; Fujioka, S.; Kimura, Y. Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia. Z. Für Nat. C 2004, 59, 509–514. [Google Scholar] [CrossRef]
- Kim, H.; Yi, J.M.; Kim, N.S.; Lee, Y.J.; Kim, J.; Oh, D.S. Cytotoxic compounds from the fruits of Vitex rotundifolia against human cancer cell lines. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 433–437. [Google Scholar] [CrossRef]
- Benahmed, M.; Akkal, S.; Elomri, A.; Laouer, H.; Vérité, P.; Seguin, E. Constituents from Bupleurum montanum (Coss. & Dur.) (Apiaceae). Arabian J. Chem. 2014, 7, 1065–1069. [Google Scholar]
- Lee, S.Y.; Choi, S.U.; Lee, J.H.; Lee, D.U.; Lee, K.R. A new phenylpropane glycoside from the rhizome of Sparganium stoloniferum. Arch. Pharm. Res. 2010, 33, 515–521. [Google Scholar] [CrossRef]
- Cho, J.Y.; Moon, J.H.; Seong, K.Y.; Park, K.H. Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from cice Hull. Biosci. Biotech. Biochem. 1998, 62, 2273–2276. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Kayano, S.I.; Fukutsuka, N.; Aoki, A.; Kasamatsu, K.; Yamasaki, Y. Abscisic acid related compounds and lignans in Prunes (Prunus domestica L.) and their oxygen radical absorbance capacity (ORAC). J. Agric. Food Chem. 2004, 52, 344–349. [Google Scholar] [CrossRef]
- Okuyama, E.; Fujimori, S.; Yamazaki, M.; Deyama, T. Pharmacologically active components of Viticis Fructus (Vitex rotundifolia). II. The component having analgesic effects. Chem. Pharm. Bull. 1998, 46, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Lai-King, S.; Brown, G.D. Three sesquiterpenes from Artemisia annua. Phytochemistry 1998, 48, 1207–1211. [Google Scholar] [CrossRef]
- Lin, L.C.; Pai, Y.F.; Tsai, T.H. Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and their pharmacokinetics in rats. J. Agric. Food Chem. 2015, 63, 7700–7706. [Google Scholar] [CrossRef] [PubMed]
- Nawwar, M.A.M.; Hussein, S.A.M.; Merfort, I. Leaf phenolics of Punica granatum. Phytochemistry 1994, 37, 1175–1177. [Google Scholar] [CrossRef]
- Kim, D.K. Antioxidative constituents from the twigs of Vitex rotundifolia. Biomol. Ther. 2009, 17, 412–417. [Google Scholar] [CrossRef]
- Yang, S.J.; Liu, M.C.; Liang, N.; Xiang, H.M.; Yang, S. Chemical constituents of Cyrtomium fortumei (J.) Smith. Nat. Prod. Res. 2013, 27, 2066–2068. [Google Scholar] [CrossRef]
- Tiitinen, K.M.; Yang, B.; Haraldsson, G.G.; Jonsdottir, S.; Kallio, H.P. Fast analysis of sugars, fruit acids, and vitamin C in sea Buckthorn (Hippophaë rhamnoides L.) Varieties. J. Agric. Food Chem. 2006, 54, 2508–2513. [Google Scholar] [CrossRef]
- Tshilanda, D.D.; Onyamboko, D.N.; Babady-Bila, P.; Ngbolua, K.T.N.; Tshibangu, D.S.; dia Fita Dibwe, E. Anti-sickling activity of ursolic acid isolated from the leaves of Ocimum gratissimum L. (Lamiaceae). Nat. Prod. Bioprospect. 2015, 5, 215–221. [Google Scholar] [CrossRef]
- Shu, R.G.; Hu, H.W.; Zhang, P.Z.; Ge, F. Triterpenes and flavonoids from Mosla chinensis. Chem. Nat. Comp. 2012, 48, 706–717. [Google Scholar] [CrossRef]
- Park, C.M.; Song, Y.S. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-κB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nutr. Res. Pract. 2013, 7, 423–429. [Google Scholar] [CrossRef]
- Nishitani, Y.; Yamamoto, K.; Yoshida, M.; Azuma, T.; Kanazawa, K.; Hashimoto, T. Intestinal anti-inflammatory activity of luteolin: Role of the aglycone in NF-κB inactivation in macrophages co-cultured with intestinal epithelial cells. BioFactors 2013, 39, 522–533. [Google Scholar] [CrossRef]
- Jung, H.A.; Jin, S.E.; Min, B.S.; Kim, B.W.; Choi, J.S. Anti-inflammatory activity of Korean thistle Cirsium maackii and its major flavonoid, luteolin 5-O-glucoside. Food Chem. Toxicol. 2012, 50, 2171–2179. [Google Scholar] [CrossRef]
- Tawornchat, P.; Pattarakankul, T.; Palaga, T.; Intasanta, V.; Wanichwecharungruang, S. Polymerized luteolin nanoparticles: Synthesis, structure elucidation, and anti-inflammatory activity. ACS Omega 2021, 6, 2846–2855. [Google Scholar] [CrossRef]
- Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358. [Google Scholar] [CrossRef]
- Mertens-Talcott, S.U.; Noratto, G.D.; Li, X.; Angel-Morales, G.; Bertoldi, M.C.; Safe, S. Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: Role of Sp transcription factors and microRNA-27a:ZBTB10. Mol. Carcinog. 2013, 52, 591–602. [Google Scholar] [CrossRef]
- Soica, C.; Danciu, C.; Savoiu-Balint, G.; Borcan, F.; Ambrus, R.; Zupko, I. Betulinic acid in complex with a gamma-cyclodextrin derivative decreases proliferation and in vivo tumor development of non-metastatic and metastatic B164A5 Cells. Int. J. Mol. Sci. 2014, 15, 8235–8255. [Google Scholar] [CrossRef]
- Sohn, S.H.; Ko, E.; Oh, B.G.; Kim, S.H.; Kim, Y.; Shin, M.; Hong, M.; Bae, H. Inhibition effects of Vitex rotundifolia on inflammatory gene expression in A549 human epithelial cells. Ann. Allergy Asthma Immunol. 2009, 103, 152–159. [Google Scholar] [CrossRef]
No. | 1 | |
---|---|---|
δC | δH (mult., J = Hz) | |
1 | 128.2 | - |
2 | 157.1 | - |
3 | 43.4 | 2.42 (1H, d, 19.0) 2.84 (1H, dd, 5.5, 19.0) |
4 | 72.4 | 4.01 (1H, d, 6.0) |
5 | 53.1 | 2.82 (1H, d, 5.5) |
6 | 166.6 | - |
7 | 58.9 | 4.40 (2H, brs) |
8 | 30.2 | 1.62 (1H, ddd, 4.8, 9.4, 14.2) 1.94 (1H, td, 3.7, 7.1, 14.2) |
9 | 62.8 | 4.18 (1H, m) 4.25 (1H, m) |
1’ | 120.5 | - |
2’/6’ | 131.4 | 7.81 (2H, d, 8.7) |
3’/5’ | 115.3 | 6.84 (2H, d, 8.7) |
4’ | 161.9 | - |
7’ | 165.6 | - |
Compounds | Docking Score (kcal/mol) | Conventional Hydrogen Bond | Other Interactions |
---|---|---|---|
8 | −7.5 | Gly44, Glu46 | Gln6, Lys9, Thr10, Tyr11, Arg45, Leu47 |
9 | −6.6 | Gln6, Lys9, Arg24 | Thr10, Tyr11, Ile38, Glu46, Leu47, Cys48 |
13 | −8.3 | Gln6, Ile8, Ser12, Lys13, Cys48 | Cys7, Lys9, Thr10, Tyr11, Ile38, Glu46Leu47 |
14 | −8.4 | Lys9, Cys48 | Arg4, Cys5, Gln6, Ile8, Thr10, Tyr11, Ile38, Glu46, Leu47 |
19 | −7.0 | Gln57 | Val25, Glu27, Ser28, Thr35, Ile37, Pro51, Lys52, Val60, Glu61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, D.; Han, S.; Min, K.H.; Lee, M. Anti-Inflammatory Activity of Compounds Derived from Vitex rotundifolia. Metabolites 2023, 13, 249. https://doi.org/10.3390/metabo13020249
Le D, Han S, Min KH, Lee M. Anti-Inflammatory Activity of Compounds Derived from Vitex rotundifolia. Metabolites. 2023; 13(2):249. https://doi.org/10.3390/metabo13020249
Chicago/Turabian StyleLe, DucDat, Sanghee Han, Kyung Hyun Min, and Mina Lee. 2023. "Anti-Inflammatory Activity of Compounds Derived from Vitex rotundifolia" Metabolites 13, no. 2: 249. https://doi.org/10.3390/metabo13020249
APA StyleLe, D., Han, S., Min, K. H., & Lee, M. (2023). Anti-Inflammatory Activity of Compounds Derived from Vitex rotundifolia. Metabolites, 13(2), 249. https://doi.org/10.3390/metabo13020249