Evaluating the Relationship between Circadian Rhythms and Sleep, Metabolic and Cardiovascular Disorders: Current Clinical Evidence in Human Studies
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Circadian Rhythms and Metabolic Diseases
3.2. Interrelationships between Circadian Rhythms, Sleep Disorder, and Metabolic Diseases
Study Type | Study Population | Basic Results | References |
---|---|---|---|
Clinical Trial | N = 447 adults | Social jet lag is related to a lower HDL-cholesterol level, higher triglycerides, higher fasting plasma insulin, insulin resistance, and adiposity. | Wong et al. [41] |
Clinical Trial | N = 325 female adults | Night work, cumulative night work, and night work intensity are associated with a number of cardiometabolic indices, including higher waist circumference, body mass index (BMI), fasting glucose, blood pressure, and cardiometabolic risk score. | Ritonja et al. [42] |
Cross-sectional Study | Ν = 1334 adults | Shift work was not significantly related with cardiometabolic risk factors, except for overweight/body mass index | Hulsegge et al. [43] |
Cross-sectional Study | N = 1620 adults | Evening chronotype was independently associated with diabetes, metabolic syndrome, and sarcopenia. | Ji Hee Yu et al. [44] |
Cross-sectional Study | N = 101 male adults | ‘Eveningness’ type male Japanese workers with T2 DM suffer inadequate glycemic control. | Iwasaki et al. [46] |
Cross-sectional Study | N = 1585 adults | Social jetlag of ≥2 h was associated with increased risk of MetS and diabetes/prediabetes after adjustment for sex, employment status, and education level | Koopman et al. [47] |
Meta-analysis | N = 27 studies | Evening chronotype and social jetlag were associated with obesity and unfavorable metabolic parameters of glucose and lipid metabolism | Rui Zhang et al. [45] |
3.3. Circadian Rhythms and Cardiovascular Diseases
Study Type | Study Population | Basic Results | References |
---|---|---|---|
Clinical Trial | N = 14 adults | Glucose tolerance was 17% lower in the biological evening than in the biological morning on test day 1. Circadian misalignment itself increased postprandial glucose by 6%. | Morris et al. [31] |
Clinical Trial | N = 9 adults | Circadian misalignment increased 24-h SBP and DBP by 3.0 mmHg and 1.5 mmHg, respectively. Circadian misalignment decreased wake cardiac vagal modulation by 8–15%, as determined by heart rate variability analysis, and decreased 24-h urinary epinephrine excretion rate by 7%, without a significant effect on 24-h urinary norepinephrine excretion rate. Circadian misalignment increased 24-h serum IL-6, CRP, resistin, and TNF-α levels by 3–29%. | Morris et al. [32] |
Clinical Trial | N = 447 adults | Social jet lag was related to a lower HDL-cholesterol level, higher triglycerides, higher fasting plasma insulin, insulin resistance, and adiposity. | Wong et al. [41] |
Clinical Trial | N = 26 adults | Sleep restriction and circadian misalignment both enhanced cardiovascular risk. | Grimaldi et al. [49] |
Retrospective cross-sectional Study | N = 244 adults | It was a circadian pattern of acute myocardial infraction. | Estarlich et al. [48] |
Prospective Study | N = 58,692 adults | Outdoor light at night was associated with a higher risk of CHD hospitalizations and deaths. | Sun et al. [13] |
Prospective study | N = 189,158 women | The association between duration of shift work and CHD was stronger in the first half of follow-up than in the second half. | Vetter et al. [50] |
Prospective study | N = 1992 adults | Individuals with the most irregular sleep duration or timing had >2-fold risk of developing CVD over a median follow-up of 4.9 years. | Huang et al. [51] |
Randomized Controlled Trial | N = 9 adults | Circadian misalignment per se increases hs-CRP and blood pressure in shift workers. | Morris et al. [33] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Man, A.; Xia, N.; Li, H. Circadian Rhythm in Adipose Tissue: Novel Antioxidant Target for Metabolic and Cardiovascular Diseases. Antioxidants 2020, 9, 968. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, A.B.; Knutson, K.L.; Zee, P.C. Circadian disruption and human health. J. Clin. Investig. 2021, 131, e148286. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, A.; Taylor, L.; Wakaf, Z.; Vasudevan, S.R.; Foster, R.G. The genetics of circadian rhythms, sleep and health. Hum. Mol. Genet. 2017, 26, R128–R138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Malik, B.H.; Gupta, D.; Rutkofsky, I. The Role of Circadian Misalignment due to Insomnia, Lack of Sleep, and Shift Work in Increasing the Risk of Cardiac Diseases: A Systematic Review. Cureus 2020, 12, e6616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, K.J. Assessment of Circadian Rhythms. Neurol. Clin. 2019, 37, 505–526. [Google Scholar] [CrossRef] [PubMed]
- Dierickx, P.; Van Laake, L.W.; Geijsen, N. Circadian clocks: From stem cells to tissue homeostasis and regeneration. EMBO Rep. 2018, 19, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi-Minami, T.; Kishida, K.; Funahashi, T.; Shimomura, I. Sleep-wake cycle irregularities in type 2 diabetics. Diabetol. Metab. Syndr. 2012, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Depner, C.M.; Stothard, E.R.; Wright, K.P., Jr. Metabolic consequences of sleep and circadian disorders. Curr. Diabetes Rep. 2014, 14, 507. [Google Scholar] [CrossRef]
- Woller, A.; Gonze, D. Circadian Misalignment and Metabolic Disorders: A Story of Twisted Clocks. Biology 2021, 10, 207. [Google Scholar] [CrossRef]
- Khosravipour, M.; Khanlari, P.; Khazaie, S.; Khosravipour, H.; Khazaie, H. A systematic review and meta-analysis of the association between shift work and metabolic syndrome: The roles of sleep, gender, and type of shift work. Sleep Med. Rev. 2021, 57, 101427. [Google Scholar] [CrossRef]
- Crnko, S.; Du Pré, B.C.; Sluijter, J.P.G.; Van Laake, L.W. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat. Rev. Cardiol. 2019, 16, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Thosar, S.S.; Butler, M.P.; Shea, S.A. Role of the circadian system in cardiovascular disease. J. Clin. Investig. 2018, 128, 2157–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Cao, W.; Ge, Y.; Ran, J.; Sun, F.; Zeng, Q.; Guo, M.; Huang, J.; Lee, R.S.; Tian, L.; et al. Outdoor light at night and risk of coronary heart disease among older adults: A prospective cohort study. Eur. Heart J. 2021, 42, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Klerman, E.B.; Brager, A.; Carskadon, M.A.; Depner, C.M.; Foster, R.; Goel, N.; Harrington, M.; Holloway, P.M.; Knauert, M.P.; LeBourgeois, M.K.; et al. Keeping an eye on circadian time in clinical research and medicine. Clin. Transl. Med. 2022, 12, e1131. [Google Scholar] [CrossRef]
- McHill, A.W.; Wright, K.P., Jr. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2017, 18 (Suppl. 1), 15–24. [Google Scholar] [CrossRef]
- Chellappa, S.L.; Vujovic, N.; Williams, J.S.; Scheer, F. Impact of Circadian Disruption on Cardiovascular Function and Disease. Trends Endocrinol. Metab. TEM 2019, 30, 767–779. [Google Scholar] [CrossRef]
- Huang, W.; Ramsey, K.M.; Marcheva, B.; Bass, J. Circadian rhythms, sleep, and metabolism. J. Clin. Investig. 2011, 121, 2133–2141. [Google Scholar] [CrossRef]
- Dutheil, F.; Baker, J.S.; Mermillod, M.; De Cesare, M.; Vidal, A.; Moustafa, F.; Pereira, B.; Navel, V. Shift work, and particularly permanent night shifts, promote dyslipidaemia: A systematic review and meta-analysis. Atherosclerosis 2020, 313, 156–169. [Google Scholar] [CrossRef]
- Kervezee, L.; Kosmadopoulos, A.; Boivin, D.B. Metabolic and cardiovascular consequences of shift work: The role of circadian disruption and sleep disturbances. Eur. J. Neurosci. 2020, 51, 396–412. [Google Scholar] [CrossRef] [Green Version]
- Vasey, C.; McBride, J.; Penta, K. Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients 2021, 13, 3480. [Google Scholar] [CrossRef]
- Pavlova, M. Circadian Rhythm Sleep-Wake Disorders. Contin. Lifelong Learn. Neurol. 2017, 23, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Zisapel, N. Circadian rhythm sleep disorders: Pathophysiology and potential approaches to management. CNS Drugs 2001, 15, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Gentry, N.W.; Ashbrook, L.H.; Fu, Y.H.; Ptáček, L.J. Human circadian variations. J. Clin. Investig. 2021, 131, e148282. [Google Scholar] [CrossRef] [PubMed]
- Zee, P.C.; Abbott, S.M. Circadian Rhythm Sleep-Wake Disorders. Continuum 2020, 26, 988–1002. [Google Scholar] [CrossRef]
- Roenneberg, T.; Foster, R.G.; Klerman, E.B. The circadian system, sleep, and the health/disease balance: A conceptual review. J. Sleep Res. 2022, 31, e13621. [Google Scholar] [CrossRef]
- Hittle, B.M.; Gillespie, G.L. Identifying shift worker chronotype: Implications for health. Ind. Health 2018, 56, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M.E. Adverse health effects of nighttime lighting: Comments on American Medical Association policy statement. Am. J. Prev. Med. 2013, 45, 343–346. [Google Scholar] [CrossRef]
- Fatima, N.; Rana, S. Metabolic implications of circadian disruption. Pflug. Arch. Eur. J. Physiol. 2020, 472, 513–526. [Google Scholar] [CrossRef]
- Poggiogalle, E.; Jamshed, H.; Peterson, C.M. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metab. Clin. Exp. 2018, 84, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Leproult, R.; Holmbäck, U.; Van Cauter, E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 2014, 63, 1860–1869. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.J.; Yang, J.N.; Garcia, J.I.; Myers, S.; Bozzi, I.; Wang, W.; Buxton, O.M.; Shea, S.A.; Scheer, F.A. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc. Natl. Acad. Sci. USA 2015, 112, E2225–E2234. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.J.; Purvis, T.E.; Mistretta, J.; Scheer, F.A. Effects of the Internal Circadian System and Circadian Misalignment on Glucose Tolerance in Chronic Shift Workers. J. Clin. Endocrinol. Metab. 2016, 101, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.J.; Purvis, T.E.; Mistretta, J.; Hu, K.; Scheer, F. Circadian Misalignment Increases C-Reactive Protein and Blood Pressure in Chronic Shift Workers. J. Biol. Rhythm. 2017, 32, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, J.; Dalla Man, C.; Morris, C.J.; Cobelli, C.; Scheer, F. Differential effects of the circadian system and circadian misalignment on insulin sensitivity and insulin secretion in humans. Diabetes Obes. Metab. 2018, 20, 2481–2485. [Google Scholar] [CrossRef] [PubMed]
- Wefers, J.; van Moorsel, D.; Hansen, J.; Connell, N.J.; Havekes, B.; Hoeks, J.; van Marken Lichtenbelt, W.D.; Duez, H.; Phielix, E.; Kalsbeek, A.; et al. Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc. Natl. Acad. Sci. USA 2018, 115, 7789–7794. [Google Scholar] [CrossRef] [Green Version]
- Madjd, A.; Taylor, M.A.; Delavari, A.; Malekzadeh, R.; Macdonald, I.A.; Farshchi, H.R. Beneficial effect of high energy intake at lunch rather than dinner on weight loss in healthy obese women in a weight-loss program: A randomized clinical trial. Am. J. Clin. Nutr. 2016, 104, 982–989. [Google Scholar] [CrossRef] [Green Version]
- Bandín, C.; Scheer, F.A.; Luque, A.J.; Ávila-Gandía, V.; Zamora, S.; Madrid, J.A.; Gómez-Abellán, P.; Garaulet, M. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: A randomized, crossover trial. Int. J. Obes. 2015, 39, 828–833. [Google Scholar] [CrossRef]
- Barger, L.K.; Rajaratnam, S.M.W.; Cannon, C.P.; Lukas, M.A.; Im, K.; Goodrich, E.L.; Czeisler, C.A.; O’Donoghue, M.L. Short Sleep Duration, Obstructive Sleep Apnea, Shiftwork, and the Risk of Adverse Cardiovascular Events in Patients After an Acute Coronary Syndrome. J. Am. Heart Assoc. 2017, 6, e006959. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Laurenti, M.C.; Dalla Man, C.; Varghese, R.T.; Cobelli, C.; Rizza, R.A.; Matveyenko, A.; Vella, A. Glucose metabolism during rotational shift-work in healthcare workers. Diabetologia 2017, 60, 1483–1490. [Google Scholar] [CrossRef] [Green Version]
- Jarrin, D.C.; Ivers, H.; Lamy, M.; Chen, I.Y.; Harvey, A.G.; Morin, C.M. Cardiovascular autonomic dysfunction in insomnia patients with objective short sleep duration. J. Sleep Res. 2018, 27, e12663. [Google Scholar] [CrossRef]
- Wong, P.M.; Hasler, B.P.; Kamarck, T.W.; Muldoon, M.F.; Manuck, S.B. Social Jetlag, Chronotype, and Cardiometabolic Risk. J. Clin. Endocrinol. Metab. 2015, 100, 4612–4620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritonja, J.; Tranmer, J.; Aronson, K.J. The relationship between night work, chronotype, and cardiometabolic risk factors in female hospital employees. Chronobiol. Int. 2019, 36, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Hulsegge, G.; Picavet, H.S.J.; van der Beek, A.J.; Verschuren, W.M.M.; Twisk, J.W.; Proper, K.I. Shift work, chronotype and the risk of cardiometabolic risk factors. Eur. J. Public Health 2019, 29, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.H.; Yun, C.H.; Ahn, J.H.; Suh, S.; Cho, H.J.; Lee, S.K.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Choi, K.M.; et al. Evening chronotype is associated with metabolic disorders and body composition in middle-aged adults. J. Clin. Endocrinol. Metab. 2015, 100, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Cai, X.; Lin, C.; Yang, W.; Lv, F.; Wu, J.; Ji, L. The association between metabolic parameters and evening chronotype and social jetlag in non-shift workers: A meta-analysis. Front. Endocrinol. 2022, 13, 1008820. [Google Scholar] [CrossRef]
- Iwasaki, M.; Hirose, T.; Mita, T.; Sato, F.; Ito, C.; Yamamoto, R.; Someya, Y.; Yoshihara, T.; Tamura, Y.; Kanazawa, A.; et al. Morningness-eveningness questionnaire score correlates with glycated hemoglobin in middle-aged male workers with type 2 diabetes mellitus. J. Diabetes Investig. 2013, 4, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Koopman, A.D.M.; Rauh, S.P.; van ’t Riet, E.; Groeneveld, L.; van der Heijden, A.A.; Elders, P.J.; Dekker, J.M.; Nijpels, G.; Beulens, J.W.; Rutters, F. The Association between Social Jetlag, the Metabolic Syndrome, and Type 2 Diabetes Mellitus in the General Population: The New Hoorn Study. J. Biol. Rhythm. 2017, 32, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Estarlich, M.; Tolsa, C.; Trapero, I.; Buigues, C. Circadian Variations and Associated Factors in Patients with Ischaemic Heart Disease. Int. J. Environ. Res. Public Health 2022, 19, 15628. [Google Scholar] [CrossRef]
- Grimaldi, D.; Carter, J.R.; Van Cauter, E.; Leproult, R. Adverse Impact of Sleep Restriction and Circadian Misalignment on Autonomic Function in Healthy Young Adults. Hypertens 2016, 68, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Vetter, C.; Devore, E.E.; Wegrzyn, L.R.; Massa, J.; Speizer, F.E.; Kawachi, I.; Rosner, B.; Stampfer, M.J.; Schernhammer, E.S. Association between Rotating Night Shift Work and Risk of Coronary Heart Disease Among Women. Jama 2016, 315, 1726–1734. [Google Scholar] [CrossRef]
- Huang, T.; Mariani, S.; Redline, S. Sleep Irregularity and Risk of Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis. J. Am. Coll. Cardiol. 2020, 75, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Mattis, J.; Sehgal, A. Circadian Rhythms, Sleep, and Disorders of Aging. Trends Endocrinol. Metab. TEM 2016, 27, 192–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roenneberg, T.; Merrow, M. The Circadian Clock and Human Health. Curr. Biol. CB 2016, 26, R432–R443. [Google Scholar] [CrossRef] [PubMed]
- Man, A.W.C.; Li, H.; Xia, N. Circadian Rhythm: Potential Therapeutic Target for Atherosclerosis and Thrombosis. Int. J. Mol. Sci. 2021, 22, 676. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Fernández, O.H.; Walton, J.C.; DeVries, A.C.; Nelson, R.J. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules 2021, 11, 883. [Google Scholar] [CrossRef] [PubMed]
- Hemmer, A.; Mareschal, J.; Dibner, C.; Pralong, J.A.; Dorribo, V.; Perrig, S.; Genton, L.; Pichard, C.; Collet, T.H. The Effects of Shift Work on Cardio-Metabolic Diseases and Eating Patterns. Nutrients 2021, 13, 4178. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, Y. Basic concepts and unique features of human circadian rhythms: Implications for human health. Nutr. Rev. 2020, 78 (Suppl. 2), 91–96. [Google Scholar] [CrossRef]
- Dun, A.; Zhao, X.; Jin, X.; Wei, T.; Gao, X.; Wang, Y.; Hou, H. Association between Night-Shift Work and Cancer Risk: Updated Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 1006. [Google Scholar] [CrossRef]
- Wei, F.; Chen, W.; Lin, X. Night-shift work, breast cancer incidence, and all-cause mortality: An updated meta-analysis of prospective cohort studies. Sleep Breath. Schlaf Atm. 2022, 26, 1509–1526. [Google Scholar] [CrossRef]
- Manouchehri, E.; Taghipour, A.; Ghavami, V.; Ebadi, A.; Homaei, F.; Latifnejad Roudsari, R. Night-shift work duration and breast cancer risk: An updated systematic review and meta-analysis. BMC Women’s Health 2021, 21, 89. [Google Scholar] [CrossRef]
- Fernandez, R.C.; Moore, V.M.; Marino, J.L.; Whitrow, M.J.; Davies, M.J. Night Shift Among Women: Is It Associated With Difficulty Conceiving a First Birth? Front. Public Health 2020, 8, 595943. [Google Scholar] [CrossRef] [PubMed]
- Peñaloza-Martínez, E.; Moreno, G.; Aroca-Crevillén, A.; Huertas, S.; Vicent, L.; Rosillo, N.; Hidalgo, A.; Bueno, H. Circadian rhythms in thrombosis and atherothrombotic events. Front. Biosci. Landmark Ed. 2022, 27, 51. [Google Scholar] [CrossRef] [PubMed]
- Stubblefield, J.J.; Lechleiter, J.D. Time to Target Stroke: Examining the Circadian System in Stroke. Yale J. Biol. Med. 2019, 92, 349–357. [Google Scholar] [PubMed]
- Baron, K.G.; Reid, K.J. Circadian misalignment and health. Int. Rev. Psychiatry 2014, 26, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Broussard, J.L.; Van Cauter, E. Disturbances of sleep and circadian rhythms: Novel risk factors for obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 353–359. [Google Scholar] [CrossRef]
- Chaput, J.P.; McHill, A.W.; Cox, R.C.; Broussard, J.L.; Dutil, C.; da Costa, B.G.G.; Sampasa-Kanyinga, H.; Wright, K.P., Jr. The role of insufficient sleep and circadian misalignment in obesity. Nat. Rev. Endocrinol. 2023, 19, 82–97. [Google Scholar] [CrossRef]
- Abbott, S.M.; Malkani, R.G.; Zee, P.C. Circadian disruption and human health: A bidirectional relationship. Eur. J. Neurosci. 2020, 51, 567–583. [Google Scholar] [CrossRef] [Green Version]
- Meyer, N.; Harvey, A.G.; Lockley, S.W.; Dijk, D.J. Circadian rhythms and disorders of the timing of sleep. Lancet 2022, 400, 1061–1078. [Google Scholar] [CrossRef]
- Belloir, J.; Makarem, N.; Shechter, A. Sleep and Circadian Disturbance in Cardiovascular Risk. Curr. Cardiol. 2022, 24, 2097–2107. [Google Scholar] [CrossRef]
- Boivin, D.B.; Boudreau, P.; Kosmadopoulos, A. Disturbance of the Circadian System in Shift Work and Its Health Impact. J. Biol. Rhythm. 2022, 37, 3–28. [Google Scholar] [CrossRef]
- Vetter, C. Circadian disruption: What do we actually mean? Eur. J. Neurosci. 2020, 51, 531–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chasens, E.R.; Imes, C.C.; Kariuki, J.K.; Luyster, F.S.; Morris, J.L.; DiNardo, M.M.; Godzik, C.M.; Jeon, B.; Yang, K. Sleep and Metabolic Syndrome. Nurs. Clin. North Am. 2021, 56, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Steele, T.A.; St Louis, E.K.; Videnovic, A.; Auger, R.R. Circadian Rhythm Sleep-Wake Disorders: A Contemporary Review of Neurobiology, Treatment, and Dysregulation in Neurodegenerative Disease. Neurotherapeutics 2021, 18, 53–74. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.D.; Skene, D.J.; Arendt, J.; Cade, J.E.; Grant, P.J.; Hardie, L.J. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr. Rev. 2016, 37, 584–608. [Google Scholar] [CrossRef] [Green Version]
- Sooriyaarachchi, P.; Jayawardena, R.; Pavey, T.; King, N.A. Shift work and the risk for metabolic syndrome among healthcare workers: A systematic review and meta-analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2022, 23, e13489. [Google Scholar] [CrossRef]
- Cable, J.; Schernhammer, E.; Hanlon, E.C.; Vetter, C.; Cedernaes, J.; Makarem, N.; Dashti, H.S.; Shechter, A.; Depner, C.; Ingiosi, A.; et al. Sleep and circadian rhythms: Pillars of health-a Keystone Symposia report. Ann. N. Y. Acad. Sci. 2021, 1506, 18–34. [Google Scholar] [CrossRef]
- Korsiak, J.; Tranmer, J.; Day, A.; Aronson, K.J. Sleep duration as a mediator between an alternating day and night shift work schedule and metabolic syndrome among female hospital employees. Occup. Environ. Med. 2018, 75, 132–138. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.; Stern, N.; Bilu, C.; El-Osta, A.; Einat, H.; Kronfeld-Schor, N. The Circadian Syndrome: Is the Metabolic Syndrome and much more! J. Intern. Med. 2019, 286, 181–191. [Google Scholar] [CrossRef]
- Peng, F.; Li, X.; Xiao, F.; Zhao, R.; Sun, Z. Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends Neurosci. 2022, 45, 471–482. [Google Scholar] [CrossRef]
- Parameswaran, G.; Ray, D.W. Sleep, circadian rhythms, and type 2 diabetes mellitus. Clin. Endocrinol. 2022, 96, 12–20. [Google Scholar] [CrossRef]
- Moreno, C.R.C.; Raad, R.; Gusmão, W.D.P.; Luz, C.S.; Silva, V.M.; Prestes, R.M.; Saraiva, S.P.; Lemos, L.C.; Vasconcelos, S.P.; Nehme, P.; et al. Are We Ready to Implement Circadian Hygiene Interventions and Programs? Int. J. Environ. Res. Public Health 2022, 19, 16772. [Google Scholar] [CrossRef] [PubMed]
- Hower, I.M.; Harper, S.A.; Buford, T.W. Circadian Rhythms, Exercise, and Cardiovascular Health. J. Circadian Rhythm. 2018, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Logan, R.W.; McClung, C.A. Rhythms of life: Circadian disruption and brain disorders across the lifespan. Nat. Reviews. Neurosci. 2019, 20, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Ruan, W.; Yuan, X.; Eltzschig, H.K. Circadian rhythm as a therapeutic target. Nat. Rev. Drug Discov. 2021, 20, 287–307. [Google Scholar] [CrossRef]
- Vandenberghe, A.; Lefranc, M.; Furlan, A. An Overview of the Circadian Clock in the Frame of Chronotherapy: From Bench to Bedside. Pharmaceutics 2022, 14, 1424. [Google Scholar] [CrossRef]
- Tobeiha, M.; Jafari, A.; Fadaei, S.; Ali Mirazimi, S.M.; Dashti, F.; Amiri, A.; Khan, H.; Asemi, Z.; Reiter, R.J.; Hamblin, M.R.; et al. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front. Cardiovasc. Med. 2022, 9, 888319. [Google Scholar] [CrossRef]
- Loloei, S.; Sepidarkish, M.; Heydarian, A.; Tahvilian, N.; Khazdouz, M.; Heshmati, J.; Pouraram, H. The effect of melatonin supplementation on lipid profile and anthropometric indices: A systematic review and meta-analysis of clinical trials. Diabetes Metab. Syndr. 2019, 13, 1901–1910. [Google Scholar] [CrossRef] [PubMed]
Study Type | Study Population | Basic Results | References |
---|---|---|---|
Clinical Trial | N = 26 adults | Circadian misalignment can have adverse effects on insulin action, insulin release, melatonin and high sensitive c-reactive protein (hsCRP). | Leproult et al. [30] |
Clinical Trial | N = 14 adults | Glucose tolerance was 17% lower in the biological evening than in the biological morning on test day 1. Circadian misalignment itself increased postprandial glucose by 6%. | Morris et al. [31] |
Clinical Trial | N = 9 adults | Circadian misalignment increased 24-h systolic blood pressure (SBP) and diastolic blood pressure (DBP) by 3.0 mmHg and 1.5 mmHg, respectively. Circadian misalignment decreased wake cardiac vagal modulation by 8–15%, as determined by heart rate variability analysis, and decreased 24-h urinary epinephrine excretion rate by 7%, without a significant effect on 24-h urinary norepinephrine excretion rate. Circadian misalignment increased 24-h serum interleukin-6, CRP, resistin, and TNF-α levels by 3–29%. | Morris et al. [32] |
Randomized Controlled Trial | N = 9 adults | Circadian misalignment per se increased hs-CRP and blood pressure in shift workers. | Morris et al. [33] |
Randomized Controlled Trial | N = 14 adults | Circadian phase and circadian misalignment affected glucose tolerance. | Qian et al. [34] |
Randomized Clinical Trial | N = 14 adult (men) | Circadian misalignment also led to higher fasting free fatty acid (FFA) levels, fasting plasma glucose levels, and lower muscle insulin sensitivity and triglyceride levels. | Wefers et al. [35] |
Randomized Controlled Trial | N = 80, adults (overweight and obese women) | Compared with the Dinner Meal group, the Lunch Meal group had greater mean reductions in weight, body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR) and fasting insulin after 12 wks. | Madjd et al. [36] |
Randomized Controlled Trial | N = 32, adults (women) | Late eating resulted in a significantly lower pre-meal utilization of carbohydrates and decreased glucose tolerance. | Bandín et al. [37] |
Randomized Controlled Trial | Ν = 13.026, adults | Patients who reported <6 h sleep per night had a 29% higher risk of major coronary events (MCE) compared with those with longer sleep. Patients who screened positive for obstructive sleep apnea had a 12% higher risk of MCE than those who did not screen positive. Overnight shift work (≥3-night shifts/week for ≥1 year) was associated with a 15% higher risk of MCE. | Barger et al. [38] |
Randomized Controlled Trial | N = 12 adults | Postprandial glycemic excursion was higher during the night shift. The time to peak insulin and C-peptide and nadir glucagon suppression in response to meal ingestion was delayed during the night shift. | Sharma et al. [39] |
Clinical Trial | Ν = 180 adults | Insomnia might trigger a nocturnal stress response within the nervous and endocrine system, expediting the progression of cardiovascular morbidity. | Jarrin et al. [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mentzelou, M.; Papadopoulou, S.K.; Papandreou, D.; Spanoudaki, M.; Dakanalis, A.; Vasios, G.K.; Voulgaridou, G.; Pavlidou, E.; Mantzorou, M.; Giaginis, C. Evaluating the Relationship between Circadian Rhythms and Sleep, Metabolic and Cardiovascular Disorders: Current Clinical Evidence in Human Studies. Metabolites 2023, 13, 370. https://doi.org/10.3390/metabo13030370
Mentzelou M, Papadopoulou SK, Papandreou D, Spanoudaki M, Dakanalis A, Vasios GK, Voulgaridou G, Pavlidou E, Mantzorou M, Giaginis C. Evaluating the Relationship between Circadian Rhythms and Sleep, Metabolic and Cardiovascular Disorders: Current Clinical Evidence in Human Studies. Metabolites. 2023; 13(3):370. https://doi.org/10.3390/metabo13030370
Chicago/Turabian StyleMentzelou, Maria, Sousana K. Papadopoulou, Dimitrios Papandreou, Maria Spanoudaki, Antonios Dakanalis, Georgios K. Vasios, Gavriela Voulgaridou, Eleni Pavlidou, Maria Mantzorou, and Constantinos Giaginis. 2023. "Evaluating the Relationship between Circadian Rhythms and Sleep, Metabolic and Cardiovascular Disorders: Current Clinical Evidence in Human Studies" Metabolites 13, no. 3: 370. https://doi.org/10.3390/metabo13030370
APA StyleMentzelou, M., Papadopoulou, S. K., Papandreou, D., Spanoudaki, M., Dakanalis, A., Vasios, G. K., Voulgaridou, G., Pavlidou, E., Mantzorou, M., & Giaginis, C. (2023). Evaluating the Relationship between Circadian Rhythms and Sleep, Metabolic and Cardiovascular Disorders: Current Clinical Evidence in Human Studies. Metabolites, 13(3), 370. https://doi.org/10.3390/metabo13030370