Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation of the Extracts
2.2. Gas Chromatography/Mass Spectrometry (GC–MS) Method
2.3. Antioxidant Activity Test
2.3.1. DPPH Method
2.3.2. Method for Superoxide Dismutase (SOD) Activity Assay
2.4. Minimum Inhibitory Concentration against Staphylococcus aureus
2.5. Antiplasmodial Assay
2.6. Cytotoxic Activity
2.7. Molecular Modeling (Receptors and Ligand Preparation)
2.8. Molecular Docking
2.9. Drug Likeness and Pharmakokinetic Analysis
3. Results and Discussion
3.1. Metabolite Profilling
3.2. Antioxidant and Antibacterial Test Results
3.3. Antiplasmodial Test Result
3.4. Anticancer Test Result
3.5. Virtual Screening with Blind Docking Approach
3.6. Site-Specific Docking on Binding Site of Native Ligands
3.7. Drug Likeness and Pharmacokinetic Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Razek, A.S.; El-Naggar, M.E.; Allam, A.; Morsy, O.M.; Othman, S.I. Microbial Natural Products in Drug Discovery. Processes 2020, 8, 470. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Pan, S.; Zhou, S.; Gao, S.; Yu, Z.; Zhang, S.; Tang, M.; Sun, J.; Ma, D.; Han, Y.; Fong, W.; et al. New Perspectives on How to Discover Drugs from Herbal Medicines: CAM’s Outstanding Contribution to Modern Therapeutics. eCAM 2013, 2013, 627375. [Google Scholar] [CrossRef] [Green Version]
- Li, C.Q.; Lei, H.M.; Hu, Q.Y.; Li, G.H.; Zhao, P.J. Recent Advances in the Synthetic Biology of Natural Drugs. Front. Bioeng. Biotechnol. 2021, 9, 691152. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N.A. Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, S.; Komal; Ramchiary, N.; Singh, P. Role of Traditional Ethnobotanical Knowledge and Indigenous Communities in Achieving Sustainable Development Goals. Sustainability 2021, 13, 3062. [Google Scholar] [CrossRef]
- Cahyaningsih, R.; Brehm, J.M.; Maxted, N. Gap Analysis of Indonesian Priority Medicinal Plant Species as Part of Their Conservation Planning. Glob. Ecol. Conserv. 2021, 26, e01459. [Google Scholar] [CrossRef]
- Saadullah, M.; Asif, M.; Arif, S.; Kanwal, B. A Comprehensive Review on Traditional Uses, Chemical Constituents, and Diverse Pharmacological Importance of the Genus Breynia. Rec. Nat Prod. 2022, 6, 538–549. [Google Scholar] [CrossRef]
- Fitriyanti, F.; Wathan, N.; Gunawan, G. Kajian Farmakognostik Tumbuhan Sugi-Sugi (Breynia cernua Muel. Arg.) Asal Amuntai Kalimantan Selatan. J. Pharma. Sci. 2016, 3, 43–48. [Google Scholar] [CrossRef]
- Dirgantara, S.; Tanjung, S.H.R.; Maury, H.K.; Meiyanto, E. Cytotoxic Activity and Phytochemical Analysis of Breynia cernua from Papua. IJPST 2018, 1, 31–36. [Google Scholar] [CrossRef]
- Wulansari, T.Y.I.; Dewi, A.P. Anatomical Structure of Phyllanthaceae Leaf from Banggai Kepulauan. Al-kauniyah: J. Biologi 2021, 14, 29–41. [Google Scholar] [CrossRef]
- Khan, M.R.; Omoloso, A.D. Antibacterial and Antifungal Activities of Breynia cernua. Fitoterapia 2008, 79, 370–373. [Google Scholar] [CrossRef]
- Saadullah, M.; Arif, S.; Hussain, L.; Asif, M.; Khurshid, U. Dose Dependent Effects of Breynia cernua Against the Paraquat Induced Parkinsonism like Symptoms in Animals’ Model: In Vitro, In Vivo and Mechanistic Studies. Dose-Response 2022, 20, 1–16. [Google Scholar] [CrossRef]
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide Research Trends on Medicinal Plants. Int. J. Environ. Res. Public. Health. 2020, 17, 3376. [Google Scholar] [CrossRef] [PubMed]
- Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC–MS Analysis of Phytoconstituentsfrom Amomum nilgiricum and Molecular Docking Interactions of Bioactive Serverogenin Acetate With Target Proteins. Sci. Rep. 2020, 10, 16438. [Google Scholar] [CrossRef]
- Azzam, M.H.; Fauziah, N.; Wiraswati, H.L. The Anticancer Effect of Phytochemicals and Potential of Breynia cernua: An overview. Biomed. Pharmacol. J. 2022, 15, 2259–2278. [Google Scholar] [CrossRef]
- Tava, A.; Pecetti, L. Chemical Investigation of Saponins from Twelve Annual Medicago species and Their Bioassay with The Brine Shrimp Artemia salina. Nat. Prod. Commun. 2012, 7, 837–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lingwan, M.; Masakapalli, S.K. A Robust Method of Extraction and GC-MS Analysis of Monophenols Exhibited UV-B Mediated Accumulation in Arabidopsis. Physiol. Mol. Biol. Plants 2022, 28, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Halder, S.K.; Ahmad, I.; Shathi, J.F.; Mim, M.M.; Hassan, R.; Jewel, J.I.; Dey, P.; Islam, S.; Patel, H.; Morshed, R.; et al. A Comprehensive Study to Unleash the Putative Inhibitors of Serotype2 of Dengue Virus: Insights from an In Silico Structure-Based Drug Discovery. Mol. Biotechnol. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Supandi; Saputra, Y.H.E.; Anwar, C.; Kinanto; Kodir, R.A.; Kurnia, D.; Fauziah, N.; Laelalugina, A.; Wiraswati, H.L. Potential of Reclamation Area of Coal Mining Sites in Medical Field. IJARET 2020, 11, 714–720. [Google Scholar]
- Pinu, F.R.; Edwards, P.J.B.; Jouanneau, S.; Kilmartin, P.A.; Gardner, R.C.; Villas-Boas, S.G. Sauvignon Blanc Metabolomics: Grape Juice Metabolites Affecting the Development of Varietal Thiols and Other Aroma Compounds in Wines. Metabolomics 2014, 10, 556–573. [Google Scholar] [CrossRef]
- Giao, M.S.; Pestana, D.; Faria, A.; Guimaraes, J.T.; Pintado, M.E.; Calhau, C.; Azevedo, I.; Malcatal, F.X. Effects of Extracts of Selected Medicinal Plants upon Hepatic Oxidative Stress. J. Med. Food. 2010, 13, 131–136. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in-vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, Y.S.; Huang, Y.F.; Midha, M.K.; Chen, T.H.; Shiau, H.C.; Chiu, K.P. Single Cell Transcriptome Analysis of MCF-7 Reveals Consistently and Inconsistently Expressed Gene Groups Each Associated with Distinct Cellular Localization and Functions. PLoS ONE 2018, 13, e0199471. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic. Acids. Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Pauff, J.M.; Cao, H.; Hille, R. Substrate Orientation and Catalysis at the Molybdenum Site in Xanthine Oxidase: Crystal Strcuture in Complex with xanthine and Lumazine. J. Biol. Chem. 2019, 284, 8760–8767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, H.; Kawai, F.; Obayashi, E.; Akashi, S.; Roper, D.I.; Tame, J.R.; Park, S.Y. Crystal Structures of Penicillin-binding Protein 3 (PBP3) from Methicillin-resistant Staphylococcus aureus in The Apo and Cefotaxime-bound Forms. J. Mol. Biol. 2012, 423, 351–364. [Google Scholar] [CrossRef]
- Bhaumik, P.; Horimoto, Y.; Xiao, H.; Miura, T.; Hidaka, K.; Kiso, Y.; Wlodawer, A.; Yada, R.Y.; Gustchina, A. Crystal Structures of The Free and Inhibited Forms of Plasmepsin I (PMI) from Plasmodium falciparum. J. Struct. Biol. 2011, 175, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Sevrioukova, I.F. Redox-linked Conformational Dynamics in Apoptosis-inducing Factor. J. Mol. Biol. 2019, 390, 924–938. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimeraa Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Dallakyan, S.; Olson, A.J. Small-molecule Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with A New Scoring Function, Efficient Optimization and Multithreading. J. Comp. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 1, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Ghosh, R.; Mandal, N.C. Production of Bioactive Compounds with Bactericidal and Antioxidant Potential by Endophytic Fungus Alternaria alternata AE1 Isolated from Azadirachta indica A. Juss. PLoS ONE 2019, 14, e0214744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen-xing, Z.; Mi, Z.; Jing, H.; Yafang, D.; BaoCai, L. Chemical Composition and Antioxidant Activity of The Essential Oil from The Flowers of Artemisia austro-yunnanensis. J. Chem. Pharm. Res. 2014, 6, 1583–1587. [Google Scholar]
- Arulkumar, A.; Rosemary, T.; Paramasivam, S.; Rajendran, R.B. Phytochemical Composition, In Vitro Antioxidant, Antibacterial Potential and GC-MS Analysis of Red Seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay, India. Biocatal. Agric. Biotechnol. 2018, 15, 63–71. [Google Scholar] [CrossRef]
- Nalini, D.D.; Mohamed, S.G.A. Phytochemical Screening, GC_MS Analysis, In Vitro Antibacterial Activity and Antioxidant Property of Eclypta prostrata L. Int. J. Pharm. Biol. Sci. 2018, 8, 2321–3272. [Google Scholar]
- Safara, S.; Harighi, B.; Bahramnejad, B.; Ahmadi, S. Antibacterial Activity of Endophytic Bacteria Against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. Front. Microbiol. 2022, 13, 921762. [Google Scholar] [CrossRef]
- Obaid, H.H.; Tawfeeq, H.Q.; Khalaf, Z.Z.; Shafeeq, Z.S. Inhibitory Effect of Rhizomes Methanolic Extracts of Rheum ribes and Tio2 NPs on Escherichia coli. IJSBAR 2016, 30, 265–275. [Google Scholar]
- Ahmad, S.; Ullah, F.; Sadiq, A.; Ayaz, M.; Imran, M.; Ali, I.; Zeb, A.; Ullah, F.; Shah, M.R. Chemical Composition, Antioxidant and Anticholinesterase Potentials of Essential Oil of Rumex hastatus D. Don Collected From the Northwest of Pakistan. BMC Complement. Altern. Med. 2016, 16, 29. [Google Scholar] [CrossRef] [Green Version]
- Rubaye, T.S.; Risan, M.H.; Rubaye, D. Gas Chromatography-mass- spectroscopy Analysis of Bioactive Compounds from Streptomyces spp. Isolated from Tigris river Sediments in Baghdad City. J. Biotech. Res. Center. 2020, 14, 63–71. [Google Scholar] [CrossRef]
- Athira Krishnan, K.A.; Keerthi, T.R. Cultivable Bacterial Symbionts from the Marine Sponge with Biological Activity. BJSTR 2021, 36, 28635–28646. [Google Scholar] [CrossRef]
- Erwin, E.; Pratiwi, D.R.; Saputra, I.; Alimuddin, A. Antioxidant Assay with Scavenging DPPH Radical of Artocarpus anisophyllus Miq Stem bark extracts and Chemical compositions and Toxicity Evaluation for the Most Active Fraction. Res. J. Pharm. Technol. 2021, 14, 2819–2833. [Google Scholar] [CrossRef]
- Khairy, H.; Saadoon, A.F.; Zzaman, W.; Yang, T.A.; Easa, A.M. Identification of Flavor Compounds in Rambutan Seed Fat and Its Mixture with Cocoa Butter Determined by SPME-GCMS. JKSUS 2017, 30, 316–323. [Google Scholar] [CrossRef]
- Dini, I.; Marra, R.; Cavallo, P.; Pironti, A.; Sepe, I.; Troisi, J.; Scala, G.; Lombari, P.; Vinale, F. Trichoderma Strains and Metabolites Selectively Increase the Production of Volatile Organic Compounds (VOCs) in Olive Trees. Metabolites 2021, 11, 213. [Google Scholar] [CrossRef]
- Rajadurai, M.V.; Maithili, R.A.; Yogesh, V. Phytochemical Profiling of Medically Significant Crude Extract using GC-MS Analysis. Int. J. Curr. Pharm. Res. 2021, 10, 16–20. [Google Scholar] [CrossRef]
- Khanal, L.N.; Sharma, K.R.; Pokharel, Y.R.; Kalauni, S.K. Characterization of Essential Oil, Estimation of Phenolic and Flavonod Content and Biological Activities of Ephedra pachyclada BOISS. JIST 2018, 27, 27–35. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Mohammed Ghilan, A.; Esmail, G.A.; Valan Arasu, M.; Duraipandiyan, V.; Ponmurugan, K. Bioactivity Assessment of The Saudi Arabian Marine Streptomyces sp. Al-Dhabi-90, Metabolic Profiling and It’s In Vitro Inhibitory Property Against Multidrug Resistant and Extended-spectrum Beta-lactamase Clinical Bacterial Pathogens. J. Infect. Public Health. 2019, 12, 549–556. [Google Scholar] [CrossRef]
- Yogeswari, S.; Ramalakshmi, S.; Neelavathy, R.; Muthumary, J. Identification and Comparative Studies of Different Volatile Fractions from Monochaetia kansensis by GCMS. Glob. J. Pharmacol. 2012, 6, 65–71. [Google Scholar]
- Ramos, A.N.; Sesto Cabral, M.E.; Arena, M.E.; Arrighi, C.F.; Arroyo Aguilar, A.A.; Valdéz, J.C. Compounds from Lactobacillus plantarum Culture Supernatants with Potential Pro-healing and Anti-pathogenic Psroperties in Skin Chronic Wounds. Pharm. Biol. 2015, 53, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Van, H.T.; Ngo, N.H.; Nguyen, N.T.; Nguyen, N.A.; Pham, T.V.; Nguyen, H.T.D.; Thieu, G.L.; Dang, T.H.T.; Nguyen, Q.H.; Le, T.T.; et al. Chemical composition, antibacterial and antioxidant activities of acetone extract from the branches and leaves of Jasminum annamense subsp. annamense (Oleaceae). J. Phytol. 2022, 14, 17–23. [Google Scholar] [CrossRef]
- Khan, F.; Magaji, M.G.; Aguye, I.A.; Hussaini, I.M.; Hamza, A.; Olorukooba, A.B.; Sani, M.A.; Maje, I.M. Phytochemical Profiling of The Bioactive Principles of Alyscarpus glumaceus (Vahl) DC. Aerial Parts. Istanbul J. Pharm. 2021, 51, 228–238. [Google Scholar] [CrossRef]
- Shareef, H.K.; Muhammed, H.J.; Hussein, H.M.; Hameed, I.H. Antibacterial Effect of Ginger (Zingiber officinale) Roscoe and Bioactive Chemical Analysis using Gas Chromatography Mass Spectrum. Orient J. Chem. 2016, 32, 817–837. [Google Scholar] [CrossRef] [Green Version]
- Samling, B.; Umaru1, I.J. Phytochemical Screening, Antioxidant, Antifungal Potentials of Acacia auriculiformis Floral Scent Composition. J. Anal Pharm. Res. 2018, 7, 646–650. [Google Scholar] [CrossRef]
- Manilal, A.; Sujith, S.; Sabarathnam, B.; Kiran, G.S.; Selvin, J.; Shakir, C.; Lipton, A.P. Biological Activity of The Red Alga Laurencia brandenii. Acta Bot. Croat. 2011, 70, 81–90. [Google Scholar] [CrossRef]
- Al-Bahadily, D.C.H.; Shari, F.H.; Najm, M.A.A.; Al-Salman, H.N.K. Antimicrobial Activity of the Compound 2-Piperidinone, N-[4-Bromo-n-butyl]- Extracted from Pomegranate Peels. Asian J. Pharm. 2019, 13, 46–53. [Google Scholar] [CrossRef]
- Sasikumar, R.; Das, D.; Saravanan, C.; Deka, S.C. GC-HRMS Screening of Bioactive Compounds Responsible for Antimicrobial and Antioxidant Activities of Blood Fruit (Haematocarpus validus Bakh. F. Ex Forman) of North-East India. Arch. Microbiol. 2020, 202, 2643–2654. [Google Scholar] [CrossRef] [PubMed]
- Jepkorir, A.K.; Irungu, C.M.; Kendagor, P.B. Chemical composition of Azadirachta indica A. Juss and Ricinus communis Linn. Seed Oils Growing in Marigat, Baringo County, Kenya. EAJSTI 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Aagboke, A.; Aftama, A.A. Bioactive Components and Antibacterial Activities of n-hexane Extract of Moringa oleifera Root Bark on Clinical Isolates of Methicilin Resistant Staphylococcus aureus. IJCRCPS 2016, 3, 1–9. [Google Scholar]
- Chowdhury, J.U.; Shaha, G.C.; Begum, F.; Bhuiyan, M.N.H.; Rahim, M. Essential Oil Composition from Fresh and Dried Leaves of C. tamala. Bangladesh J. Sci. Ind. Res. 2013, 48, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Casillo, A.; Papa, R.; Ricciardelli, A.; Sannino, F.; Ziaco, M.; Tilott, M.; Selan, L.; Marino, G.; Corsaro, M.M.; Tutino, M.L.; et al. Anti-biofilm Activity of a Long-chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm. Front. Cell. Infect. Microbiol. 2017, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, O.S. GC-MS Analysis of Root Acetone Extracts of Spatholobus purpureus—A High Ethno-veterinary Medicinal Value Plant. Int. J. Curr. Res. 2015, 7, 1013–1017. [Google Scholar]
- Mahmood, R.; Kayani, W.K.; Ahmed, T.; Malik, F.; Hussain, S.; Ashfaq, M.; Ali, H.; Rubnawaz, S.; Green, B.D.; Calderwood, D.; et al. Assessment of Antidiabetic Potential and Phytochemical Profiling of Rhazya stricta Root Extracts. BMC Complement. Med. Ther. 2020, 20, 293. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, M.; Senthilkumar, A.; Venkatesalu, V. Antibacterial and Antifungal Efficacy of Fatty Acid Methyl Esters from The Leaves of Sesuvium portulacastrum L. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 775–780. [Google Scholar]
- Gogoi, D.; Bora, G.; Borgohain, R.; Handique, J.G. Antioxidant Capacity and GC-MS Analysis of Hexane, Ethylacetate and Methanol Extracts of Ficus bhotanica—A Potential Folklore Medicinal Plant. Int.J. Pharmacog. Phytochem. Res. 2018, 10, 201–212. [Google Scholar]
- Nagaraj, S.R.; Osborne, J.W. Bioactive Compounds from Caulerpa racemosa as A Potent Larvicidal and Antibacterial Agent. Front. Biol. 2014, 9, 300–305. [Google Scholar] [CrossRef]
- Waheed, A.; Chohan, M.M.; Ahmed, D.; Ullah, N. The First Report on The In Vitro Antimicrobial Activities of Extracts of Leaves of Ehretia serrata. Saudi J. Biol. Sci. 2019, 26, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Ananthalakshmi, R.; Rajarathinam, S.R.X.; Sadiq, A.M.; Poongothai, A. Phytochemical Profiling of Luffa acutangula Peel Extract using GCMS Study. Res. J. Pharm. Tech. 2019, 12, 6071–6074. [Google Scholar] [CrossRef]
- Huang, C.C.; Yang, C.Y.; Su, C.C.; Fang, K.M.; Yen, C.C.; Lin, C.T.; Liu, J.M.; Lee, K.I.; Chen, Y.W.; Liu, S.H.; et al. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, A Major Active Metabolite of Bisphenol A, Triggers Pancreatic β-Cell Death via a JNK/AMPKα Activation-Regulated Endoplasmic Reticulum Stress-Mediated Apoptotic Pathway. Int. J. Mol. Sci. 2021, 22, 4379. [Google Scholar] [CrossRef]
- Ojinnaka, M.C.; Ubbor, S.C.; Okudo, H.O.; Uga, U. Volatile Compound Analysis of The Leaves and Seeds of Piper guineense Using Gas Chromatography-mass Spectrometry (GC-MS). Afr. J. Food Sci. 2016, 10, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Gehan, I.; Gheda, S.; Abo-Shady, A.; Omnia, A.K. In Vitro Potential Activity of Some Seaweeds as Antioxidants and Inhibitors of Diabetic Enzymes. Food Sci. Technol. 2019, 40, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Prakasia, P.P.; Ashalatha, S.N. Chemical Fingerprint of Essential Oil Components from Fresh Leaves of Glycosmis pentaphylla (Retz.) Correa. Pharma Innov. 2015, 3, 50–56. [Google Scholar]
- Godwin, A.; Akinpelu, B.A.; Makinde, A.M.; Aderogba, M.A.; Oyedapo, O.O. Identification of n-Hexane Fraction Constituents of Archidium ohioense (Schimp. ex Mull) Extract Using GC-MS Technique. J. Res. Int. 2015, 6, 366–375. [Google Scholar] [CrossRef]
- Chen, G.; Pan, F.; Gao, Y.; Li, H.; Qin, X.; Jiang, Y.; Qi, J.; Xie, J.; Jia, S. Analysis of Components and Properties of Extractives from Alnus cremastogyne Pods from Different Provenances. Molecules 2022, 27, 7802. [Google Scholar] [CrossRef]
- Manikandan, G.; Pandiselvi, P.; Sobana, N.; Murugan, M. GC-MS Analysis of Chemical Constituents in The Methanolic Tuber Extract of Momordica Cymbalaria Hook. F. Int. Res. J. Pharm. 2019, 10, 135–140. [Google Scholar] [CrossRef]
- Galati, G.; O’Brien, P.J. Potential Toxicity of Flavonoids and Other Dietary Phenolics: Significance for Their Chemopreventive and Anticancer Properties. Free Radic. Biol. Med. 2004, 37, 287–303. [Google Scholar] [CrossRef]
- Nishiwaki, K.; Ohigashi, K.; Deguchi, T.; Murata, K.; Nakamura, S.; Matsuda, H.; Nakanishi, I. Structure–Activity Relationships and Docking Studies of Hydroxychavicol and Its Analogs as Xanthine Oxidase Inhibitors. Chem. Pharm. Bull. 2018, 66, 741–747. [Google Scholar] [CrossRef] [Green Version]
- Bin Emran, T.; Rahman, A.; Uddin, M.M.N.; Dash, R.; Hossen, F.; Mohiuddin, M.; Alam, R. Molecular Docking and Inhibition Studies on The Interactions of Bacopa monnieri’s Potent Phytochemicals Against Pathogenic Staphylococcus aureus. DARU J. Pharm. Sci. 2015, 23, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nerdy, N. In Silico Study of Sesquiterpene Lactone Compounds from South Africa leaves (Vernonia amygdalina Del.) as Antimalarial and Anticancer. Int. J. PharmTech Res. 2015, 7, 47–53. [Google Scholar]
- Wiraswati, H.L.; Martoprawiro, M.A.; Akhmaloka.; Warganegara, F.M. Apoptosis Inducing Factor (AIF) Stabilizes Menadione- Conjugate Product in Programmed Cell Death. Int. J. PharmTech Res. 2017, 10, 237–245. [Google Scholar] [CrossRef]
- Wiraswati, H.L.; Hangen, E.; Sanz, A.B.; Lam, N.V.; Reinhardt, C.; Sauvat, A.; Mogha, A.; Ortiz, A.; Kroemer, G.; Modjtahedi, N. Apoptosis Inducing Factor (AIF) Mediates Lethal Redox Stress Induced by Menadione. Oncotarget 2016, 7, 76496–76507. [Google Scholar] [CrossRef]
- Bogari, H.A.; Rashied, R.M.H.; Abdelfattah, M.A.O.; Malatani, R.T.; Khinkar, R.M.; Hareeri, R.H.; Wink, M.; Sobeh, M. Euclea divinorum Hiern: Chemical Profiling of the Leaf Extract and Its Antioxidant Activity In Silico, In Vitro and in Caenorhabditis elegans Model. Metabolites 2022, 12, 1031. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, N.; Ghosal, S.K. Enhancement of Gastrointestinal Absorption of Poorly Water Soluble Drugs via Lipid based Systems. Indian J. Exp. Biol. 2004, 42, 1056–1065. [Google Scholar]
- Lowery, F.J.; Yu, D. Brain Metastasis: Unique Challenges and Open Opportunities. Biochim. Biophys. Acta Rev. Cancer 2017, 1867, 49–57. [Google Scholar] [CrossRef] [PubMed]
No | Compound Name | Retention Time (minute) | Molecular Formula | m/z |
---|---|---|---|---|
1 | Methane, dichloronitro- | 3322–3386 | CHCl2NO2 | 43, 54, 68, 82, 90, 134 |
2 | Ether, hexyl pentyl | 4135–4187 | C11H24O | 42, 84, 127 |
3 | 1,5-Heptadien-4-ol, 3,3,6-trimethyl- | 7410–7453 | C10H18O | 42, 56, 70, 82, 97 |
4 | Sulfurous acid, 2-ethylhexyl isohexyl ester | 7574–7612 | C14H30O3S | 42, 56, 82, 90, 112 |
5 | Sulfurous acid, hexyl nonyl ester | 8008–8046 | C15H32O3S | 42, 56, 76, 82, 94 |
6 | Decane, 2,4-dimethyl- | 8119–8156 | C12H26 | 43, 84, 112, 126 |
7 | Octane, 3,4,5,6-tetramethyl- | 8213–8269 | C12H26 | 42, 56, 70, 82, 90, 112, 126 |
8 | Oxalic acid, cyclohexyl nonyl ester | 8558–8593 | C17H30O4 | 42, 56, 68, 82, 94, 110 |
9 | Octane, 2,4,6-trimethyl- | 8857–8903 | C11H24 | 42, 56, 70, 84, 90, 112, 126 |
10 | N-[β-Hydroxy-β-[4-[1-adamantyl-6,8-dichloro]quinolyl]ethyl]piperidine | 9383–9.400 | C27H33Cl2NO | 43, 54, 69, 97, 118, 134, 149 |
11 | 1-Chloroundecane | 10,582–10,614 | C11H23Cl | 42, 56, 68, 84, 104, 118, 134, 149 |
12 | Dodecane, 1-chloro- | 10,628–10,660 | C12H25Cl | 42, 56, 70, 84, 104, 134 |
13 | Decane, 1-chloro- | 10,760–10,803 | C10H21Cl | 42, 56, 68, 84, 104, 134, 149 |
14 | Propanoic acid, 2,2-dimethyl-, 2-(1,1-dimethylethyl) phenyl ester | 10,897–10,948 | C15H22O2 | 43, 56, 78, 90, 106, 118, 134, 149 |
15 | Sulfurous acid, decyl hexyl ester | 11,347–11,377 | C16H34O3S | 42, 84, 98, 112, 134, 154 |
16 | Tetradecane, 1-chloro- | 11,436–11,479 | C14H29Cl | 42, 56, 70, 84, 104, 118, 134, 149 |
17 | Dodecane, 4,6-dimethyl- | 11,522–11,557 | C14H30 | 43, 71, 98, 126, 154 |
18 | Cyclohexene, 2-ethenyl-1,3,3-trimethyl- | 1894–11,975 | C14H30 | 42, 56, 70, 90, 104, 118, 134, 149 |
19 | Pentane, 2,3,3-trimethyl- | 12,112–12,134 | C8H18 | 42, 56, 70, 84, 104, 118, 134, 149, 168 |
20 | Hexadecane | 12,182–12,220 | C16H34 | 42, 56, 84, 98, 112, 126, 140, 154 |
21 | Benzenepropanoic acid, α-hydroxy-, methyl ester | 12,953–13,021 | C10H12O3 | 43, 64, 76, 90, 102, 120, 161 |
22 | 1,3-Phenylene, bis(3-phenylpropenoate) | 13,177–13,231 | C24H18O4 | 43, 56, 76, 90, 102, 130, 161 |
23 | 1,2:4,5:9,10-Triepoxydecane | 13,705–13,754 | C10H16O3 | 43, 56, 68, 80, 92, 118, 206 |
24 | 1,3-Cyclohexadiene, 5-(1,5-dimethyl-4-hexenyl)-2-methyl-, [S-(R*,S*)]- | 14,150–14,20 | C15H24 | 40, 56, 70, 84, 92, 104, 118, 131, 203 |
25 | 1-Octadecanesulphonyl chloride | 14,341–14,379 | C18H37ClO2S | 42, 70, 76, 92, 118, 140, 154, 201 |
26 | Oxalic acid, allyl pentadecyl ester | 15,079–15,125 | C20H36O4 | 42, 56, 70, 84, 110 |
27 | 2-Piperidinone, N-[4-bromo-n-butyl]- | 15,472–15,510 | C9H16BrNO | 43, 56, 70, 90, 104, 122, 206 |
28 | 2-Bromotetradecane | 16,892–16,959 | C14H29Br | 42, 71, 98, 126, 154, 206 |
29 | Oxalic acid, 6-ethyloct-3-yl heptyl ester | 17,021–17,059 | C19H36O4 | 42, 56, 84, 98, 110, 126, 206 |
30 | 2-Bromo dodecane | 17,409–17,504 | C12H25Br | 42, 56, 70, 76, 84, 98, 112, 141, 168, 206 |
31 | Ethylamine, 2-(adamantan-1-yl)-1-methyl- | 17,991–18,037 | C13H23N | 43, 54, 68, 82, 106, 134, 206 |
32 | Pentadecanal- | 18,452–18,511 | C15H30O | 43, 56, 68, 81, 108, 206 |
33 | Di-n-decylsulfone | 18,662–18,735 | C20H42O2S | 43, 56, 70, 84, 98, 206 |
34 | Dodecane, 1-iodo- | 19,675–19,756 | C12H25I | 42, 70, 98, 112, 126, 154, 183, 206 |
35 | Hexadecanoic acid, methyl ester | 20,033–20,093 | C17H34O2 | 42, 54, 73, 86, 96, 110,142, 170, 206, 227, 270 |
36 | Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, | 20,136–20,200 | C18H28O3 | 43, 56, 68, 90, 104, 116, 134, 146, 206 |
37 | Methyl 3-bromo-1-adamantaneacetate | 21,087–21,184 | C13H19BrO2 | 43, 54, 66, 78, 90, 104, 116, 132, 156, 190, 206, 256, 280 |
38 | 1-Cyclohexylnonene | 21,375–21,456 | C15H28 | 43, 56, 68, 81, 95, 109, 132, 190, 206, 280 |
39 | 4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 2 TMS derivative | 21,765–21,811 | C24H36O2Si2 | 43, 54, 81, 104, 132, 158, 206, 280 |
40 | Cyclohexene, 1-nonyl- | 21,930–21,978 | C15H28 | 40, 54, 66, 81, 95, 109, 123, 146, 190, 206, 280 |
41 | Cyclotrisiloxane, hexamethyl- | 22,121–22,194 | C6H18O3Si3 | 43, 70, 84, 95, 114, 132, 190, 280 |
42 | 1,4-Bis(trimethylsilyl)benzene | 22,245–22,309 | C12H22Si2 | 43, 68, 84, 95, 118, 132, 146, 190, 206, 280 |
43 | 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- | 22,323–22,366 | C19H32O2 | 43, 54, 66, 78, 94, 107, 120, 134, 148, 190, 280 |
44 | Eicosane, 1-iodo- | 22,501–22,608 | C20H41I | 42, 70, 85, 112, 126, 155, 190, 206, 238, 280 |
45 | Arsenous acid, tris(trimethylsilyl) ester | 24,536–24,585 | C9H27AsO3Si3 | 43, 54, 74, 104, 132, 162, 190, 206, 236, 280, 314 |
No | Name of Compounds | Binding Affinity between Ligands and Target Proteins (kcal/mol) | |||
---|---|---|---|---|---|
Antibacterial (3VSL) | Antioxidant (3EUB) | Antiplasmodial (3QS1) | Anticancer (3GD4) | ||
1 | Methane, dichloronitro- | −3.9 | −4.4 | −3.7 | −4.2 |
2 | Ether, hexyl pentyl: | −4.2 | −4.8 | −4.5 | −4.9 |
3 | 1,5-Heptadien-4-ol, 3,3,6-trimethyl- | −5.4 | −5.3 | −5.0 | −5.0 |
4 | Sulfurous acid, 2-ethylhexyl isohexyl ester | −4.3 | −4.9 | −4.7 | −4.5 |
5 | Sulfurous acid, hexyl nonyl ester | −4.6 | −5.3 | −4.4 | −4.7 |
6 | Decane, 2,4-dimethyl- | −4.5 | −4.4 | −4.6 | −4.7 |
7 | Octane, 3,4,5,6-tetramethyl- | −5.2 | −5.3 | −4.7 | −4.7 |
8 | Oxalic acid, cyclohexyl nonyl ester | −5.4 | −5.1 | −4.0 | −52 |
9 | Octane, 2,4,6-trimethyl- | −5.3 | −5.1 | −4.7 | −5.3 |
10 | N-[β-Hydroxy-β-[4-[1-adamantyl-6,8-dichloro]quinolyl]ethyl]piperidine | −9.2 | −10.8 | −9.0 | −9.3 |
11 | 1-Chloroundecane | −4.9 | −5.2 | −4.7 | −5.1 |
12 | Dodecane, 1-chloro- | −3.8 | −5.0 | −4.7 | −5.4 |
13 | Decane, 1-chloro- | −4.3 | −4.8 | −3.1 | −4.4 |
14 | Propanoic acid, 2,2-dimethyl-, 2-(1,1-dimethylethyl)phenyl ester | −6.3 | −6.6 | −6.0 | −7.9 |
15 | Sulfurous acid, decyl hexyl ester | −4.9 | −4.7 | −3.9 | −4.6 |
16 | Tetradecane, 1-chloro- | −4.2 | −4.8 | −3.7 | −4.1 |
17 | Dodecane, 4,6-dimethyl- | −4.3 | −5.7 | −4.6 | −5.6 |
18 | Cyclohexene, 2-ethenyl-1,3,3-trimethyl- | −5.3 | −5.7 | −5.2 | −5.5 |
19 | Pentane, 2,3,3-trimethyl- | −4.9 | −4.7 | −4.3 | −4.8 |
20 | Hexadecane | −4.0 | −5.3 | −3.8 | −4.5 |
21 | Benzenepropanoic acid,α-hydroxy-, methyl ester | −6.2 | −6.6 | −5.6 | −5.9 |
22 | 1,3-Phenylene, bis(3-phenylpropenoate) | −9.4 | −8.4 | −8.7 | −8.3 |
23 | 1,2:4,5:9,10-Triepoxydecane | −4.5 | −5.7 | −4.3 | −5.5 |
24 | 1,3-Cyclohexadiene, 5-(1,5-dimethyl-4-hexenyl)-2-methyl-, [S-(R*,S*)]- | −5.7 | −6.4 | −7.4 | −5.0 |
25 | 1-Octadecanesulphonyl chloride | −5.4 | −4.5 | −4.3 | −6.6 |
26 | Oxalic acid, allyl pentadecyl ester | −5.4 | −4.8 | −4.2 | −5.2 |
27 | 2-Piperidinone, N-[4-bromo-n-butyl]- | −4.8 | −4.9 | −3.7 | −5.7 |
28 | 2-Bromotetradecane | −4.0 | −5.2 | −4.2 | −4.2 |
29 | Oxalic acid, 6-ethyloct-3-yl heptyl ester | −5.3 | −5.9 | −5.4 | −7.0 |
30 | 2-Bromo dodecane | −3.8 | −5.3 | −3.8 | −4.4 |
31 | Ethylamine, 2-(adamantan-1-yl)-1-methyl- | −6.0 | −7.0 | −6.6 | −7.3 |
32 | Pentadecanal- | −3.8 | −5.3 | −4.5 | −5.0 |
33 | Di-n-decylsulfone | −4.6 | −4.6 | −4.5 | −5.0 |
34 | Dodecane, 1-iodo- | −3.9 | −4.8 | −3.2 | −5.0 |
35 | Hexadecanoic acid, methyl ester | −5.0 | −5.4 | −3.7 | −6.2 |
36 | Benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester | −6.6 | −6.5 | −7.0 | −6.6 |
37 | Methyl 3-bromo-1-adamantaneacetate | −6.3 | −6.1 | −6.8 | −7.4 |
38 | 1-Cyclohexylnonene | −5.5 | −6.2 | −3.8 | −6.6 |
39 | 4-Methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene, 2TMS derivative | −6.9 | −6.5 | −7.1 | −6.7 |
40 | Cyclohexene, 1-nonyl- | −5.0 | −5.1 | −4.7 | −5.4 |
41 | Cyclotrisiloxane, hexamethyl- | −4.8 | −4.9 | −4.4 | −5.6 |
42 | 1,4-Bis(trimethylsilyl)benzene | −5.1 | −5.7 | −4.8 | −4.9 |
43 | 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)- | −5.3 | −6.7 | −4.7 | −7.6 |
44 | Eicosane, 1-iodo- | −4.8 | −5.0 | −2.9 | −4.4 |
45 | Arsenous acid, tris(trimethylsilyl) ester | ND | ND | ND | ND |
No | Native Ligand | Binding Energy with Native Ligand (kcal/mol) | Binding Energy with N-[β-Hydroxy-β-[4-[1-adamantyl-6,8-dichloro]quinolyl]ethyl]piperidine (kcal/mol) | Binding Energy with 1,3-Phenylene, bis(3-phenylpropenoate) (kcal/mol) | |
---|---|---|---|---|---|
1 | Antibacterial protein target: 3VSL | Cefotaxime | −7.6 | −7.8 | −8.3 |
2 | Antioxidant protein target: 3EUB | Flavin adenine dinucleotide (FAD) | −13.0 | −10.1 | −10.6 |
Phosphonic acidmono-(2-amino-5,6-dimercapto-4-oxo-3,7,8A,9,10,10A-hexahydro-4H-8-oxa-1,3,9,10-tetraaza-anthracen-7-ylmethyl)ester (MTE) | −9.9 | −3.6 | −7.8 | ||
3 | Antiplasmodial protein target: 3QS1 | (4R)-3-[(2S,3S)-3-{[(2,6-Dimethylphenoxy)acetyl]amino}-2-hydroxy-4-phenylbutanoyl]-N-[(1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl]-5,5-dimethyl-1,3-thiazolidine-4-carboxamide (KNI-10006) | −10.5 | −10.6 | −9.2 |
4 | Anticancer protein target: 3GD4 | Flavin adenine dinucleotide (FAD) | −14.6 | −9.1 | −10.1 |
Nicotinamide adenine dinucleotide (NAD) | −10.5 | −11.1 | −10.5 |
Molecule | MW | H-Bond | Fraction Csp3 | Rotatable Bonds | MR | TPSA | Consensus Log P | ESOL Log S | ESOL Class | Violation | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acceptors | Donors | Lipinski | Ghose | Veber | Egan | Muegge | |||||||||
1 | 129.93 | 2 | 0 | 1.00 | 1 | 24.62 | 45.82 | 0.84 | −1.49 | Very soluble | 0 | 3 | 0 | 0 | 2 |
2 | 172.31 | 1 | 0 | 1.00 | 9 | 56.08 | 9.23 | 3.66 | −2.97 | Soluble | 0 | 0 | 0 | 0 | 2 |
3 | 154.25 | 1 | 1 | 0.60 | 3 | 50.14 | 20.23 | 2.59 | −2.53 | Soluble | 0 | 1 | 0 | 0 | 2 |
4 | 294.49 | 3 | 0 | 1.00 | 12 | 86.78 | 54.74 | 3.66 | −4.67 | Moderately soluble | 0 | 1 | 1 | 0 | 1 |
5 | 292.48 | 3 | 0 | 1.00 | 15 | 84.67 | 54.74 | 4.71 | −4.75 | Moderately soluble | 0 | 1 | 1 | 0 | 1 |
6 | 170.33 | 0 | 0 | 1.00 | 7 | 59.80 | 0 | 4.78 | −4.30 | Moderately soluble | 1 | 0 | 0 | 0 | 3 |
7 | 170.33 | 0 | 0 | 1.00 | 5 | 59.80 | 0 | 4.48 | −4.07 | Moderately soluble | 1 | 0 | 0 | 0 | 3 |
8 | 298.42 | 4 | 0 | 0.88 | 12 | 84.29 | 52.60 | 4.31 | −4.79 | Moderately soluble | 0 | 0 | 1 | 0 | 1 |
9 | 156.31 | 0 | 0 | 1.00 | 5 | 54.99 | 0 | 4.26 | −3.82 | Soluble | 1 | 1 | 0 | 0 | 3 |
10 | 457.46 | 2 | 1 | 0.67 | 4 | 130.69 | 33.12 | 5.98 | −8.06 | Poorly soluble | 1 | 2 | 0 | 1 | 1 |
11 | 190.75 | 0 | 0 | 1.00 | 9 | 59.79 | 0 | 4.75 | −4.41 | Moderately soluble | 1 | 0 | 0 | 0 | 3 |
12 | 204.78 | 0 | 0 | 1.00 | 10 | 64.59 | 0 | 5.12 | −4.77 | Moderately soluble | 1 | 0 | 0 | 0 | 2 |
13 | 176.73 | 0 | 0 | 1.00 | 8 | 54.98 | 0 | 4.37 | −4.04 | Moderately soluble | 1 | 0 | 0 | 0 | 3 |
14 | 232.36 | 1 | 0 | 0.56 | 4 | 74.65 | 17.07 | 4.07 | −4.19 | Moderately soluble | 0 | 0 | 0 | 0 | 1 |
15 | 306.50 | 3 | 0 | 1.00 | 16 | 89.47 | 54.74 | 5.18 | −5.11 | Moderately soluble | 0 | 1 | 1 | 1 | 2 |
16 | 232.83 | 0 | 0 | 1.00 | 12 | 74.21 | 0 | 5.86 | −5.49 | Moderately soluble | 1 | 1 | 1 | 1 | 2 |
17 | 198.39 | 0 | 0 | 1.00 | 9 | 69.41 | 0 | 5.50 | −5.02 | Moderately soluble | 1 | 0 | 0 | 0 | 3 |
18 | 150.26 | 0 | 0 | 0.64 | 1 | 51.61 | 0 | 3.44 | −2.9 | Soluble | 0 | 1 | 0 | 0 | 2 |
19 | 114.23 | 0 | 0 | 1.00 | 2 | 40.31 | 0 | 3.17 | −2.82 | Soluble | 1 | 1 | 0 | 0 | 2 |
20 | 226.44 | 0 | 0 | 1.00 | 13 | 79.03 | 0 | 6.42 | −5.60 | Moderately soluble | 1 | 1 | 1 | 1 | 2 |
21 | 180.2 | 3 | 1 | 0.30 | 4 | 48.28 | 46.53 | 1.43 | −1.95 | Very soluble | 0 | 0 | 0 | 0 | 1 |
22 | 374.43 | 4 | 0 | 0.17 | 8 | 109.67 | 52.6 | 4.68 | −5.06 | Moderately soluble | 1 | 0 | 0 | 0 | 1 |
23 | 184.23 | 3 | 0 | 1.00 | 6 | 47.10 | 37.59 | 1.68 | −1.09 | Very soluble | 0 | 0 | 0 | 0 | 1 |
24 | 204.35 | 0 | 0 | 0.60 | 4 | 70.68 | 0 | 4.47 | −4.10 | Moderately soluble | 1 | 0 | 0 | 0 | 2 |
25 | 353.00 | 2 | 0 | 1.00 | 17 | 102.40 | 42.52 | 6.68 | −6.72 | Poorly soluble | 1 | 1 | 1 | 1 | 2 |
26 | 340.50 | 4 | 0 | 0.80 | 19 | 100.35 | 52.60 | 5.78 | −5.89 | Moderately soluble | 0 | 0 | 1 | 0 | 2 |
27 | 234.13 | 1 | 0 | 0.89 | 4 | 58.14 | 20.31 | 2.17 | −2.35 | Soluble | 0 | 0 | 0 | 0 | 0 |
28 | 277.28 | 0 | 0 | 1.00 | 11 | 77.28 | 0 | 5.83 | −5.61 | Moderately soluble | 1 | 1 | 1 | 1 | 2 |
29 | 328.49 | 4 | 0 | 0.89 | 16 | 96.02 | 52.60 | 5.33 | −5.46 | Moderately soluble | 0 | 0 | 1 | 0 | 2 |
30 | 249.23 | 0 | 0 | 1.00 | 9 | 67.67 | 0 | 5.10 | −4.89 | Moderately soluble | 1 | 0 | 0 | 0 | 2 |
31 | 193.33 | 1 | 1 | 1.00 | 1 | 60.71 | 26.02 | 3.05 | −3.13 | Soluble | 0 | 0 | 0 | 0 | 2 |
32 | 226.40 | 1 | 0 | 0.93 | 13 | 74.42 | 17.07 | 5.04 | −4.49 | Moderately soluble | 0 | 0 | 1 | 0 | 2 |
33 | 346.61 | 2 | 0 | 1.00 | 18 | 107.22 | 42.52 | 6.68 | −6.22 | Poorly soluble | 1 | 1 | 1 | 1 | 2 |
34 | 296.23 | 0 | 0 | 1.00 | 10 | 72.76 | 0 | 5.41 | −5.68 | Moderately soluble | 1 | 0 | 0 | 0 | 2 |
35 | 270.45 | 2 | 0 | 0.94 | 15 | 85.12 | 26.30 | 5.54 | −5.18 | Moderately soluble | 1 | 1 | 1 | 0 | 1 |
36 | 292.41 | 3 | 1 | 0.61 | 6 | 87.68 | 46.53 | 4.22 | −4.5 | Moderately soluble | 0 | 0 | 0 | 0 | 0 |
37 | 287.19 | 2 | 0 | 0.92 | 3 | 67.20 | 26.30 | 3.28 | −3.53 | Soluble | 0 | 0 | 0 | 0 | 0 |
38 | 208.38 | 0 | 0 | 0.87 | 7 | 71.63 | 0 | 5.43 | −5.07 | Moderately soluble | 1 | 0 | 0 | 0 | 2 |
39 | 412.71 | 2 | 0 | 0.42 | 8 | 128.08 | 18.46 | 6.22 | −7.76 | Poorly soluble | 1 | 1 | 0 | 1 | 1 |
40 | 208.38 | 0 | 0 | 0.87 | 8 | 71.63 | 0 | 5.43 | −4.76 | Moderately soluble | 1 | 1 | 0 | 0 | 2 |
41 | 222.46 | 3 | 0 | 1.00 | 0 | 55.70 | 27.69 | 1.16 | −3.12 | Soluble | 0 | 0 | 0 | 0 | 0 |
42 | 222.47 | 0 | 0 | 0.50 | 2 | 72.40 | 0 | 3.44 | −4.89 | Moderately soluble | 0 | 0 | 0 | 0 | 2 |
43 | 292.42 | 2 | 0 | 0.63 | 14 | 93.31 | 26.30 | nd | nd | nd | nd | nd | nd | nd | nd |
44 | 408.44 | 0 | 0 | 1.00 | 18 | 111.22 | 0 | 8.36 | −8.58 | Poorly soluble | 1 | 1 | 1 | 1 | 3 |
45 | 326.49 | 2 | 0 | 1.00 | 4 | 77.56 | 26.30 | 1.43 | −4.64 | Moderately soluble | 0 | 0 | 0 | 0 | 0 |
Molecule | Bioavailability Score | GI Absorption | BBB Permeant | P-gp Substrate | Cyp Inhibitor | Log Kp (cm/s) | Alerts | Likeness Violation | Synthetic Accessibility | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1A2 | 2C19 | 2C9 | 2D6 | 3A4 | PAINS | BRENK | ||||||||
1 | 0.55 | High | Yes | No | No | No | No | No | No | −6.07 | 0 | 3 | 1 | 2.46 |
2 | 0.55 | High | Yes | No | Yes | No | No | No | No | −4.36 | 0 | 0 | 3 | 2.22 |
3 | 0.55 | High | Yes | No | No | No | No | No | No | −5.07 | 0 | 1 | 1 | 3.08 |
4 | 0.55 | High | No | Yes | No | No | No | No | Yes | −3.82 | 0 | 0 | 2 | 4.31 |
5 | 0.55 | High | No | No | No | No | Yes | No | Yes | −3.48 | 0 | 0 | 2 | 3.97 |
6 | 0.55 | Low | No | No | No | No | Yes | No | No | −2.98 | 0 | 0 | 2 | 2.28 |
7 | 0.55 | Low | No | Yes | No | No | No | No | No | −3.39 | 0 | 0 | 2 | 2.88 |
8 | 0.55 | High | Yes | No | Yes | No | No | No | No | −3.74 | 0 | 2 | 2 | 3.00 |
9 | 0.55 | Low | Yes | No | No | No | No | No | No | −3.48 | 0 | 0 | 2 | 2.44 |
10 | 0.55 | Low | No | Yes | No | No | Yes | No | No | −3 | 0 | 0 | 2 | 5.58 |
11 | 0.55 | Low | No | No | Yes | No | No | No | No | −2.98 | 0 | 1 | 3 | 2.58 |
12 | 0.55 | Low | No | No | Yes | No | No | No | No | −2.68 | 0 | 1 | 3 | 2.69 |
13 | 0.55 | Low | No | No | Yes | No | No | No | No | −3.28 | 0 | 1 | 3 | 2.48 |
14 | 0.55 | High | Yes | No | No | No | No | Yes | No | −4.44 | 0 | 0 | 2 | 2.12 |
15 | 0.55 | High | No | Yes | No | No | Yes | No | Yes | −3.18 | 0 | 0 | 2 | 4.08 |
16 | 0.55 | Low | No | No | Yes | No | No | No | No | −2.08 | 0 | 1 | 3 | 2.90 |
17 | 0.55 | Low | No | No | No | No | Yes | No | No | −2.38 | 0 | 0 | 3 | 2.76 |
18 | 0.55 | Low | Yes | No | No | No | No | No | No | −4.72 | 0 | 0 | 2 | 3.35 |
19 | 0.55 | Low | Yes | No | No | No | No | No | No | −4.28 | 0 | 0 | 2 | 1 |
20 | 0.55 | Low | No | No | Yes | No | No | No | No | −1.80 | 0 | 0 | 3 | 2.26 |
21 | 0.55 | High | Yes | No | No | No | No | No | No | −6.37 | 0 | 0 | 1 | 1.81 |
22 | 0.55 | High | Yes | No | No | Yes | Yes | No | Yes | −4.9 | 0 | 3 | 3 | 3.77 |
23 | 0.55 | High | Yes | No | No | No | No | No | No | −6.86 | 0 | 1 | 1 | 3.64 |
24 | 0.55 | Low | No | No | No | Yes | Yes | No | No | −3.88 | 0 | 1 | 2 | 4.81 |
25 | 0.55 | Low | No | No | Yes | No | Yes | No | No | −1.91 | 0 | 0 | 3 | 4.36 |
26 | 0.55 | High | Yes | No | No | No | Yes | No | No | −2.52 | 0 | 3 | 2 | 3.43 |
27 | 0.55 | High | Yes | No | No | No | No | No | No | −6.24 | 0 | 1 | 1 | 1.81 |
28 | 0.55 | Low | No | No | No | No | Yes | No | No | −2.60 | 0 | 1 | 2 | 4.43 |
29 | 0.55 | High | Yes | Yes | Yes | Yes | Yes | No | No | −3.07 | 0 | 2 | 2 | 3.73 |
30 | 0.55 | Low | No | No | No | No | Yes | No | No | −3.20 | 0 | 1 | 3 | 4.22 |
31 | 0.55 | High | Yes | No | No | No | No | No | No | −4.97 | 0 | 0 | 2 | 3.92 |
32 | 0.55 | High | Yes | No | Yes | No | No | No | No | −3.06 | 0 | 1 | 3 | 2.15 |
33 | 0.55 | Low | No | No | Yes | No | Yes | No | No | −2.31 | 0 | 0 | 2 | 4.16 |
34 | 0.55 | Low | No | No | Yes | No | Yes | No | No | −2.85 | 0 | 2 | 2 | 3.39 |
35 | 0.55 | High | Yes | No | Yes | No | No | No | No | −2.71 | 0 | 0 | 2 | 2.53 |
36 | 0.55 | High | Yes | No | No | No | No | Yes | No | −4.66 | 0 | 0 | 1 | 2.13 |
37 | 0.55 | High | Yes | No | No | No | Yes | No | No | −5.68 | 0 | 1 | 0 | 4.94 |
38 | 0.55 | Low | No | No | Yes | No | No | No | No | −2.62 | 0 | 1 | 2 | 3.13 |
39 | 0.55 | Low | No | Yes | No | No | No | Yes | No | −2.54 | 0 | 1 | 3 | 3.75 |
40 | 0.55 | Low | No | No | Yes | No | No | No | No | −2.89 | 0 | 1 | 3 | 3.43 |
41 | 0.55 | High | Yes | No | No | No | No | No | No | −5.52 | 0 | 1 | 1 | 4.34 |
42 | 0.55 | Low | Yes | No | No | No | No | Yes | No | −3.73 | 0 | 1 | 2 | 3.66 |
43 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
44 | 0.55 | Low | No | Yes | Yes | No | No | No | No | −0.46 | 0 | 2 | 3 | 4.28 |
45 | 0.55 | High | Yes | Yes | No | No | No | No | No | −4.86 | 0 | 1 | 1 | 5.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiraswati, H.L.; Fauziah, N.; Pradini, G.W.; Kurnia, D.; Kodir, R.A.; Berbudi, A.; Arimdayu, A.R.; Laelalugina, A.; Supandi; Ma'ruf, I.F. Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico. Metabolites 2023, 13, 281. https://doi.org/10.3390/metabo13020281
Wiraswati HL, Fauziah N, Pradini GW, Kurnia D, Kodir RA, Berbudi A, Arimdayu AR, Laelalugina A, Supandi, Ma'ruf IF. Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico. Metabolites. 2023; 13(2):281. https://doi.org/10.3390/metabo13020281
Chicago/Turabian StyleWiraswati, Hesti Lina, Nisa Fauziah, Gita Widya Pradini, Dikdik Kurnia, Reza Abdul Kodir, Afiat Berbudi, Annisa Retno Arimdayu, Amila Laelalugina, Supandi, and Ilma Fauziah Ma'ruf. 2023. "Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico" Metabolites 13, no. 2: 281. https://doi.org/10.3390/metabo13020281
APA StyleWiraswati, H. L., Fauziah, N., Pradini, G. W., Kurnia, D., Kodir, R. A., Berbudi, A., Arimdayu, A. R., Laelalugina, A., Supandi, & Ma'ruf, I. F. (2023). Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico. Metabolites, 13(2), 281. https://doi.org/10.3390/metabo13020281