Organic Aciduria Disorders in Pregnancy: An Overview of Metabolic Considerations
Abstract
:1. Introduction
2. Methods
3. Results (Background Review)
4. Energy Balance and Caloric Adaptations to the Increased Demands of Pregnancy: Metabolic Considerations for Patients with OADs
5. Management of MSUD
6. MSUD and Pregnancy
7. Management of PA and MMA
8. PA/MMA and Pregnancy
9. Management of IVA
10. IVA and Pregnancy
11. Management of GA1
12. GA1 and Pregnancy
13. Discussion
14. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferreira, C.R.; Rahman, S.; Keller, M.; Zschocke, J. An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis. 2021, 44, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Dionisi-Vici, C.; Deodato, F.; Röschinger, W.; Rhead, W.; Wilcken, B. ‘Classical’ organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: Long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J. Inherit. Metab. Dis. 2006, 29, 383–389. [Google Scholar] [CrossRef]
- Villani, G.R.; Gallo, G.; Scolamiero, E.; Salvatore, F.; Ruoppolo, M. “Classical organic acidurias”: Diagnosis and pathogenesis. Clin. Exp. Med. 2017, 17, 305–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindner, M.; Kölker, S.; Schulze, A.; Christensen, E.; Greenberg, C.R.; Hoffmann, G.F. Neonatal screening for glutaryl-CoA dehydrogenase deficiency. J. Inherit. Metab. Dis. 2004, 27, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E. Pregnancy in women with inherited metabolic disease. Obs. Med. 2015, 8, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirrs, S.; Hollak, C.; Merkel, M.; Sechi, A.; Glamuzina, E.; Janssen, M.C.; Lachmann, R.; Langendonk, J.; Scarpelli, M.; Ben Omran, T.; et al. The Frequencies of Different Inborn Errors of Metabolism in Adult Metabolic Centres: Report from the SSIEM Adult Metabolic Physicians Group. JIMD Rep. 2016, 27, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Shchelochkov, O.A.; Carrillo, N.; Venditti, C. Propionic Acidemia. In GeneReviews®; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2016. [Google Scholar]
- Forny, P.; Hörster, F.; Ballhausen, D.; Chakrapani, A.; Chapman, K.A.; Dionisi-Vici, C.; Dixon, M.; Grünert, S.C.; Grunewald, S.; Haliloglu, G.; et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J. Inherit. Metab. Dis. 2021, 44, 566–592. [Google Scholar] [CrossRef]
- Cappuccio, G.; Atwal, P.S.; Donti, T.R.; Ugarte, K.; Merchant, N.; Craigen, W.J.; Sutton, V.R.; Elsea, S.H. Expansion of the Phenotypic Spectrum of Propionic Acidemia with Isolated Elevated Propionylcarnitine. JIMD Rep. 2017, 35, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Filipowicz, H.R.; Ernst, S.L.; Ashurst, C.L.; Pasquali, M.; Longo, N. Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Mol. Genet. Metab. 2006, 88, 123–130. [Google Scholar] [CrossRef]
- Manoli, I.; Sloan, J.L.; Venditti, C.P. Isolated Methylmalonic Acidemia. In GeneReviews®; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2016. [Google Scholar]
- Grünert, S.C.; Wendel, U.; Lindner, M.; Leichsenring, M.; Schwab, K.O.; Vockley, J.; Lehnert, W.; Ensenauer, R. Clinical and neurocognitive outcome in symptomatic isovaleric acidemia. Orphanet J. Rare Dis. 2012, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Zahid, B.; Khan, S.; Ahmad, S.A. Isovaleric Acidemia: A Rare Case of an Inborn Error of Metabolism. Cureus 2020, 12, e7150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boy, N.; Mühlhausen, C.; Maier, E.M.; Heringer, J.; Assmann, B.; Burgard, P.; Dixon, M.; Fleissner, S.; Greenberg, C.R.; Harting, I.; et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: Second revision. J. Inherit. Metab. Dis. 2017, 40, 75–101. [Google Scholar] [CrossRef] [PubMed]
- Badve, M.S.; Bhuta, S.; McGill, J. Rare presentation of a treatable disorder: Glutaric aciduria type 1. N. Z. Med. J. 2015, 128, 61–64. [Google Scholar]
- Larson, A.; Goodman, S. Glutaric Acidemia Type 1. In GeneReviews®; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2006. [Google Scholar]
- Jiang, H.; Rao, K.S.; Yee, V.C.; Kraus, J.P. Characterization of four variant forms of human propionyl-CoA carboxylase expressed in Escherichia coli. J. Biol. Chem. 2005, 280, 27719–27727. [Google Scholar] [CrossRef] [Green Version]
- Takahashi-Iñiguez, T.; García-Hernandez, E.; Arreguín-Espinosa, R.; Flores, M.E. Role of vitamin B12 on methylmalonyl-CoA mutase activity. J. Zhejiang Univ. Sci. B 2012, 13, 423–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keyfi, F.; Talebi, S.; Varasteh, A.R. Methylmalonic Acidemia Diagnosis by Laboratory Methods. Rep. Biochem. Mol. Biol. 2016, 5, 1–14. [Google Scholar]
- Kölker, S.; Christensen, E.; Leonard, J.V.; Greenberg, C.R.; Boneh, A.; Burlina, A.B.; Burlina, A.P.; Dixon, M.; Duran, M.; García Cazorla, A.; et al. Diagnosis and management of glutaric aciduria type I—Revised recommendations. J. Inherit. Metab. Dis. 2011, 34, 677–694. [Google Scholar] [CrossRef] [Green Version]
- Sperl, W. Diagnosis and therapy of organic acidurias. Padiatr. Padol. 1993, 28, 3–8. [Google Scholar]
- Chace, D.H.; Kalas, T.A.; Naylor, E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem. 2003, 49, 1797–1817. [Google Scholar] [CrossRef] [Green Version]
- Mehaney, D.A.; Seliem, Z.S.; Selim, L.A.; Khalil, M.S.; Abou-Youssef, H.S.; Elsayed, E.M.; Abdou, D.M.; Rizzo, C.; Dioniasi-Vici, C.; Abdelazim, A.M.; et al. Organic Acidurias in Egyptian children: The urge for high-risk screening. Pediatr. Int. 2023, 65, e15469. [Google Scholar] [CrossRef]
- Baumgartner, M.R.; Hörster, F.; Dionisi-Vici, C.; Haliloglu, G.; Karall, D.; Chapman, K.A.; Huemer, M.; Hochuli, M.; Assoun, M.; Ballhausen, D.; et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J. Rare Dis. 2014, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastner, M.; Tricco, A.C.; Soobiah, C.; Lillie, E.; Perrier, L.; Horsley, T.; Welch, V.; Cogo, E.; Antony, J.; Straus, S.E. What is the most appropriate knowledge synthesis method to conduct a review? Protocol for a scoping review. BMC Med. Res. Methodol. 2012, 12, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noordzij, M.; Zoccali, C.; Dekker, F.W.; Jager, K.J. Adding up the evidence: Systematic reviews and meta-analyses. Nephron Clin. Pract. 2011, 119, c310–c316. [Google Scholar] [CrossRef]
- Pawson, R.; Greenhalgh, T.; Harvey, G.; Walshe, K. Realist review—A new method of systematic review designed for complex policy interventions. J. Health Serv. Res. Policy 2005, 10 (Suppl. S1), 21–34. [Google Scholar] [CrossRef]
- Abadingo, M.E.; Abacan, M.A.R.; Basas, J.R.U.; Padilla, C.D. Pregnancy in an adolescent with maple syrup urine disease: Case report. Mol. Genet. Metab. Rep. 2021, 27, 100745. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Tchan, M.; Nayyar, R. Maple syrup urine disease: Tailoring a plan for pregnancy. J. Matern. Fetal Neonatal Med. 2018, 31, 1663–1666. [Google Scholar] [CrossRef]
- Heiber, S.; Zulewski, H.; Zaugg, M.; Kiss, C.; Baumgartner, M. Successful Pregnancy in a Woman with Maple Syrup Urine Disease: Case Report. JIMD Rep. 2015, 21, 103–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchan, M.; Westbrook, M.; Wilcox, G.; Cutler, R.; Smith, N.; Penman, R.; Strauss, B.J.; Wilcken, B. The management of pregnancy in maple syrup urine disease: Experience with two patients. JIMD Rep. 2013, 10, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Hughes, L.; O’Flaherty, D.; O’Byrne, J.J.; Donnelly, J.; O’Shaughnessy, F.; Doherty, A. A case report of anaesthetic considerations for maple syrup urine disease during pregnancy and delivery. Int. J. Obs. Anesth. 2021, 48, 103208. [Google Scholar] [CrossRef]
- Wessel, A.E.; Mogensen, K.M.; Rohr, F.; Erick, M.; Neilan, E.G.; Chopra, S.; Levy, H.L.; Gray, K.J.; Wilkins-Haug, L.; Berry, G.T. Management of a Woman With Maple Syrup Urine Disease During Pregnancy, Delivery, and Lactation. JPEN J. Parenter. Enter. Nutr. 2015, 39, 875–879. [Google Scholar] [CrossRef]
- Grünewald, S.; Hinrichs, F.; Wendel, U. Pregnancy in a woman with maple syrup urine disease. J. Inherit. Metab. Dis. 1998, 21, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Van Calcar, S.C.; Harding, C.O.; Davidson, S.R.; Barness, L.A.; Wolff, J.A. Case reports of successful pregnancy in women with maple syrup urine disease and propionic acidemia. Am. J. Med. Genet. 1992, 44, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Tanaka, T. Postpartum death with maple syrup urine disease. Int. J. Gynaecol. Obs. 2003, 81, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Takano, C.; Ishige, M.; Ogawa, E.; Nagano, N.; Morohashi, T.; Okahashi, A.; Kawakami, K.; Komatsu, A.; Kawana, K.; Urakami, T.; et al. Nutrient management in the intrapartum period in maternal maple syrup urine disease. Mol. Genet. Metab. Rep. 2021, 26, 100711. [Google Scholar] [CrossRef] [PubMed]
- Langendonk, J.G.; Roos, J.C.; Angus, L.; Williams, M.; Karstens, F.P.; de Klerk, J.B.; Maritz, C.; Ben-Omran, T.; Williamson, C.; Lachmann, R.H.; et al. A series of pregnancies in women with inherited metabolic disease. J. Inherit. Metab. Dis. 2012, 35, 419–424. [Google Scholar] [CrossRef]
- Jacquemyn, Y.; Den Hartog, M.; Eyskens, F. Methylmalonic acidaemia in pregnancy. BMJ Case Rep. 2014, 2014, 203723. [Google Scholar] [CrossRef] [Green Version]
- Kowalik, A.; MacDonald, A.; Sykut-Cegielska, J. Dietary Treatment from Birth to Pregnancy in a Woman with Methylmalonic Aciduria. Medicina 2021, 57, 128. [Google Scholar] [CrossRef]
- Lubrano, R.; Bellelli, E.; Gentile, I.; Paoli, S.; Carducci, C.; Carducci, C.; Santagata, S.; Pérez, B.; Ugarte, M.; Labriola, D.; et al. Pregnancy in a methylmalonic acidemia patient with kidney transplantation: A case report. Am. J. Transpl. 2013, 13, 1918–1922. [Google Scholar] [CrossRef]
- Brunel-Guitton, C.; Costa, T.; Mitchell, G.A.; Lambert, M. Treatment of cobalamin C (cblC) deficiency during pregnancy. J. Inherit. Metab. Dis. 2010, 33 (Suppl. S3), S409–S412. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Li, X.; Ding, Y.; Song, J.; Yang, Y. First Chinese case of successful pregnancy with combined methylmalonic aciduria and homocystinuria, cblC type. Brain Dev. 2015, 37, 286–291. [Google Scholar] [CrossRef]
- Grandone, E.; Martinelli, P.; Villani, M.; Vecchione, G.; Fischetti, L.; Leccese, A.; Santacroce, R.; Corso, G.; Margaglione, M. Prospective evaluation of pregnancy outcome in an Italian woman with late-onset combined homocystinuria and methylmalonic aciduria. BMC Pregnancy Childbirth 2019, 19, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boneh, A.; Greaves, R.F.; Garra, G.; Pitt, J.J. Metabolic treatment of pregnancy and postdelivery period in a patient with cobalamin A disease. Am. J. Obs. Gynecol. 2002, 187, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Wasserstein, M.P.; Gaddipati, S.; Snyderman, S.E.; Eddleman, K.; Desnick, R.J.; Sansaricq, C. Successful pregnancy in severe methylmalonic acidaemia. J. Inherit. Metab. Dis. 1999, 22, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Deodato, F.; Rizzo, C.; Boenzi, S.; Baiocco, F.; Sabetta, G.; Dionisi-Vici, C. Successful pregnancy in a woman with mut- methylmalonic acidaemia. J. Inherit. Metab. Dis. 2002, 25, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Diss, E.; Iams, J.; Reed, N.; Roe, D.S.; Roe, C. Methylmalonic aciduria in pregnancy: A case report. Am. J. Obs. Gynecol. 1995, 172, 1057–1059. [Google Scholar] [CrossRef] [PubMed]
- van der Meer, S.B.; Spaapen, L.J.; Fowler, B.; Jakobs, C.; Kleijer, W.J.; Wendel, U. Prenatal treatment of a patient with vitamin B12-responsive methylmalonic acidemia. J. Pediatr. 1990, 117, 923–926. [Google Scholar] [CrossRef]
- Adeyemi, O.A.; Girish, T.; Mukhopadhyay, S.; Olczak, S.A.; Ahmed, Z. Methylmalonic acidaemia: A rare metabolic disorder in pregnancy. J. Obs. Gynaecol. 2004, 24, 927–928. [Google Scholar] [CrossRef]
- Scott Schwoerer, J.; van Calcar, S.; Rice, G.M.; Deline, J. Successful pregnancy and delivery in a woman with propionic acidemia from the Amish community. Mol. Genet. Metab. Rep. 2016, 8, 4–7. [Google Scholar] [CrossRef]
- Mungan, N.; Kör, D.; Büyükkurt, S.; Atmış, A.; Güleç, Ü.; Satar, M. Propionic acidemia: A Turkish case report of a successful pregnancy, labor and lactation. J. Pediatr. Endocrinol. Metab. 2016, 29, 863–866. [Google Scholar] [CrossRef]
- Wojtowicz, A.; Hill, M.; Strobel, S.; Gillett, G.; Kiec-Wilk, B. Successful in vitro fertilization, twin pregnancy and labor in a woman with inherited propionic acidemia. Ginekol. Pol. 2019, 90, 667. [Google Scholar] [CrossRef] [Green Version]
- Shih, V.E.; Aubry, R.H.; DeGrande, G.; Gursky, S.F.; Tanaka, K. Maternal isovaleric acidemia. J. Pediatr. 1984, 105, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Spinty, S.; Rogozinski, H.; Lealman, G.T.; Wraith, J.E. Second case of a successful pregnancy in maternal isovaleric acidaemia. J. Inherit. Metab. Dis. 2002, 25, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Habets, D.D.; Schaper, N.C.; Rogozinski, H.; van Spronsen, F.J.; van Rijn, M.; Bierau, J.; Bakker, J.A. Biochemical Monitoring and Management During Pregnancy in Patients with Isovaleric Acidaemia is Helpful to Prevent Metabolic Decompensation. JIMD Rep. 2012, 3, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelnovi, C.; Moseley, K.; Yano, S. Maternal isovaleric acidemia: Observation of distinctive changes in plasma amino acids and carnitine profiles during pregnancy. Clin. Chim. Acta 2010, 411, 2101–2103. [Google Scholar] [CrossRef]
- Stepien, K.M.; Pastores, G.M.; Hendroff, U.; McCormick, C.; Fitzimons, P.; Khawaja, N.; Borovickova, I.; Treacy, E.P. Two Uneventful Pregnancies in a Woman with Glutaric Aciduria Type 1. JIMD Rep. 2018, 41, 29–36. [Google Scholar] [CrossRef]
- Ituk, U.S.; Allen, T.K.; Habib, A.S. The peripartum management of a patient with glutaric aciduria type 1. J. Clin. Anesth. 2013, 25, 141–145. [Google Scholar] [CrossRef]
- Garcia, P.; Martins, E.; Diogo, L.; Rocha, H.; Marcão, A.; Gaspar, E.; Almeida, M.; Vaz, C.; Soares, I.; Barbot, C.; et al. Outcome of three cases of untreated maternal glutaric aciduria type I. Eur. J. Pediatr. 2008, 167, 569–573. [Google Scholar] [CrossRef]
- Crombez, E.A.; Cederbaum, S.D.; Spector, E.; Chan, E.; Salazar, D.; Neidich, J.; Goodman, S. Maternal glutaric acidemia, type I identified by newborn screening. Mol. Genet. Metab. 2008, 94, 132–134. [Google Scholar] [CrossRef] [Green Version]
- King, J.C. Physiology of pregnancy and nutrient metabolism. Am. J. Clin. Nutr. 2000, 71, 1218s–1225s. [Google Scholar] [CrossRef] [Green Version]
- Elango, R.; Ball, R.O. Protein and Amino Acid Requirements during Pregnancy. Adv. Nutr. 2016, 7, 839s–844s. [Google Scholar] [CrossRef] [Green Version]
- Duggleby, S.L.; Jackson, A.A. Protein, amino acid and nitrogen metabolism during pregnancy: How might the mother meet the needs of her fetus? Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Ennis, M.A.; Ong, A.J.; Lim, K.; Ball, R.O.; Pencharz, P.B.; Courtney-Martin, G.; Elango, R. Dietary Aromatic Amino Acid Requirements During Early and Late Gestation in Healthy Pregnant Women. J. Nutr. 2020, 150, 3224–3230. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization and United Nations University. Protein and amino acid requirements in human nutrition. World Health Organ. Tech. Rep. Ser. 2007, 935, 1–265. [Google Scholar]
- Wilcox, G. Impact of pregnancy on inborn errors of metabolism. Rev. Endocr. Metab. Disord. 2018, 19, 13–33. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xu, Y.; Zhang, Y.; Cai, J.; Deng, L.; Yang, J.; Zhou, Y.; Long, Y.; Zhang, J.; Wang, Z. Early Diagnosis of Gestational Diabetes Mellitus (EDoGDM) study: A protocol for a prospective, longitudinal cohort study. BMJ Open 2016, 6, e012315. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Liu, F.; Li, S. Metabolic Adaptations in Pregnancy: A Review. Ann. Nutr. Metab. 2017, 70, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Cleal, J.K.; Lewis, R.M. The mechanisms and regulation of placental amino acid transport to the human foetus. J. Neuroendocr. 2008, 20, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Imdad, A.; Bhutta, Z.A. Effect of balanced protein energy supplementation during pregnancy on birth outcomes. BMC Public Health 2011, 11 (Suppl. S3), S17. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.S. Balanced protein/energy supplementation in pregnancy. Cochrane Database Syst. Rev. 2000, 14, Cd000032. [Google Scholar] [CrossRef]
- Raval, D.B.; Merideth, M.; Sloan, J.L.; Braverman, N.E.; Conway, R.L.; Manoli, I.; Venditti, C.P. Methylmalonic acidemia (MMA) in pregnancy: A case series and literature review. J. Inherit. Metab. Dis. 2015, 38, 839–846. [Google Scholar] [CrossRef] [Green Version]
- Frazier, D.M.; Allgeier, C.; Homer, C.; Marriage, B.J.; Ogata, B.; Rohr, F.; Splett, P.L.; Stembridge, A.; Singh, R.H. Nutrition management guideline for maple syrup urine disease: An evidence- and consensus-based approach. Mol. Genet. Metab. 2014, 112, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [CrossRef] [PubMed] [Green Version]
- Strauss, K.A.; Puffenberger, E.G.; Carson, V.J. Maple Syrup Urine Disease. In GeneReviews®; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2020. [Google Scholar]
- Grünert, S.C.; Rosenbaum-Fabian, S.; Schumann, A.; Schwab, K.O.; Mingirulli, N.; Spiekerkoetter, U. Successful pregnancy in maple syrup urine disease: A case report and review of the literature. Nutr. J. 2018, 17, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorini, F.; Santoro, M.; Pierini, A.; Mezzasalma, L.; Baldacci, S.; Bargagli, E.; Boncristiano, A.; Brunetto, M.R.; Cameli, P.; Cappelli, F.; et al. Orphan Drug Use in Patients With Rare Diseases: A Population-Based Cohort Study. Front Pharm. 2022, 13, 869842. [Google Scholar] [CrossRef] [PubMed]
- Alfadhel, M.; Nashabat, M.; Saleh, M.; Elamin, M.; Alfares, A.; Al Othaim, A.; Umair, M.; Ahmed, H.; Ababneh, F.; Al Mutairi, F.; et al. Long-term effectiveness of carglumic acid in patients with propionic acidemia (PA) and methylmalonic acidemia (MMA): A randomized clinical trial. Orphanet J. Rare Dis. 2021, 16, 422. [Google Scholar] [CrossRef] [PubMed]
- Jurecki, E.; Ueda, K.; Frazier, D.; Rohr, F.; Thompson, A.; Hussa, C.; Obernolte, L.; Reineking, B.; Roberts, A.M.; Yannicelli, S.; et al. Nutrition management guideline for propionic acidemia: An evidence-and consensus-based approach. Mol. Genet. Metab. 2019, 126, 341–354. [Google Scholar] [CrossRef]
- Haijes, H.A.; Jans, J.J.M.; Tas, S.Y.; Verhoeven-Duif, N.M.; van Hasselt, P.M. Pathophysiology of propionic and methylmalonic acidemias. Part 1: Complications. J. Inherit. Metab. Dis. 2019, 42, 730–744. [Google Scholar] [CrossRef] [Green Version]
- Scott Schwoerer, J.; Clowes Candadai, S.; Held, P.K. Long-term outcomes in Amish patients diagnosed with propionic acidemia. Mol. Genet. Metab. Rep. 2018, 16, 36–38. [Google Scholar] [CrossRef]
- Mardach, R.; Verity, M.A.; Cederbaum, S.D. Clinical, pathological, and biochemical studies in a patient with propionic acidemia and fatal cardiomyopathy. Mol. Genet. Metab. 2005, 85, 286–290. [Google Scholar] [CrossRef]
- Kovacevic, A.; Garbade, S.F.; Hörster, F.; Hoffmann, G.F.; Gorenflo, M.; Mereles, D.; Kölker, S.; Staufner, C. Detection of early cardiac disease manifestation in propionic acidemia-Results of a monocentric cross-sectional study. Mol. Genet. Metab. 2022, 137, 349–358. [Google Scholar] [CrossRef]
- Roe, C.R.; Millington, D.S.; Maltby, D.A.; Kahler, S.G.; Bohan, T.P. L-carnitine therapy in isovaleric acidemia. J. Clin. Invest. 1984, 74, 2290–2295. [Google Scholar] [CrossRef] [PubMed]
- Chinen, Y.; Nakamura, S.; Tamashiro, K.; Sakamoto, O.; Tashiro, K.; Inokuchi, T.; Nakanishi, K. Isovaleric acidemia: Therapeutic response to supplementation with glycine, l-carnitine, or both in combination and a 10-year follow-up case study. Mol. Genet. Metab. Rep. 2017, 11, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Jafari, P.; Braissant, O.; Bonafé, L.; Ballhausen, D. The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol. Genet. Metab. 2011, 104, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Kölker, S.; Garbade, S.F.; Boy, N.; Maier, E.M.; Meissner, T.; Mühlhausen, C.; Hennermann, J.B.; Lücke, T.; Häberle, J.; Baumkötter, J.; et al. Decline of acute encephalopathic crises in children with glutaryl-CoA dehydrogenase deficiency identified by newborn screening in Germany. Pediatr. Res. 2007, 62, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Kölker, S.; Garbade, S.F.; Greenberg, C.R.; Leonard, J.V.; Saudubray, J.M.; Ribes, A.; Kalkanoglu, H.S.; Lund, A.M.; Merinero, B.; Wajner, M.; et al. Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr. Res. 2006, 59, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Strauss, K.A.; Puffenberger, E.G.; Robinson, D.L.; Morton, D.H. Type I glutaric aciduria, part 1: Natural history of 77 patients. Am. J. Med. Genet. C Semin. Med. Genet. 2003, 121, 38–52. [Google Scholar] [CrossRef]
- Healy, L.; O’Shea, M.; McNulty, J.; King, G.; Twomey, E.; Treacy, E.; Crushell, E.; Hughes, J.; Knerr, I.; Monavari, A.A. Glutaric aciduria type 1: Diagnosis, clinical features and long-term outcome in a large cohort of 34 Irish patients. JIMD Rep. 2022, 63, 379–387. [Google Scholar] [CrossRef]
- Cetin, I. Amino Acid Interconversions in the Fetal-Placental Unit: The Animal Model and Human Studies In Vivo. Pediatr. Res. 2001, 49, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Rouse, B.; Matalon, R.; Koch, R.; Azen, C.; Levy, H.; Hanley, W.; Trefz, F.; de la Cruz, F. Maternal phenylketonuria syndrome: Congenital heart defects, microcephaly, and developmental outcomes. J. Pediatr. 2000, 136, 57–61. [Google Scholar] [CrossRef]
- Alhasaniah, A.H. l-carnitine: Nutrition, pathology, and health benefits. Saudi. J. Biol. Sci. 2023, 30, 103555. [Google Scholar] [CrossRef]
- Kumru, B.; Oztürk Hismi, B. Investigation of L-Carnitine Concentrations in Treated Patients with Maple Syrup Urine Disease. J. Pediatr. Genet. 2019, 8, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Mescka, C.; Moraes, T.; Rosa, A.; Mazzola, P.; Piccoli, B.; Jacques, C.; Dalazen, G.; Coelho, J.; Cortes, M.; Terra, M.; et al. In vivo neuroprotective effect of L-carnitine against oxidative stress in maple syrup urine disease. Metab. Brain Dis. 2011, 26, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Mescka, C.P.; Wayhs, C.A.; Vanzin, C.S.; Biancini, G.B.; Guerreiro, G.; Manfredini, V.; Souza, C.; Wajner, M.; Dutra-Filho, C.S.; Vargas, C.R. Protein and lipid damage in maple syrup urine disease patients: L-carnitine effect. Int. J. Dev. Neurosci. 2013, 31, 21–24. [Google Scholar] [CrossRef]
- Genger, H.; Enzelsberger, H.; Salzer, H. Carnitine in therapy of placental insufficiency—Initial experiences. Z. Geburtshilfe Perinatol. 1988, 192, 155–157. [Google Scholar] [PubMed]
- Waylan, A.T.; Kayser, J.P.; Gnad, D.P.; Higgins, J.J.; Starkey, J.D.; Sissom, E.K.; Woodworth, J.C.; Johnson, B.J. Effects of L-carnitine on fetal growth and the IGF system in pigs. J. Anim. Sci. 2005, 83, 1824–1831. [Google Scholar] [CrossRef] [Green Version]
- Nakano, C.; Takashima, S.; Takeshita, K. Carnitine concentration during the development of human tissues. Early Hum. Dev. 1989, 19, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Oey, N.A.; den Boer, M.E.; Wijburg, F.A.; Vekemans, M.; Augé, J.; Steiner, C.; Wanders, R.J.; Waterham, H.R.; Ruiter, J.P.; Attié-Bitach, T. Long-chain fatty acid oxidation during early human development. Pediatr. Res. 2005, 57, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Waber, L.J.; Valle, D.; Neill, C.; DiMauro, S.; Shug, A. Carnitine deficiency presenting as familial cardiomyopathy: A treatable defect in carnitine transport. J. Pediatr. 1982, 101, 700–705. [Google Scholar] [CrossRef]
- Mescka, C.P.; Wayhs, C.A.; Guerreiro, G.; Manfredini, V.; Dutra-Filho, C.S.; Vargas, C.R. Prevention of DNA damage by L-carnitine induced by metabolites accumulated in maple syrup urine disease in human peripheral leukocytes in vitro. Gene 2014, 548, 294–298. [Google Scholar] [CrossRef]
- Roe, C.R.; Millington, D.S.; Maltby, D.A.; Bohan, T.P.; Hoppel, C.L. L-carnitine enhances excretion of propionyl coenzyme A as propionylcarnitine in propionic acidemia. J. Clin. Investig. 1984, 73, 1785–1788. [Google Scholar] [CrossRef]
- Roe, C.R.; Hoppel, C.L.; Stacey, T.E.; Chalmers, R.A.; Tracey, B.M.; Millington, D.S. Metabolic response to carnitine in methylmalonic aciduria. An effective strategy for elimination of propionyl groups. Arch. Dis. Child. 1983, 58, 916–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerreiro, G.; Faverzani, J.; Jacques, C.E.D.; Marchetti, D.P.; Sitta, A.; de Moura Coelho, D.; Kayser, A.; Kok, F.; Athayde, L.; Manfredini, V.; et al. Oxidative damage in glutaric aciduria type I patients and the protective effects of l-carnitine treatment. J. Cell. Biochem. 2018, 119, 10021–10032. [Google Scholar] [CrossRef] [PubMed]
- Forny, P.; Hörster, F.; Baumgartner, M.R.; Kölker, S.; Boy, N. How guideline development has informed clinical research for organic acidurias (et vice versa). J. Inherit. Metab. Dis. 2023. [Google Scholar] [CrossRef] [PubMed]
OADs | OMIM | Gene Symbol | Salient Clinical Features | Salient Blood Features | Salient Urine Features | Biochemical Monitoring |
---|---|---|---|---|---|---|
MSUD | 248600 | BCKDHA, BCKDHB and DBT | Encephalopathy, Developmental Delay, Intellectual disability | Elevation of leucine, isoleucine, and valine, alloisoleucine present | Elevated: 2-oxoisocaproate, 2-oxo-3-methylvalerate, 2-oxoisovalerate, 2-hydroxyisovalerate, 2-hydroxyisocaproate, 2-hydroxy-3-methylvalerate | Plasma BCAA |
PA | 606054 | PCCA or PCCB | Encephalopathy, Developmental Delay, Intellectual disability Seizures, Basal ganglia lesions Optic atrophy, hearing loss, pancreatitis, cardiomyopathy, Growth retardation anaemia, leukopenia, immune deficiency Renal failure [7]. | Elevated glycine, low glutamine, normal methionine, elevated propionylcarnitine (C3), presence of 2-methylcitrate [8,9] | Presence of 3-hydroxypropionate, 2-methylcitrate, tiglylglycine propionylglycine, lactic acid, absence of methylmalonic acid | Regular monitoring of serum ammonia, [10] |
MMA | 251000 | MUT | Encephalopathy, Developmental Delay, Intellectual disability Seizures, Basal ganglia lesions Optic atrophy, hearing loss, pancreatitis, cardiomyopathy, Growth retardation Renal failure | Ketoacidosis hyperammonaemia, hyperglycinaemia. Pancytopenia. Elevations of methylmalonic acid, 3-hydroxypropionate, and presence of 2-methylcitrate [8]. | Ketonuria, Elevated levels MMA and the presence of 3-hydroxypropionate, 2-methylcitrate, and tiglylglycine [11] | Plasma amino acids, plasma and urine methylmalonic acid levels, serum acylcarnitine profile and free and total carnitine levels [11] |
IVA | 607036 | IVD | Metabolic acidosis, Encephalopathy, Developmental Delay, Intellectual disability neutropenia [12] | Metabolic acidosis (with elevated anion gap), elevated lactate, hyperammonaemia | Increased excretion of 3-hydroxybutyric acid and 3-hydroxy-isovaleric acid [13] | Amino acids and carnitine in plasma, urinary isovalerylglycine and plasma isovalerylcarnitine levels |
GA1 GCDH | 231670 | GCDH | Progressive macrocephaly, acute encephalopathic crisis, basal ganglia injury, nonspecific neurologic abnormalities Developmental delay/ Intellectual disability | Elevated glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutarylcarnitine [14] | High plasma glutaryl carnitine [15] | Quantitative analysis of plasma amino acids [16] |
Maternal Age (Years) | Management during Pregnancy | Timing of Delivery (Weeks) | Mode of Delivery/ Treatment in Labour | Birth Weight (g) | Foetal Outcome | Maternal Outcome | Ref |
---|---|---|---|---|---|---|---|
17 | Protein-restricted diet. Recommended total protein is 80 g/day. Diet is adjusted once to twice weekly depending on the BCAA levels | 37 | CS Intralipid 20% (2 g/kg) + D10% were started during the peripartum period | 3000 | Normal | No metabolic problems | [28] |
28 | Initial diet of 30–40 g natural protein in the first and second trimester was increased to 60 g natural protein by the third trimester, supplemented by one MSUD | 40 | SVD | 3740 | Normal | No metabolic problems | [29] |
31 | Natural protein requirement continuously increased from the fourth month of gestation. The daily intake of natural protein was increased to 15 g. During the second half of pregnancy, a further increase to 30 g of natural protein was required. The maximal protein and leucine intake was in the eighth month of pregnancy | 41 | Dextrose IV infusion (220 g/24 h) continued for the next 2 days. | 3430 | Normal | No metabolic problems | [30] |
Unknown | Low-protein diet with increases in allowances over the duration of the pregnancy according to amino acid levels | 40 | IV Dextrose 20% IV Intralipid 20% | 3336 | Normal | No metabolic problems | [31] |
21 | Unknown | 41 | CS Natural protein intake was zero on day 1 and increased to 9 g daily over 3 days | 3405 | Normal | No metabolic problems | |
31 | Natural protein from diet plus synthetic protein. Isoleucine and valine supplements | 33 w 4 d | CS IV Dextrose 20% IV Intralipid 20% | 1760 | Normal | No metabolic problems | [32] |
28 | In early pregnancy, 87% of the protein was provided by BCAA-free medical formula. Late in pregnancy, the BCAA-free formula comprised 70% of protein | 37 | CS Parenteral nutrition continued until patient was able to take at least 50% of goal calories PO for 3 days | 2740 | Normal | No metabolic problems | [33] ‡ |
22 | BCAA tolerance increased progressively from around 21 weeks of gestation. During the second half of pregnancy, leucine intake was gradually increased to 2100 mg/day. | 36 | SVD | 2860 | Normal | No metabolic problems | [34] |
25 | Whole protein restriction at 0.6 g/kg plus continued use of BCAA-deficient formula providing 0.6 g/kg protein equivalents. Through the T2, whole protein intake was increased to 0.8 g/kg. For the remainder of pregnancy, 1.5 g/kg whole protein | 40 | SVD IV Dextrose continued for 12 h after delivery | 2600 | Normal | No metabolic problems | [35] † |
19 | Controlled diet of 200 g per day of BCAA-free milk, 1.2 g/kg per day of protein, 1 g/kg per day of fat, and a total energy intake of 2500 kcal/day, | 36 w 2 d | Unknown | 2736 | Cardio-pulmonary arrest | No metabolic problems | [36] |
31 | Total protein intake: Pre-pregnancy 43 g, T1: 45 g, T2: 49 g, T3: trimester 50 g, Perioperative period ~33 g, Postpartum 42 g. | 37 w 4 d | CS Dextrose 10% 80 mL/h was started six hours before the surgery. | 2673 | Normal | No metabolic problems | [37] ** |
Maternal Age (Years) | Treatment during Pregnancy | Diet | Timing of Delivery (Weeks) | Mode of Delivery/ Treatment in Labour | Birth Weight (g) | Foetal Outcome | Maternal Outcome | Ref |
---|---|---|---|---|---|---|---|---|
22 | L-carnitine 30 mg/kg with a gradual increase (30–100 mg/kg) | Whole-protein restriction to 0.8 g/kg body weight + PA protein formula equivalent of 0.5 g/kg. | 37 | SVD IV Dextrose | 2500 | Normal | No metabolic problems | [35] * |
26 | L-carnitine (no dose available) | Whole-protein restriction, medical formula, | 36.5 | IV Dextrose Van Calcar 2015/clinic experience | Unknown | Normal | No metabolic problems | [51] * |
28 | L-carnitine, Biotin | Whole-protein restriction, medical formula | 31 | Growth retardation | Preeclampsia No metabolic problems | [51] ** | ||
30 | L-carnitine, Biotin | Whole-protein restriction, medical formula | 32 | Normal | Preeclampsia No metabolic problems | [51] ** | ||
21 | Biotin (10 mg/d) + L-carnitine (50 mg/kg/d) | By 37 weeks gestation 10% increase in protein intake was recommended | 37 w 3 d | SVD D10NS 150 mL/h L-carnitine: 80–90 mg/kg | 3930 | Normal | No metabolic problems | [51] |
31 | T1: Tyrosine (550 mg/day), Biotin 5 mg/day Carnitine 50 mg/kg/day T2: Tyrosine 400 mg/g), Biotin 5 mg/day, Carnitine 60 mg/kg/day T3: Tyrosine 200 mg/day, Biotin 5 mg/day, Carnitine 75 mg/kg/day Lactation: Tyrosine 150 mg/day, Biotin 5 mg/day, Carnitine 50 mg/kg/day | T1: Protein, g/kg/g 1.0/AA mixture 0.4 g/kg/day T2: 1.11/AA mixture 0.5 g/kg/day T3: 1.2/AA mixture 0.6 g/kg/day Lactation: 1.3/AA mixture 0.65 g/kg/day | 37 | CS IV Dextrose 10% + low dose of bicarbonate | 2200 | Normal | No metabolic problems | [52] |
35 | L-carnitine 1 g/day | Protein approximately 0.8 g/kg body mass/day, | 31 | CS | First twin weighed 1550 g, the second weighed 1340 g | Normal | No metabolic problems | [53] |
26 | L-carnitine B9 | Unknown | 40 | SVD IV Dextrose | 4410 | Normal | No metabolic problems | [38] |
Maternal Age (Years) | Metabolic Treatment during Pregnancy | Dietary Treatment During Pregnancy | Timing of Delivery (Weeks) | Mode of Delivery/ Treatment in Labour | Birth Weight (g) | Foetal Outcome | Maternal Metabolic Outcome | Ref |
---|---|---|---|---|---|---|---|---|
18 | No vitamin B12, carnitine (no dose available) | 64 g protein/day (preconception prescription) | 38 | CS | 3288 | Normal | Hospitalization and IV fluids twice at 24 weeks due to nausea, vomiting and lethargy | [37] |
24 | Vitamin B12, preconception dose (actual dose not available) Carnitine (no dose available) | Up to 45 g/day | 42 | CS | 3714 | Normal | None | [37] ** |
35 | 5 mg B12 every other day throughout pregnancy, delivery and labour 1500 mg L carnitine twice daily | 45 g/day trimester 1 and 2 and 80 g/day trimester 3 (actual intake) 70 g/day) | 32 | CS L-carnitine 50 mg/kg IV 6 h for 24 h and then reduce to 25 mg/kg IV 6 h until stabilised | 1459 | Normal | Acute stress at labour due to possible placental abruption and preeclampsia | [37] ** |
29 | No Vitamin B12 Carnitine Vitamin D, C and folic acid (no doses available) | 47 g/day | 39 | SVD | 3095 | Normal | None | [37] ** |
24 | B12, L-Carnitine | B12, B9, Iron/vitamin D/calcium supplements | 38 | SVD IV Dextrose | 2850 | Normal | Mild hyperammonaemia in pregnancy. | [38] |
19 | B12, L-Carnitine | Multivitamin supplement. Amino acid supplement. Inadequate nutrition—poor foetal growth | 35 | CS IV Dextrose | 1530 | Growth retardation | No metabolic problems | [38] |
27 | B12, L-Carnitine | 40 | SVD | 3300 | Normal | No metabolic problems | [39] | |
31 | L-Carnitine T1: 3 g/day T2 + 3: 4 g/day BF: 4 g/day Isoleucine + Valine T1: 100 mg/day T2 + 3: 150 mg | Total Protein: T1:1 g/kg protein T3:1.2 g/kg protein BF 1.68 g/kg protein Supplements: Protein powder Dextrose polymer Precursor-free L-amino acids (only postpartum) | 38 | CS IV Dextrose 10% + Carnitine (Days: −1,0,1,2) | 3280 | Normal | No metabolic problems- T1,2: Nausea and vomiting in T1: Hyperglycaemia T3: Persistent anaemia | [40] |
29 | No B12 | Unknown | 37 | CS | 2480 | Normal | No metabolic problems | [41] |
24 | Aspirin, folic, B12, L-Carnitine | Total protein intake was limited to 1.1 g /kg/d, | At term | Dextrose 10% with 0.9% saline | 3940 | Normal | No metabolic problems | [42] |
23 | B12 (1 mg, every other day, IM) L-Carnitine (1 g tds) Folic acid (5 mg tds) Betaine (1 g tds) | No protein restriction prior/during pregnancy/delivery | 40 | Unknown | 3300 | Normal | No metabolic problems | [43] † |
34 | 1 mg B12 every 3 days, low-molecular weight heparin | Not stated | 39 | Unknown | 2420 | Normal | No metabolic problems | [44] ‡ |
Unknown | B12 1 mg fortnightly. Increased to daily 1 mg B12 from delivery to day 6. Then, reduced to 1 mg B12 every second day with a gradual reduction to 1 mg fortnightly | Unknown | 36 | CS IV Dextrose 10% 10 mg/kg/min | Unknown | Normal | No metabolic problems | [45] |
20 | Metronidazole Bicarbonate Erythropoetin Iron L-Carnitine | Cornstarch 1 g/kg Protein: T1:40 g T2: 55 g | 36 w 5 d | IOL IV Dextrose 20% IV Bicarbonate Stop protein until D2 postpartum | 3220 | Normal | Aneamia T2: Proteinuria No metabolic problems | [46] |
24 | IM OH-cobalamin 5 mg/week. Oral carnitine 2 g/day | Not stated | 38 | CS Dextrose and carnitine infusion | 2940 | Normal | 12 w gestation: macrocytic anaemia plasma free carnitine deficiency No metabolic problems postpartum | [47] |
23 | No B12, T2: L-Carnitine started as levels low (dose unknown) | Energy: 81–130 kcal/kg/day Fat: 3.2–5.6 g/kg/day Carbohydrate: 10–16 g/kg /day Protein: 1.6–4.1 g/kg/day | Unknown | SVD | 3500 | Normal | No metabolic problems | [48] * |
Unknown | Unknown, large dose B12 given during last 9 weeks gestation | Not stated | 40 | Unknown | 2900 | MMA child | No metabolic problems reported | [49] ** |
Unknown | B12 at week 27 of gestation | Not stated | 41 | SVD | 2350 | MMA child | No metabolic problems reported | [49] ** |
23 | Cyanocobalamin 500 mg BD PO + L-carnitine 1 mmol/10 mL OD PO + Essential fatty acids supplement | Dietary protein restriction (not quantified), adequate carbohydrate supplementation | 34 | CS | 1900 | Normal | No metabolic problems | [50] |
Maternal Age (Years) | Treatment during Pregnancy | Diet | Timing of Delivery (Weeks) | Mode of Delivery/ Treatment in Labour | Birthweight (g) | Foetal Outcome | Maternal Outcome | Ref |
---|---|---|---|---|---|---|---|---|
21 | Iron (dose unknown) | Week 20–38, 24 h recall 32–108 g protein per day Urinary urea nitrogen to total nitrogen ratio = > 80 g protein per day | At term | Unknown | 3700 | Normal | In T2: Increased urine odour associated with increase in milk consumption disappeared with cessation of milk | [54] * |
Pregnancy 1 at age 21 Pregnancy 2 unknown age Pregnancy 3 unknown age | Carnitine 2.5 g twice daily + glycine 4 g three times daily | Low protein diet (amount not available) | 37 | CS /IV Dextrose carnitine (100 mg/kg/24 h) + sodium benzoate (loading dose 250 mg/kg over 90 min followed by 250 mg/kg /24 h | 3140 | Normal | No metabolic problems | [55] † |
Carnitine 3 g twice daily | Protein-restricted diet (amount not available) | Unknown | Unknown/IV L carnitine 100 mg /kg/day + sodium benzoate 250 mg/kg and IV dextrose | 2920 | Normal | In month 2 hyperemesis gravidarum required management with antiemetics, IV dextrose. IV carnitine 100 mg/kg was required as oral declined | [56] † | |
Same as pregnancy 2 | Same as pregnancy 2 | Unknown | Unknown/ same management as pregnancy2 | 3940 | Normal | Same problem occurred at month 2 in this pregnancy | [56] † | |
Pregnancy 1 unknown age Pregnancy 2 unknown age | Carnitine (1320 mg × 3 times daily + glycine 6 g three times daily Month 5: glycine increased to 10 mg three times daily Month 6: 15 mg three times daily | Preconception: protein-restricted diet and 30 g leucine-free formula, no data available for during pregnancy | Term | Mode of delivery not available /IV Dextrose 10%; 2.5 L day and IV L carnitine 200 mg/kg/day and oral glycine 15 mg/day | 3980 | Normal | No metabolic problems | [56] †† |
Carnitine + glycine Required 100 g glycine per day and 10 g L carnitine per day | Leucine-free formula increased to 80 g per day | Term | Same as pregnancy 1 | 4200 | Normal | No metabolic problems | [56] †† | |
25 | Carnitine 9 g/day | Protein-restricted diet and leucine-free formula (amounts not available) In the last trimester protein intake was monitored and controlled (amounts not available) | Unknown | Unknown/ No additional medical care during labour | Unknown, Low to normal growth of foetuses compared to single pregnancies was observed | Favourable outcome for mother and twins. Two episodes of hyperemesis gravidarium in month 4 and 5 were treated with IV dextrose and 100 mg/kg L carnitine per day | [56] | |
20 | Preconception doses used: Carnitine 70 mg/kg/day) + glycine 140 mg/kg/day | From week 5 gestation gradual adaption in diet to 40 kcal/kg/day and 1.5 g protein/kg/day. Multivitamin and iron supplementation (doses not available) | 35 | SVD | 2718 | Normal | No metabolic problems | [57] |
Maternal Age (Years) | Treatment during Pregnancy | Diet | Timing of Delivery (Weeks) | Mode of Delivery/ Treatment in Labour | Birth Weight (g) | Foetal Outcome | Maternal Outcome | Ref |
---|---|---|---|---|---|---|---|---|
21 | B12, B2, Carnitine | Unknown | 39 | SVD | 3017 | Normal | No metabolic problems | [38] |
18 | B12, B2, Carnitine | Unknown | 38 | IOL IV Dextrose | 4030 | Normal | No metabolic problems | [38] |
23 | Carnitine 1500 mg bd | Natural protein (16–24 g/day), synthetic protein (60–68 g/day) (from 4 to 33 weeks of gestation) | 38 | CS IV Dextrose 10%, 12 g of natural protein + 68.3 g synthetic protein | 3615 | Normal | No metabolic problems | [58] † |
28 | Carnitine 1500 mg bd | Natural protein (20–25 g/day), synthetic protein (6068 g/day) (from 4 to 36 weeks of gestation) | 38w6d | CS 2 days pre-delivery: reduced half natural protein Date of delivery: 0 g of natural proteins, +75 g synthetic protein IV Dextrose 10% Day 1 and 2 post-delivery: Half natural protein + 75 g synthetic protein | 4470 | Normal | No metabolic problems | [58] † |
23 | Carnitine supplement was increased from 0.5 g to 2 g daily at 18 weeks’ gestation | Pre-pregnancy protein 40–50 g/d continued during pregnancy | 36 | CS IV infusion of L-carnitine 667 mg in 10% dextrose at 125 mL/h. L-carnitine and 10% dextrose infusion was continued perioperatively until regular diet was resumed. | 2680 | Normal | No metabolic problems | [59] |
24 | Unknown | Unknown | Unknown | Unknown | 3515 | Normal | No metabolic problems | [60] ‡ |
20 | Not supplemented with carnitine | Unknown | unknown | unknown | 3160 | Normal | No metabolic problems | [60] |
Two women with GA1, were diagnosed only flowing testing their newborn children | Normal | No metabolic problems | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakerdi, L.A.; Gillman, B.; Corcoran, E.; McNulty, J.; Treacy, E.P. Organic Aciduria Disorders in Pregnancy: An Overview of Metabolic Considerations. Metabolites 2023, 13, 518. https://doi.org/10.3390/metabo13040518
Shakerdi LA, Gillman B, Corcoran E, McNulty J, Treacy EP. Organic Aciduria Disorders in Pregnancy: An Overview of Metabolic Considerations. Metabolites. 2023; 13(4):518. https://doi.org/10.3390/metabo13040518
Chicago/Turabian StyleShakerdi, Loai A., Barbara Gillman, Emma Corcoran, Jenny McNulty, and Eileen P. Treacy. 2023. "Organic Aciduria Disorders in Pregnancy: An Overview of Metabolic Considerations" Metabolites 13, no. 4: 518. https://doi.org/10.3390/metabo13040518
APA StyleShakerdi, L. A., Gillman, B., Corcoran, E., McNulty, J., & Treacy, E. P. (2023). Organic Aciduria Disorders in Pregnancy: An Overview of Metabolic Considerations. Metabolites, 13(4), 518. https://doi.org/10.3390/metabo13040518