The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review
Abstract
:1. The Physiological Integrity of the Dentine-Pulp Complex
1.1. Dental Pulp Cells
1.2. Odontoblasts—Primary and Secondary Dentine Formation
1.3. Odontoblasts and Odontoblast-Like Cells—Tertiary Dentine Formation
2. The Changes in Metabolic and Signalling Pathways during the Pulp Inflammation
3. The Impact of Selected Dental Procedures on Cellular Metabolism in the Dental Pulp
3.1. The Orthodontic Treatment
3.2. The Conservative Dentistry Procedures
3.3. The Dental Bleaching
4. The Diabetes-Induced Consequences for the Cellular Metabolism of the Dentine-Pulp Complex
5. The Ageing Influence on the Metabolic Functioning of the Pulp Cells and the Odontoblasts
- -
- Watch-spring theory (the aged pulp’s energy may be used up because its odontoblasts and fibroblasts have fewer mitochondria);
- -
- Falling domino theory (odontoblasts shrink and flatten; aged odontoblastic layers have intracellular and extracellular vacuoles);
- -
- Free radicals (oxygen-generated free radicals from mature dental pulp fibroblasts and odontoblasts may age the pulp);
- -
- Cellular loss (with age, there is a loss of dividing pulp cells, including odontoblasts; the connective tissue replaces cells; dentinogenesis is stopped; however, the periodontal ligament holds the tooth in the alveolar bone after the pulp necrosis) [148,149]. Currently, the last theory seems to be the most likely, along with other mechanisms described in more recent studies summarised below.
6. The Anti-Inflammatory Mechanisms of the Potential Metabolic Mediators on the Dental Pulp
7. The Regenerative Potential of the Pulp Stem Cells for Maintaining the Function of the Dentine-Pulp Complex
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mjör, I.A.; Sveen, O.B.; Heyeraas, K.J. Pulp-Dentin Biology in Restorative Dentistry. Part 1: Normal Structure and Physiology. Quintessence Int. 2001, 32, 427–446. [Google Scholar]
- Van Hassel, H. Reprint of: Physiology of the Human Dental Pulp. J. Endod. 2021, 47, 690–695. [Google Scholar] [CrossRef]
- Okiji, T.; Morita, I.; Kobayashi, C.; Sunada, I.; Murota, S. Arachidonic-acid metabolism in normal and experimentally-inflamed rat dental pulp. Arch. Oral Biol. 1987, 32, 723–727. [Google Scholar] [CrossRef]
- Shi, X.; Mao, J.; Liu, Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. STEM CELLS Transl. Med. 2020, 9, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Vásquez, J.L.; Castañeda-Alvarado, C.P. Dental Pulp Fibroblast: A Star Cell. J. Endod. 2022, 48, 1005–1019. [Google Scholar] [CrossRef]
- Chmilewsky, F.; Jeanneau, C.; Laurent, P.; About, I. Pulp Fibroblasts Synthesize Functional Complement Proteins Involved in Initiating Dentin–Pulp Regeneration. Am. J. Pathol. 2014, 184, 1991–2000. [Google Scholar] [CrossRef]
- Kawashima, N.; Okiji, T. Odontoblasts: Specialized hard-tissue-forming cells in the dentin-pulp complex. Congenit. Anom. 2016, 56, 144–153. [Google Scholar] [CrossRef]
- Rajan, S.; Ljunggren, A.; Manton, D.J.; Björkner, A.E.; McCullough, M. Post-Mitotic Odontoblasts in Health, Disease, and Regeneration. Arch. Oral Biol. 2020, 109, 104591. [Google Scholar] [CrossRef]
- Thesleff, I.; Nieminen, P. Tooth morphogenesis and cell differentiation. Curr. Opin. Cell Biol. 1996, 8, 844–850. [Google Scholar] [CrossRef]
- Arana-Chavez, V.E.; Massa, L.F. Odontoblasts: The cells forming and maintaining dentine. Int. J. Biochem. Cell Biol. 2004, 36, 1367–1373. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z. Autophagy in the dentin-pulp complex against inflammation. Oral Dis. 2018, 24, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Bleicher, F. Odontoblast physiology. Exp. Cell Res. 2014, 325, 65–71. [Google Scholar] [CrossRef]
- Couve, E.; Osorio, R.; Schmachtenberg, O. The Amazing Odontoblast: Activity, Autophagy, and Aging. J. Dent. Res. 2013, 92, 765–772. [Google Scholar] [CrossRef]
- Sasaki, T.; Garant, P.R. Structure and Organization of Odontoblasts. Anat. Rec. 1996, 245, 235–249. [Google Scholar] [CrossRef]
- Kawasaki, K.; Weiss, K. SCPP Gene Evolution and the Dental Mineralization Continuum. J. Dent. Res. 2008, 87, 520–531. [Google Scholar] [CrossRef]
- Balic, A.; Mina, M. Identification of secretory odontoblasts using DMP1-GFP transgenic mice. Bone 2011, 48, 927–937. [Google Scholar] [CrossRef] [Green Version]
- Embery, G.; Hall, R.; Waddington, R.; Septier, D.; Goldberg, M. Proteoglycans in Dentinogenesis. Crit. Rev. Oral Biol. Med. 2001, 12, 331–349. [Google Scholar] [CrossRef]
- Goldberg, M.; Kulkarni, A.B.; Young, M.; Boskey, A. Dentin structure composition and mineralization. Front. Biosci. 2011, 3, 711–735. [Google Scholar] [CrossRef]
- Tziafas, D.; Smith, A.J.; Lesot, H. Designing New Treatment Strategies in Vital Pulp Therapy. J. Dent. 2000, 28, 77–92. [Google Scholar] [CrossRef]
- Couve, E. Ultrastructural changes during the life cycle of human odontoblasts. Arch. Oral Biol. 1986, 31, 643–651. [Google Scholar] [CrossRef]
- Farges, J.-C.; Alliot-Licht, B.; Renard, E.; Ducret, M.; Gaudin, A.; Smith, A.J.; Cooper, P.R. Dental Pulp Defence and Repair Mechanisms in Dental Caries. Mediat. Inflamm. 2015, 2015, 230251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.J.; Cassidy, N.; Perry, H.; Bègue-Kirn, C.; Ruch, J.V.; Lesot, H. Reactionary dentinogenesis. Int. J. Dev. Biol. 1995, 39, 273–280. [Google Scholar]
- Murray, P.; About, I.; Lumley, P.; Franquin, J.-C.; Windsor, L.; Smith, A. Odontoblast morphology and dental repair. J. Dent. 2003, 31, 75–82. [Google Scholar] [CrossRef]
- Cooper, P.R.; Takahashi, Y.; Graham, L.W.; Simon, S.; Imazato, S.; Smith, A.J. Inflammation–regeneration interplay in the dentine–pulp complex. J. Dent. 2010, 38, 687–697. [Google Scholar] [CrossRef]
- Simon, S.R.J.; Berdal, A.; Cooper, P.R.; Lumley, P.J.; Tomson, P.L.; Smith, A.J. Dentin-Pulp Complex Regeneration: From Lab to Clinic. Adv. Dent. Res. 2011, 23, 340–345. [Google Scholar] [CrossRef]
- Galler, K.; Weber, M.; Korkmaz, Y.; Widbiller, M.; Feuerer, M. Inflammatory Response Mechanisms of the Dentine–Pulp Complex and the Periapical Tissues. Int. J. Mol. Sci. 2021, 22, 1480. [Google Scholar] [CrossRef]
- Smith, A.J.; Lesot, H. Induction and Regulation of Crown Dentinogenesis: Embryonic Events as a Template for Dental Tissue Repair? Crit. Rev. Oral Biol. Med. 2001, 12, 425–437. [Google Scholar] [CrossRef]
- Sloan, A.; Smith, A. Stem cells and the dental pulp: Potential roles in dentine regeneration and repair. Oral Dis. 2007, 13, 151–157. [Google Scholar] [CrossRef]
- Roberts-Clark, D.; Smith, A. Angiogenic growth factors in human dentine matrix. Arch. Oral Biol. 2000, 45, 1013–1016. [Google Scholar] [CrossRef]
- Cassidy, N.; Fahey, M.; Prime, S.S.; Smith, A.J. Comparative analysis of transforming growth factor-β isoforms 1–3 in human and rabbit dentine matrices. Arch. Oral Biol. 1997, 42, 219–223. [Google Scholar] [CrossRef]
- Silva, T.A.; Lara, V.S.; Silva, J.S.; Garlet, G.P.; Butler, W.T.; Cunha, F.Q. Dentin Sialoprotein and Phosphoprotein Induce Neutrophil Recruitment: A Mechanism Dependent on IL-1β, TNF-α, and CXC Chemokines. Calcif. Tissue Int. 2004, 74, 532–541. [Google Scholar] [CrossRef]
- Silva, T.; Lara, V.; Silva, J.S.; Oliveira, S.; Butler, W.; Cunha, F.Q. Macrophages and Mast Cells Control the Neutrophil Migration Induced by Dentin Proteins. J. Dent. Res. 2005, 84, 79–83. [Google Scholar] [CrossRef]
- He, W.-X.; Niu, Z.-Y.; Zhao, S.-L.; Smith, A.J. Smad protein mediated transforming growth factor β1 induction of apoptosis in the MDPC-23 odontoblast-like cell line. Arch. Oral Biol. 2005, 50, 929–936. [Google Scholar] [CrossRef]
- Lara, V.; Figueiredo, F.; da Silva, T.; Cunha, F. Dentin-induced in vivo Inflammatory Response and in vitro Activation of Murine Macrophages. J. Dent. Res. 2003, 82, 460–465. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, C.; Tani-Ishii, N.; Shi, S.; Wang, C.-Y. NF-κB Activation in Human Dental Pulp Stem Cells by TNF and LPS. J. Dent. Res. 2005, 84, 994–998. [Google Scholar] [CrossRef]
- Pevsner-Fischer, M.; Morad, V.; Cohen-Sfady, M.; Rousso-Noori, L.; Zanin-Zhorov, A.; Cohen, S.; Cohen, I.R.; Zipori, D. Toll-like Receptors and Their Ligands Control Mesenchymal Stem Cell Functions. Blood 2007, 109, 1422–1432. [Google Scholar] [CrossRef]
- Rutherford, R.B.; Gu, K. Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic protein-7. Eur. J. Oral Sci. 2000, 108, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Baumgardner, K.R.; Sulfaro, M.A. The Anti–Inflammatory Effects of Human Recombinant Copper–Zinc Superoxide Dismutase on Pulp Inflammation. J. Endod. 2001, 27, 190–195. [Google Scholar] [CrossRef]
- Kritikou, K.; Greabu, M.; Imre, M.; Miricescu, D.; Totan, A.R.; Burcea, M.; Stanescu-Spinu, I.-I.; Spinu, T. ILs and MMPs Levels in Inflamed Human Dental Pulp: A Systematic Review. Molecules 2021, 26, 4129. [Google Scholar] [CrossRef]
- Galicia, J.C.; Guzzi, P.H.; Giorgi, F.M.; Khan, A.A. Predicting the Response of the Dental Pulp to SARS-CoV2 Infection: A Transcriptome-Wide Effect Cross-Analysis. Genes Immun. 2020, 21, 360–363. [Google Scholar] [CrossRef]
- Brodzikowska, A.; Ciechanowska, M.; Kopka, M.; Stachura, A.; Włodarski, P.K. Role of Lipopolysaccharide, Derived from Various Bacterial Species, in Pulpitis-A Systematic Review. Biomolecules 2022, 12, 138. [Google Scholar] [CrossRef]
- Li, X.; Hu, L.; Ma, L.; Chang, S.; Wang, W.; Feng, Y.; Xu, Y.; Hu, J.; Zhang, C.; Wang, S. Severe periodontitis may influence cementum and dental pulp through inflammation, oxidative stress, and apoptosis. J. Periodontol. 2019, 90, 1297–1306. [Google Scholar] [CrossRef]
- Giovanella, L.B.; Barletta, F.B.; Felippe, W.T.; Bruno, K.F.; de Alencar, A.H.G.; Estrela, C.; Giovanella, L.B.; Barletta, F.B.; Felippe, W.T.; Bruno, K.F.; et al. Assessment of Oxygen Saturation in Dental Pulp of Permanent Teeth with Periodontal Disease. J. Endod. 2014, 40, 1927–1931. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, K.; Kaneko, Y.; Muramatsu, T.; Shimono, M.; Inoue, T. Pulp cell responses during hypoxia and reoxygenation in vitro. Eur. J. Oral Sci. 2003, 111, 332–338. [Google Scholar] [CrossRef]
- Boyle, M.; Chun, C.; Strojny, C.; Narayanan, R.; Bartholomew, A.; Sundivakkam, P.; Alapati, S. Chronic Inflammation and Angiogenic Signaling Axis Impairs Differentiation of Dental-Pulp Stem Cells. PLoS ONE 2014, 9, e113419. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Lihua, L.; Sha, Z.; Hongli, W.; Wu, Z.; Guijun, T.; Kai, Z.; Yahui, L. The Activity of Cytokines in Dental Pulp. J. Gene Med. 2022, 24, e3444. [Google Scholar] [CrossRef]
- Worsley, M.A.; Allen, C.E.; Billinton, A.; King, A.E.; Boissonade, F.M. Chronic Tooth Pulp Inflammation Induces Persistent Expression of Phosphorylated ERK (PERK) and Phosphorylated P38 (Pp38) in Trigeminal Subnucleus Caudalis. Neuroscience 2014, 269, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.S.; Jin, M.U.; Hong, J.H.; Kim, Y.S.; Choi, S.Y.; Kim, T.H.; Cho, Y.S.; Bae, Y.C. Expression of Vesicular Glutamate Transporters VGLUT1 and VGLUT2 in the Rat Dental Pulp and Trigeminal Ganglion Following Inflammation. PLoS ONE 2014, 9, e109723. [Google Scholar] [CrossRef] [Green Version]
- Kanno, K.; Shimizu, K.; Shinoda, M.; Hayashi, M.; Takeichi, O.; Iwata, K. Role of Macrophage-Mediated Toll-like Receptor 4-Interleukin-1R Signaling in Ectopic Tongue Pain Associated with Tooth Pulp Inflammation. J. Neuroinflamm. 2020, 17, 312. [Google Scholar] [CrossRef]
- Rechenberg, D.-K.; Galicia, J.C.; Peters, O.A. Biological Markers for Pulpal Inflammation: A Systematic Review. PLoS ONE 2016, 11, e0167289. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Vásquez, J.L.; Bravo-Guapisaca, M.I.; Gavidia-Pazmiño, J.F.; Intriago-Morales, R.V. Adipokines in Dental Pulp: Physiological, Pathological, and Potential Therapeutic Roles. J. Oral Biosci. 2022, 64, 59–70. [Google Scholar] [CrossRef]
- Bletsa, A.; Berggreen, E.; Fristad, I.; Tenstad, O.; Wiig, H. Cytokine Signalling in Rat Pulp Interstitial Fluid and Transcapillary Fluid Exchange during Lipopolysaccharide-Induced Acute Inflammation. J. Physiol. 2006, 573, 225–236. [Google Scholar] [CrossRef]
- Brodzikowska, A.; Gondek, A.; Rak, B.; Paskal, W.; Pełka, K.; Cudnoch-Jędrzejewska, A.; Włodarski, P. Metalloproteinase 14 (MMP-14) and Hsa-MiR-410-3p Expression in Human Inflamed Dental Pulp and Odontoblasts. Histochem. Cell Biol. 2019, 152, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Li, Q.; Meng, R.; Yi, B.; Xu, Q. METTL 3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells. J. Cell. Mol. Med. 2018, 22, 2558–2568. [Google Scholar] [CrossRef]
- Gatta, V.; Zizzari, V.L.; Dd’Amico, V.; Salini, L.; D’Aurora, M.; Franchi, S.; Antonucci, I.; Sberna, M.T.; Gherlone, E.; Stuppia, L.; et al. Microarray Evaluation of Gene Expression Profiles in Inflamed and Healthy Human Dental Pulp: The Role of IL1beta and CD40 in Pulp Inflammation. J. Biol. Regul. Homeost Agents 2012, 26, 45–50. [Google Scholar]
- Hayama, T.; Kamio, N.; Okabe, T.; Muromachi, K.; Matsushima, K. Kallikrein Promotes Inflammation in Human Dental Pulp Cells Via Protease-Activated Receptor-1. J. Cell. Biochem. 2016, 117, 1522–1528. [Google Scholar] [CrossRef]
- Huang, F.-M.; Tsai, C.-H.; Chen, Y.-J.; Liu, C.-M.; Chou, M.-Y.; Chang, Y.-C. Upregulation of tissue-type plasminogen activator in inflamed human dental pulps. Int. Endod. J. 2005, 38, 328–333. [Google Scholar] [CrossRef]
- Hui, T.; Peng, A.; Zhao, Y.; Yang, J.; Ye, L.; Wang, C. EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors. Arch. Oral Biol. 2018, 85, 16–22. [Google Scholar] [CrossRef]
- Kamio, N.; Hashizume, H.; Nakao, S.; Matsushima, K.; Sugiya, H. Plasmin is involved in inflammation via protease-activated receptor-1 activation in human dental pulp. Biochem. Pharmacol. 2008, 75, 1974–1980. [Google Scholar] [CrossRef]
- Killough, S.A.; Lundy, F.T.; Irwin, C.R. Substance P Expression by Human Dental Pulp Fibroblasts: A Potential Role in Neurogenic Inflammation. J. Endod. 2009, 35, 73–77. [Google Scholar] [CrossRef]
- Liao, C.; Wang, Y.; Ou, Y.; Wu, Y.; Zhou, Y.; Liang, S. Effects of sclerostin on lipopolysaccharide-induced inflammatory phenotype in human odontoblasts and dental pulp cells. Int. J. Biochem. Cell Biol. 2019, 117, 105628. [Google Scholar] [CrossRef]
- Liu, L.; Huang, R.; Yang, R.; Wei, X. OCT4B1 Regulates the Cellular Stress Response of Human Dental Pulp Cells with Inflammation. Biomed. Res. Int. 2017, 2017, 2756891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Chen, L.; Wu, J.; Lin, Z.; Huang, S. Long noncoding RNA MEG3 expressed in human dental pulp regulates LPS-Induced inflammation and odontogenic differentiation in pulpitis. Exp. Cell Res. 2021, 400, 112495. [Google Scholar] [CrossRef] [PubMed]
- Mehboob, R.; Hassan, S.; Gilani, S.A.; Hassan, A.; Tanvir, I.; Waseem, H.; Hanif, A. Enhanced Neurokinin-1 Receptor Expression Is Associated with Human Dental Pulp Inflammation and Pain Severity. Biomed. Res. Int. 2021, 2021, 5593520. [Google Scholar] [CrossRef]
- Mente, J.; Petrovic, J.; Gehrig, H.; Rampf, S.; Michel, A.; Schürz, A.; Pfefferle, T.; Saure, D.; Erber, R. A Prospective Clinical Pilot Study on the Level of Matrix Metalloproteinase-9 in Dental Pulpal Blood as a Marker for the State of Inflammation in the Pulp Tissue. J. Endod. 2016, 42, 190–197. [Google Scholar] [CrossRef]
- Miyauchi, M.; Takata, T.; Ito, H.; Ogawa, I.; Kobayashi, J.; Nikai, H.; Ijuhin, N. Immunohistochemical demonstration of prostaglandins E2, F2α, and 6-keto-prostaglandin F1α in rat dental pulp with experimentally induced inflammation. J. Endod. 1996, 22, 600–602. [Google Scholar] [CrossRef]
- Okiji, T.; Morita, I.; Suda, H.; Murota, S. Pathophysiological Roles of Arachidonic Acid Metabolites in Rat Dental Pulp. Proc. Finn. Dent. Soc. 1992, 88 (Suppl. S1), 433–438. [Google Scholar]
- Rethnam, S.; Raju, B.; Fristad, I.; Berggreen, E.; Heyeraas, K.J. Differential Expression of Neuropeptide Y Y1 Receptors during Pulpal Inflammation. Int. Endod. J. 2010, 43, 492–498. [Google Scholar] [CrossRef]
- Sugiuchi, A.; Sano, Y.; Furusawa, M.; Abe, S.; Muramatsu, T. Human Dental Pulp Cells Express Cellular Markers for Inflammation and Hard Tissue Formation in Response to Bacterial Information. J. Endod. 2018, 44, 992–996. [Google Scholar] [CrossRef]
- Tancharoen, S.; Tengrungsun, T.; Suddhasthira, T.; Kikuchi, K.; Vechvongvan, N.; Tokuda, M.; Maruyama, I. Overexpression of Receptor for Advanced Glycation End Products and High-Mobility Group Box 1 in Human Dental Pulp Inflammation. Mediat. Inflamm. 2014, 2014, 754069. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Hu, Z.; Mei, P.; Wu, Y.; Zhu, M. NUTM2A-AS1 silencing alleviates LPS-induced apoptosis and inflammation in dental pulp cells through targeting let-7c-5p/HMGB1 axis. Int. Immunopharmacol. 2021, 96, 107497. [Google Scholar] [CrossRef]
- Muñoz-Carrillo, J.L.; Vázquez-Alcaraz, S.J.; Vargas-Barbosa, J.M.; Ramos-Gracia, L.G.; Alvarez-Barreto, I.; Medina-Quiroz, A.; Díaz-Huerta, K.K. The Role of MicroRNAs in Pulp Inflammation. Cells 2021, 10, 2142. [Google Scholar] [CrossRef]
- Mo, Z.; Li, Q.; Cai, L.; Zhan, M.; Xu, Q. The effect of DNA methylation on the miRNA expression pattern in lipopolysaccharide-induced inflammatory responses in human dental pulp cells. Mol. Immunol. 2019, 111, 11–18. [Google Scholar] [CrossRef]
- Huang, X.; Chen, K. Differential Expression of Long Noncoding RNAs in Normal and Inflamed Human Dental Pulp. J. Endod. 2018, 44, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Niklas, A.; Proff, P.; Gosau, M.; Römer, P. The Role of Hypoxia in Orthodontic Tooth Movement. Int. J. Dent. 2013, 2013, 841840. [Google Scholar] [CrossRef]
- Wong, V.S.; Freer, T.J.; Joseph, B.K.; Daley, T.J. Tooth Movement and Vascularity of the Dental Pulp: A Pilot Study. Aust. Orthod. J. 1999, 15, 246–250. [Google Scholar]
- Yu, W.; Zhang, Y.; Jiang, C.; He, W.; Yi, Y.; Wang, J. Orthodontic treatment mediates dental pulp microenvironment via IL17A. Arch. Oral Biol. 2016, 66, 22–29. [Google Scholar] [CrossRef]
- Veberiene, R.; Smailiene, D.; Danielyte, J.; Toleikis, A.; Dagys, A.; Machiulskiene, V. Effects of Intrusive Force on Selected Determinants of Pulp Vitality. Angle Orthod. 2009, 79, 1114–1118. [Google Scholar] [CrossRef]
- Perinetti, G.; Varvara, G.; Festa, F.; Esposito, P. Aspartate aminotransferase activity in pulp of orthodontically treated teeth. Am. J. Orthod. Dentofac. Orthop. 2004, 125, 88–92. [Google Scholar] [CrossRef]
- Spoto, G.; Fioroni, M.; Rubini, C.; Tripodi, D.; Perinetti, G.; Piattelli, A. Aspartate Aminotransferase Activity in Human Healthy and Inflamed Dental Pulps. J. Endod. 2001, 27, 394–395. [Google Scholar] [CrossRef]
- Veberiene, R.; Smailiene, D.; Baseviciene, N.; Toleikis, A.; Machiulskiene, V. Change in dental pulp parameters in response to different modes of orthodontic force application. Angle Orthod. 2010, 80, 1018–1022. [Google Scholar] [CrossRef]
- Rohaya, M.; Hisham, Z.S.; Khazlina, K. Preliminary Study of Aspartate Aminotransferase Activity in Gingival Crevicular Fluids During Orthodontic Tooth Movement. J. Appl. Sci. 2009, 9, 1393–1396. [Google Scholar] [CrossRef] [Green Version]
- Chavarria-Bolaños, D.; Flores-Reyes, H.; Lombana-Sanchez, N.; Cerda-Cristerna, B.; Pozos-Guillen, A. Sensory Neuropeptides and Endogenous Opioids Expression in Human Dental Pulp with Asymptomatic Inflammation: In Vivo Study. Mediat. Inflamm. 2015, 2015, 879126. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-C.; Chen, Y.-J.; Tai, T.-F.; Tai, M.-R.; Li, M.-Y.; Tsai, Y.-L.; Lan, W.-H.; Wang, Y.-L.; Jeng, J.-H. Cytokine-induced prostaglandin E2production and cyclooxygenase-2 expression in dental pulp cells: Downstream calcium signalling via activation of prostaglandin EP receptor. Int. Endod. J. 2006, 39, 819–826. [Google Scholar] [CrossRef]
- Chang, M.C.; Chen, Y.J.; Lee, M.Y.; Lin, L.D.; Wang, T.M.; Chan, C.P.; Tsai, Y.L.; Wang, C.Y.; Lin, B.R.; Jeng, J.H. Prostaglandin F2α stimulates MEK-ERK signalling but decreases the expression of alkaline phosphatase in dental pulp cells. Int. Endod. J. 2010, 43, 461–468. [Google Scholar] [CrossRef]
- Chang, M.-C.; Chang, H.-H.; Lee, M.-Y.; Lin, C.-C.; Yeh, H.-W.; Yang, T.-T.; Lin, P.-S.; Tseng, W.-Y.; Jeng, J.-H. Prostaglandin F2α-Induced Interleukin-8 Production in Human Dental Pulp Cells Is Associated With MEK/ERK Signaling. J. Endod. 2009, 35, 508–512. [Google Scholar] [CrossRef]
- Maltos, K.L.; Menezes, G.B.; Caliari, M.V.; Rocha, O.A.; Santos, J.M.; Alves, D.L.; Duarte, I.D.; Francischi, J.N. Vascular and cellular responses to pro-inflammatory stimuli in rat dental pulp. Arch. Oral Biol. 2004, 49, 443–450. [Google Scholar] [CrossRef]
- Hebling, J.; Giro, E.; Costa, C. Human pulp response after an adhesive system application in deep cavities. J. Dent. 1999, 27, 557–564. [Google Scholar] [CrossRef]
- Chang, M.-C.; Lin, L.-D.; Chuang, F.-H.; Chan, C.-P.; Wang, T.-M.; Lee, J.-J.; Jeng, P.-Y.; Tseng, W.-Y.; Lin, H.-J.; Jeng, J.-H. Carboxylesterase expression in human dental pulp cells: Role in regulation of BisGMA-induced prostanoid production and cytotoxicity. Acta Biomater. 2012, 8, 1380–1387. [Google Scholar] [CrossRef]
- Rakich, D.R.; Wataha, J.C.; Lefebvre, C.A.; Weller, R.N. Effect of dentin bonding agents on the secretion of inflammatory mediators from macrophages. J. Endod. 1999, 25, 114–117. [Google Scholar] [CrossRef]
- Noda, M.; Wataha, J.C.; Lockwood, P.E.; Volkmann, K.R.; Kaga, M.; Sano, H. Sublethal, 2-week exposures of dental material components alter TNF-α secretion of THP-1 monocytes. Dent. Mater. 2003, 19, 101–105. [Google Scholar] [CrossRef]
- Lehmann, A.; Nijakowski, K.; Drożdżyńska, A.; Przybylak, M.; Woś, P.; Surdacka, A. Influence of the Polymerization Modes on the Methacrylic Acid Release from Dental Light-Cured Materials—In Vitro Study. Materials 2022, 15, 8976. [Google Scholar] [CrossRef]
- Hamid, A.; Okamoto, A.; Iwaku, M.; Hume, W.R. Component release from light-activated glass ionomer and compomer cements. J. Oral Rehabilitation 1998, 25, 94–99. [Google Scholar] [CrossRef]
- Kawai, K.; Takaoka, T. Fluoride, Hydrogen Ion and HEMA Release from Light-Cured GIC Restoratives. Am. J. Dent. 2002, 15, 149–152. [Google Scholar]
- Lehmann, A.; Nijakowski, K.; Nowakowska, M.; Woś, P.; Misiaszek, M.; Surdacka, A. Influence of Selected Restorative Materials on the Environmental pH: In Vitro Comparative Study. Appl. Sci. 2021, 11, 11975. [Google Scholar] [CrossRef]
- Davidovic, L.; Cuk, M.; Zivkovic-Sandic, M.; Grga, D.; Zivkovic, S. The influence of liners on the pulp inflammation. Srp. Arh. za Celok. Lek. 2015, 143, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Rathinam, E.; Rajasekharan, S.; Chitturi, R.T.; Martens, L.; De Coster, P. Gene Expression Profiling and Molecular Signaling of Dental Pulp Cells in Response to Tricalcium Silicate Cements: A Systematic Review. J. Endod. 2015, 41, 1805–1817. [Google Scholar] [CrossRef]
- Peng, W.; Liu, W.; Zhai, W.; Jiang, L.; Li, L.; Chang, J.; Zhu, Y. Effect of Tricalcium Silicate on the Proliferation and Odontogenic Differentiation of Human Dental Pulp Cells. J. Endod. 2011, 37, 1240–1246. [Google Scholar] [CrossRef]
- Woo, S.-M.; Hwang, Y.-C.; Lim, H.-S.; Choi, N.-K.; Kim, S.-H.; Kim, W.-J.; Kim, S.-M.; Jung, J.-Y. Effect of Nifedipine on the Differentiation of Human Dental Pulp Cells Cultured with Mineral Trioxide Aggregate. J. Endod. 2013, 39, 801–805. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, R.; Ni, Y.; Kokot, S. Competitive Interactions of Anti-Carcinogens with Serum Albumin: A Spectroscopic Study of Bendamustine and Dexamethasone with the Aid of Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 123, 241–248. [Google Scholar] [CrossRef]
- Soares, I.P.M.; Anovazzi, G.; Anselmi, C.; Leite, M.L.; Scheffel, D.L.S.; Soares, D.G.; Costa, C.A.D.S.; Hebling, J. Response of pulp cells to resin infiltration of enamel white spot-like lesions. Dent. Mater. 2021, 37, e329–e340. [Google Scholar] [CrossRef]
- Benetti, F.; Gomes-Filho, J.E.; Ferreira, L.L.; Ervolino, E.; Briso, A.L.F.; Sivieri-Araújo, G.; Dezan-Júnior, E.; Cintra, L.T.A. Hydrogen Peroxide Induces Cell Proliferation and Apoptosis in Pulp of Rats after Dental Bleaching In Vivo: Effects of the Dental Bleaching in Pulp. Arch. Oral Biol. 2017, 81, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Soares, D.G.; Basso, F.G.; Scheffel, D.S.; Hebling, J.; Costa, C.A.D.S. Responses of human dental pulp cells after application of a low-concentration bleaching gel to enamel. Arch. Oral Biol. 2015, 60, 1428–1436. [Google Scholar] [CrossRef]
- Chen, C.; Huang, X.; Zhu, W.; Ding, C.; Huang, P.; Li, R. TRPA1 triggers hyperalgesia and inflammation after tooth bleaching. Sci. Rep. 2021, 11, 17418. [Google Scholar] [CrossRef]
- Da Silva, L.M.A.V.; Cintra, L.T.A.; de Alcântara, S.; Machado, N.E.d.S.; Benetti, F.; Ervolino, E.; Briso, A.L.F. Influence of Violet LED Associated or Not with Peroxide Gel on Inflammation, Mineralization, and Collagen Fiber Maturation in Dentin and Pulp Tissue. Photodiagnosis Photodyn. Ther. 2022, 39, 102959. [Google Scholar] [CrossRef]
- Barboza, A.C.S.; dos Santos, P.H.; Vale, L.R.D.; Gallinari, M.D.O.; Assmann, A.; Vidal, C.M.P.; Fagundes, T.C.; Briso, A.L.F. Dental bleaching with violet LED: Effects on dentin color change, resin-dentin bond strength, hybrid layer nanohardness and dentinal collagen biostability. Photodiagn. Photodyn. Ther. 2021, 33, 102141. [Google Scholar] [CrossRef]
- Cintra, L.T.A.; Ferreira, L.L.; Benetti, F.; Gastélum, A.A.; Gomes-Filho, J.E.; Ervolino, E.; Briso, A.L.F. The Effect of Dental Bleaching on Pulpal Tissue Response in a Diabetic Animal Model. Int. Endod. J. 2017, 50, 790–798. [Google Scholar] [CrossRef]
- Terayama, A.M.; Benetti, F.; Lopes, J.M.D.A.; Barbosa, J.G.; Silva, I.J.P.; Sivieri-Araújo, G.; Briso, A.L.F.; Cintra, L.T.A. Influence of low-level laser therapy on inflammation, collagen fiber maturation, and tertiary dentin deposition in the pulp of bleached teeth. Clin. Oral Investig. 2020, 24, 3911–3921. [Google Scholar] [CrossRef]
- Benetti, F.; Lemos, C.A.A.; de Oliveira Gallinari, M.; Terayama, A.M.; Briso, A.L.F.; de Castilho Jacinto, R.; Sivieri-Araújo, G.; Cintra, L.T.A. Influence of Different Types of Light on the Response of the Pulp Tissue in Dental Bleaching: A Systematic Review. Clin. Oral Investig. 2018, 22, 1825–1837. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.P.D.; Sacono, N.T.; Lessa, F.C.R.; Nogueira, I.; Coldebella, C.R.; Hebling, J.; Costa, C.A.D.S. Cytotoxic effect of a 35% hydrogen peroxide bleaching gel on odontoblast-like MDPC-23 cells. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 108, 458–464. [Google Scholar] [CrossRef]
- Trindade, F.Z.; Ribeiro, A.P.D.; Sacono, N.T.; Oliveira, C.F.; Lessa, F.C.R.; Hebling, J.; Costa, C.A.S. Trans-enamel and trans-dentinal cytotoxic effects of a 35% H2O2 bleaching gel on cultured odontoblast cell lines after consecutive applications. Int. Endod. J. 2009, 42, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.; Costa, C.; Soares, D.; dos Santos, P.; Cintra, L.; Briso, A. Effect of Different Light Sources and Enamel Preconditioning on Color Change, H2O2 Penetration, and Cytotoxicity in Bleached Teeth. Oper. Dent. 2016, 41, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Coldebella, C.R.; Ribeiro, A.P.D.; Sacono, N.T.; Trindade, F.Z.; Hebling, J.; Costa, C.A.D.S. Indirect cytotoxicity of a 35% hydrogen peroxide bleaching gel on cultured odontoblast-like cells. Braz. Dent. J. 2009, 20, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Dantas, C.M.G.; Vivan, C.L.; Ferreira, L.S.; De Freitas, P.M.; Marques, M.M. In vitro effect of low intensity laser on the cytotoxicity produced by substances released by bleaching gel. Braz. Oral Res. 2010, 24, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.F.; Basso, F.G.; Ribeiro, A.P.D.; Bagnato, V.S.; Hebling, J.; Marchi, G.M.; de Souza Costa, C.A. Effects of Laser Irradiation on Pulp Cells Exposed to Bleaching Agents. Photochem. Photobiol. 2014, 90, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.F.; Ribeiro, A.P.D.; Basso, F.G.; Bagnato, V.S.; Hebling, J.; Marchi, G.M.; de Souza Costa, C.A. Effect of Low-Level Laser Therapy on Odontoblast-like Cells Exposed to Bleaching Agent. Lasers Med. Sci. 2014, 29, 1533–1538. [Google Scholar] [CrossRef]
- Posten, W.; Wrone, D.A.; Dover, J.S.; Arndt, K.A.; Silapunt, S.; Alam, M. Low-Level Laser Therapy for Wound Healing: Mechanism and Efficacy. Dermatol. Surg. 2005, 31, 334–340. [Google Scholar] [CrossRef]
- Park, I.-S.; Chung, P.-S.; Ahn, J.C. Adipose-derived stromal cell cluster with light therapy enhance angiogenesis and skin wound healing in mice. Biochem. Biophys. Res. Commun. 2015, 462, 171–177. [Google Scholar] [CrossRef]
- Ferreira, L.L.; Gomes-Filho, J.E.; Benetti, F.; Carminatti, M.; Ervolino, E.; Briso, A.L.F.; Cintra, L.T.A. The Effect of Dental Bleaching on Pulpal Tissue Response in a Diabetic Animal Model: A Study of Immunoregulatory Cytokines. Int. Endod. J. 2018, 51, 347–356. [Google Scholar] [CrossRef]
- Kermani, M.T.; Sanjari, M.; Nakhaei, N.; Parirokh, M.; Abbott, P. Comparison of Pulp Sensibility Tests Responses in Type 2 Diabetes Patients and Healthy Individuals. J. Endod. 2020, 46, 364–369. [Google Scholar] [CrossRef]
- Bender, I.B.; Bender, A. Diabetes Mellitus and the Dental Pulp. J. Endod. 2003, 29, 383–389. [Google Scholar] [CrossRef]
- Alsamahi, S.; Milne, T.M.; Hussaini, H.; Rich, A.M.; Friedlander, L.T. Type 2 diabetes and the clinically normal pulp: An in vitro study. Int. Endod. J. 2022, 55, 660–671. [Google Scholar] [CrossRef]
- Catanzaro, O.; Dziubecki, D.; Lauria, L.C.; Ceron, C.M.; Rodriguez, R.R. Diabetes and its effects on dental pulp. J. Oral Sci. 2006, 48, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, Y.; Yoshida, K.; Ohba, H.; Seto, H.; Kido, J.-I.; Haneji, T.; Nagata, T. High Glucose Levels Increase Osteopontin Production and Pathologic Calcification in Rat Dental Pulp Tissues. J. Endod. 2010, 36, 1014–1020. [Google Scholar] [CrossRef]
- Nakajima, Y.; Inagaki, Y.; Kido, J.; Nagata, T. Advanced Glycation End Products Increase Expression of S100A8 and A9 via RAGE-MAPK in Rat Dental Pulp Cells. Oral Dis. 2015, 21, 328–334. [Google Scholar] [CrossRef]
- Nakajima, Y.; Inagaki, Y.; Hiroshima, Y.; Kido, J.-I.; Nagata, T. Advanced Glycation End-products Enhance Calcification in Cultured Rat Dental Pulp Cells. J. Endod. 2013, 39, 873–878. [Google Scholar] [CrossRef]
- Horsophonphong, S.; Kitkumthorn, N.; Sritanaudomchai, H.; Nakornchai, S.; Surarit, R. High Glucose Affects Proliferation, Reactive Oxygen Species and Mineralization of Human Dental Pulp Cells. Braz. Dent. J. 2020, 31, 298–303. [Google Scholar] [CrossRef]
- Leite, M.F.; Ganzerla, E.; Marques, M.M.; Nicolau, J. Diabetes Induces Metabolic Alterations in Dental Pulp. J. Endod. 2008, 34, 1211–1214. [Google Scholar] [CrossRef]
- Bagheri, A.; Ebrahimpour, S.; Nourbakhsh, N.; Talebi, S.; Esmaeili, A. Protective effect of quercetin on alteration of antioxidant genes expression and histological changes in the dental pulp of the streptozotocin-diabetic rats. Arch. Oral Biol. 2021, 125, 105088. [Google Scholar] [CrossRef]
- Milosavljević, A.; DJukić, L.; Toljić, B.; Milašin, J.; Dželetović, B.; Brković, B.; Roganović, J. Melatonin levels in human diabetic dental pulp tissue and its effects on dental pulp cells under hyperglycaemic conditions. Int. Endod. J. 2018, 51, 1149–1158. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, H.; Kim, J.; Yu, M.; Cho, S.; Jeon, J.; Yi, H. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress. J. Dent. Res. 2016, 95, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, H.Y.; Yokoyama, T.; Tanaka, T.; Ii, H.; Yaegaki, K. Regeneration of insulin-producing islets from dental pulp stem cells using a 3D culture system. Regen. Med. 2018, 13, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Suchanek, J.; Nasry, S.; Soukup, T. The Differentiation Potential of Human Natal Dental Pulp Stem Cells into Insulin-Producing Cells. Folia Biol. 2017, 63, 132–138. [Google Scholar]
- Yan, L.; Sun, S.; Qu, L. Insulin-like growth factor-1 promotes the proliferation and odontoblastic differentiation of human dental pulp cells under high glucose conditions. Int. J. Mol. Med. 2017, 40, 1253–1260. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Yan, L.; Zheng, C.; Ren, X.; Pan, Y.; Huang, S.; Pan, L.; Li, Z. Akt-GSK3β-MPTP Pathway Regulates the Mitochondrial Dysfunction Contributing to Odontoblasts Apoptosis Induced by Glucose Oxidative Stress. Cell Death Discov. 2022, 8, 168. [Google Scholar] [CrossRef]
- Gronthos, S.; Brahim, J.; Li, W.; Fisher, L.W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P.G.; Shi, S. Stem Cell Properties of Human Dental Pulp Stem Cells. J Dent Res 2002, 81, 531–535. [Google Scholar] [CrossRef]
- Lyu, Y.; Jia, S.; Wang, S.; Wang, T.; Tian, W.; Chen, G. Gestational diabetes mellitus affects odontoblastic differentiation of dental papilla cells via Toll-like receptor 4 signaling in offspring. J. Cell. Physiol. 2020, 235, 3519–3528. [Google Scholar] [CrossRef]
- Hara, M.; Horibe, K.; Mori, H.; Nakamura, H. The role of canonical Wnt signaling in dentin bridge formation. J. Oral Biosci. 2021, 63, 199–209. [Google Scholar] [CrossRef]
- Garber, S.E.; Shabahang, S.; Escher, A.P.; Torabinejad, M. The Effect of Hyperglycemia on Pulpal Healing in Rats. J. Endod. 2009, 35, 60–62. [Google Scholar] [CrossRef]
- Valikangas, L.; Pekkala, E.; Larmas, M.; Risteli, J.; Salo, T.; Tjäderhane, L. The Effects of High levels of Glucose and Insulin on Type I Collagen Synthesis in Mature Human Odontoblasts and Pulp Tissue in vitro. Adv. Dent. Res. 2001, 15, 72–75. [Google Scholar] [CrossRef]
- Asghari, M.; Nasoohi, N.; Hodjat, M. High glucose promotes the aging of human dental pulp cells through Wnt/beta-catenin signaling. Dent. Med. Probl. 2021, 58, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Sawicka-Gutaj, N.; Komarowska, H.; Gruszczyński, D.; Derwich, A.; Klimont, A.; Ruchała, M. Serum Visfatin/NAMPT as a Potential Risk Predictor for Malignancy of Adrenal Tumors. J. Clin. Med. 2022, 11, 5563. [Google Scholar] [CrossRef]
- Ok, C.Y.; Park, S.; Jang, H.-O.; Takata, T.; Bae, M.-K.; Kim, Y.-D.; Ryu, M.H.; Bae, S.-K. Visfatin Induces Senescence of Human Dental Pulp Cells. Cells 2020, 9, 193. [Google Scholar] [CrossRef] [Green Version]
- Zayed, M.; Iohara, K. Effects of p-Cresol on Senescence, Survival, Inflammation, and Odontoblast Differentiation in Canine Dental Pulp Stem Cells. Int. J. Mol. Sci. 2020, 21, 6931. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Kim, G.-E.; Cho, H.-J.; Yu, M.-K.; Bhattarai, G.; Lee, N.-H.; Yi, H.-K. Aging of In Vitro Pulp Illustrates Change of Inflammation and Dentinogenesis. J. Endod. 2013, 39, 340–345. [Google Scholar] [CrossRef]
- Chen, Q.M.; Tu, V.C.; Liu, J. Measurements of hydrogen peroxide induced premature senescence:senescence-associated β-galactosidase and DNA synthesis index in human diploid fibroblasts with down-regulated p53 or Rb. Biogerontology 2000, 1, 335–339. [Google Scholar] [CrossRef]
- Dong, J.; Sakai, K.; Koma, Y.; Watanabe, J.; Liu, K.; Maruyama, H.; Sakaguchi, K.; Hibi, H. Dental pulp stem cell-derived small extracellular vesicle in irradiation-induced senescence. Biochem. Biophys. Res. Commun. 2021, 575, 28–35. [Google Scholar] [CrossRef]
- Ketterl, W. Age-induced changes in the teeth and their attachment apparatus. Int. Dent. J. 1983, 33, 262–271. [Google Scholar]
- Morse, D.R. Age-related changes of the dental pulp complex and their relationship to systemic aging. Oral Surg. Oral Med. Oral Pathol. 1991, 72, 721–745. [Google Scholar] [CrossRef]
- Couve, E.; Schmachtenberg, O. Autophagic Activity and Aging in Human Odontoblasts. J. Dent. Res. 2011, 90, 523–528. [Google Scholar] [CrossRef]
- Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular selfdigestion. Nature 2008, 451, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Cuervo, A.M.; Bergamini, E.; Brunk, U.T.; Dröge, W.; Ffrench, M.; Terman, A. Autophagy and Aging: The Importance of Maintaining “Clean” Cells. Autophagy 2005, 1, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Leidal, A.M.; Levine, B.; Debnath, J. Autophagy and the cell biology of age-related disease. Nat. Cell Biol. 2018, 20, 1338–1348. [Google Scholar] [CrossRef]
- Yang, S.; Fan, W.; Li, Y.; Liu, Q.; He, H.; Huang, F. Autophagy in tooth: Physiology, disease and therapeutic implication. Cell Biochem. Funct. 2021, 39, 702–712. [Google Scholar] [CrossRef]
- Rezzani, R.; Stacchiotti, A.; Rodella, L.F. Morphological and biochemical studies on aging and autophagy. Ageing Res. Rev. 2012, 11, 10–31. [Google Scholar] [CrossRef]
- Rubinsztein, D.C.; Marino, G.; Kroemer, G. Autophagy and aging. Cell 2011, 146, 682–695. [Google Scholar] [CrossRef] [Green Version]
- Couve, E.; Osorio, R.; Schmachtenberg, O. Mitochondrial Autophagy and Lipofuscin Accumulation in Aging Odontoblasts. J. Dent. Res. 2012, 91, 696–701. [Google Scholar] [CrossRef]
- Murray, P.E.; Stanley, H.R.; Matthews, J.B.; Sloan, A.J.; Smith, A.J. Age-related odontometric changes of human teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2002, 93, 474–482. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Daud, S.; Nambiar, P.; Razak, F.A.; Ab-Murat, N.; Saub, R.; Bakri, M.M. Correlation between numbers of cells in human dental pulp and age: Implications for age estimation. Arch. Oral Biol. 2017, 80, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Uribe-Etxebarria, V.; Agliano, A.; Unda, F.; Ibarretxe, G. Wnt signaling reprograms metabolism in dental pulp stem cells. J. Cell. Physiol. 2019, 234, 13068–13082. [Google Scholar] [CrossRef] [Green Version]
- Uribe-Etxebarria, V.; García-Gallastegui, P.; Pérez-Garrastachu, M.; Casado-Andrés, M.; Irastorza, I.; Unda, F.; Ibarretxe, G.; Subirán, N. Wnt-3a Induces Epigenetic Remodeling in Human Dental Pulp Stem Cells. Cells 2020, 9, 652. [Google Scholar] [CrossRef] [Green Version]
- Kornsuthisopon, C.; Chansaenroj, A.; Manokawinchoke, J.; Tompkins, K.A.; Pirarat, N.; Osathanon, T. Non-canonical Wnt signaling participates in Jagged1-induced osteo/odontogenic differentiation in human dental pulp stem cells. Sci. Rep. 2022, 12, 7583. [Google Scholar] [CrossRef] [PubMed]
- An, S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. Tissue Eng. Part B Rev. 2020, 26, 327–347. [Google Scholar] [CrossRef] [PubMed]
- Nireeksha; Varma, S.; Damdoum, M.; Alsaegh, M.; Hegde, M.; Kumari, S.; Ramamurthy, S.; Narayanan, J.; Imran, E.; Shabbir, J.; et al. Immunomodulatory Expression of Cathelicidins Peptides in Pulp Inflammation and Regeneration: An Update. Curr. Issues Mol. Biol. 2021, 43, 116–126. [Google Scholar] [CrossRef]
- Cao, R.; Wang, Q.; Wu, J.; Liu, M.; Han, Q.; Wang, X. Nell-1 attenuates lipopolysaccharide-induced inflammation in human dental pulp cells. Histochem. J. 2021, 52, 671–680. [Google Scholar] [CrossRef]
- Choi, E.-K.; Kim, S.-H.; Kang, I.-C.; Jeong, J.-Y.; Koh, J.-T.; Lee, B.-N.; Oh, W.-M.; Min, K.-S.; Nör, J.E.; Hwang, Y.-C. Ketoprofen Inhibits Expression of Inflammatory Mediators in Human Dental Pulp Cells. J. Endod. 2013, 39, 764–767. [Google Scholar] [CrossRef]
- Eba, H.; Murasawa, Y.; Iohara, K.; Isogai, Z.; Nakamura, H.; Nakamura, H.; Nakashima, M. The Anti-Inflammatory Effects of Matrix Metalloproteinase-3 on Irreversible Pulpitis of Mature Erupted Teeth. PLoS ONE 2012, 7, e52523. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Feng, Y.; Shao, B.; Zhang, Y. Taxifolin Protects Dental Pulp Stem Cells under Hypoxia and Inflammation Conditions. Cell Transplant. 2021, 30, 9636897211034452. [Google Scholar] [CrossRef]
- Guo, X.; Chen, J. The protective effects of saxagliptin against lipopolysaccharide (LPS)-induced inflammation and damage in human dental pulp cells. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1288–1294. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Chen, W.; Qiu, Z.; Lv, H. Robust expression of SIRT6 inhibits pulpitis via activation of the TRPV1 channel. Cell Biochem. Funct. 2020, 38, 676–682. [Google Scholar] [CrossRef]
- Jeong, G.-S.; Lee, D.-S.; Li, B.; Lee, H.-J.; Kim, E.-C.; Kim, Y.-C. Effects of sappanchalcone on the cytoprotection and anti-inflammation via heme oxygenase-1 in human pulp and periodontal ligament cells. Eur. J. Pharmacol. 2010, 644, 230–237. [Google Scholar] [CrossRef]
- Lee, J.-C.; Yu, M.-K.; Lee, R.; Lee, Y.-H.; Jeon, J.-G.; Lee, M.-H.; Jhee, E.-C.; Yoo, I.-D.; Yi, H.-K. Terrein Reduces Pulpal Inflammation in Human Dental Pulp Cells. J. Endod. 2008, 34, 433–437. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Kim, G.-E.; Song, Y.-B.; Paudel, U.; Lee, N.-H.; Yun, B.-S.; Yu, M.-K.; Yi, H.-K. Davallialactone Reduces Inflammation and Repairs Dentinogenesis on Glucose Oxidase–induced Stress in Dental Pulp Cells. J. Endod. 2013, 39, 1401–1406. [Google Scholar] [CrossRef]
- Liu, X.; Cao, Y.; Zhang, Y.; Sun, B.; Liang, H. Teneligliptin inhibits lipopolysaccharide-induced cytotoxicity and inflammation in dental pulp cells. Int. Immunopharmacol. 2019, 73, 57–63. [Google Scholar] [CrossRef]
- Paudel, U.; Lee, Y.-H.; Kwon, T.-H.; Park, N.-H.; Yun, B.-S.; Hwang, P.-H.; Yi, H.-K. Eckols reduce dental pulp inflammation through the ERK1/2 pathway independent of COX-2 inhibition. Oral Dis. 2014, 20, 827–832. [Google Scholar] [CrossRef]
- Qin, W.; Gao, X.; Ma, T.; Weir, M.D.; Zou, J.; Song, B.; Lin, Z.; Schneider, A.; Xu, H.H. Metformin Enhances the Differentiation of Dental Pulp Cells into Odontoblasts by Activating AMPK Signaling. J. Endod. 2018, 44, 576–584. [Google Scholar] [CrossRef]
- Song, J.; Wu, Q.; Jiang, J.; Sun, D.; Wang, F.; Xin, B.; Cui, Q. Berberine reduces inflammation of human dental pulp fibroblast via miR-21/KBTBD7 axis. Arch. Oral Biol. 2020, 110, 104630. [Google Scholar] [CrossRef]
- Sun, G.; Ren, Q.; Bai, L.; Zhang, L. Phoenixin-20 suppresses lipopolysaccharide-induced inflammation in dental pulp cells. Chem. Interactions 2020, 318, 108971. [Google Scholar] [CrossRef]
- Tian, S.; Wang, J.; Dong, F.; Du, N.; Li, W.; Song, P.; Liu, Y. Concentrated Growth Factor Promotes Dental Pulp Cells Proliferation and Mineralization and Facilitates Recovery of Dental Pulp Tissue. Med. Sci. Monit. 2019, 25, 10016–10028. [Google Scholar] [CrossRef]
- Wang, F.; Han, Y.; Xi, S.; Lu, Y. Catechins reduce inflammation in lipopolysaccharide-stimulated dental pulp cells by inhibiting activation of the NF-κB pathway. Oral Dis. 2020, 26, 815–821. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, H.; Hong, L.; Zhao, H.; Wang, J.; Li, H.; Che, H.; Zhang, Z. MicroRNA Let-7c-5p Suppressed Lipopolysaccharide-Induced Dental Pulp Inflammation by Inhibiting Dentin Matrix Protein-1-Mediated Nuclear Factor Kappa B (NF-ΚB) Pathway In Vitro and In Vivo. Med. Sci. Monit. 2018, 24, 6656–6665. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; He, K.; Mai, R.; Lin, T.; Wei, R.; Nong, J.; Wu, Y. Exosomes from human umbilical cord mesenchymal stem cells and human dental pulp stem cells ameliorate lipopolysaccharide-induced inflammation in human dental pulp stem cells. Arch. Oral Biol. 2022, 138, 105411. [Google Scholar] [CrossRef] [PubMed]
- Sloan, A.J.; Waddington, R.J. Dental pulp stem cells: What, where, how? Int. J. Paediatr. Dent. 2009, 19, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Bartold, P.; Miura, M.; Seo, B.M.; Robey, P.; Gronthos, S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod. Craniofacial Res. 2005, 8, 191–199. [Google Scholar] [CrossRef]
- Sui, B.; Wu, D.; Xiang, L.; Fu, Y.; Kou, X.; Shi, S. Dental Pulp Stem Cells: From Discovery to Clinical Application. J. Endod. 2020, 46, S46–S55. [Google Scholar] [CrossRef]
- Iohara, K.; Nakashima, M.; Ito, M.; Ishikawa, M.; Nakasima, A.; Akamine, A. Dentin Regeneration by Dental Pulp Stem Cell Therapy with Recombinant Human Bone Morphogenetic Protein 2. J. Dent. Res. 2004, 83, 590–595. [Google Scholar] [CrossRef]
- Nakashima, M.; Iohara, K.; Murakami, M.; Nakamura, H.; Sato, Y.; Ariji, Y.; Matsushita, K. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: A pilot clinical study. Stem Cell Res. Ther. 2017, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Piva, E.; Tarlé, S.A.; Nör, J.E.; Zou, D.; Hatfield, E.; Guinn, T.; Eubanks, E.J.; Kaigler, D. Dental Pulp Tissue Regeneration Using Dental Pulp Stem Cells Isolated and Expanded in Human Serum. J. Endod. 2017, 43, 568–574. [Google Scholar] [CrossRef] [Green Version]
- Schmalz, G.; Widbiller, M.; Galler, K.M. Clinical Perspectives of Pulp Regeneration. J. Endod. 2020, 46, S161–S174. [Google Scholar] [CrossRef]
- Li, B.; Yu, F.; Wu, F.; Hui, T.; Peng, A.; Liao, X.; Yin, B.; Wang, C.; Ye, L. EZH2 Impairs Human Dental Pulp Cell Mineralization via the Wnt/β-Catenin Pathway. J. Dent. Res. 2018, 97, 571–579. [Google Scholar] [CrossRef]
- Liang, C.; Liao, L.; Tian, W. Stem Cell-based Dental Pulp Regeneration: Insights From Signaling Pathways. Stem Cell Rev. Rep. 2021, 17, 1251–1263. [Google Scholar] [CrossRef]
- Huang, C.-C.; Narayanan, R.; Alapati, S.; Ravindran, S. Exosomes as Biomimetic Tools for Stem Cell Differentiation: Applications in Dental Pulp Tissue Regeneration. Biomaterials 2016, 111, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Lambrichts, I.; Driesen, R.B.; Dillen, Y.; Gervois, P.; Ratajczak, J.; Vangansewinkel, T.; Wolfs, E.; Bronckaers, A.; Hilkens, P. Dental Pulp Stem Cells: Their Potential in Reinnervation and Angiogenesis by Using Scaffolds. J. Endod. 2017, 43, S12–S16. [Google Scholar] [CrossRef]
- Shen, W.-C.; Lai, Y.-C.; Li, L.-H.; Liao, K.; Lai, H.-C.; Kao, S.-Y.; Wang, J.; Chuong, C.-M.; Hung, S.-C. Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis. Nat. Commun. 2019, 10, 2226. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; You, H.; Qin, N.; Zuo, W. Interleukin-10 Modulates the Metabolism and Osteogenesis of Human Dental Pulp Stem Cells. Cell. Reprogram 2021, 23, 270–276. [Google Scholar] [CrossRef]
- Giabicani, E.; Pham, A.; Sélénou, C.; Sobrier, M.-L.; Andrique, C.; Lesieur, J.; Linglart, A.; Poliard, A.; Chaussain, C.; Netchine, I. Dental pulp stem cells as a promising model to study imprinting diseases. Int. J. Oral Sci. 2022, 14, 19. [Google Scholar] [CrossRef]
- Didilescu, A.C.; Cristache, C.M.; Andrei, M.; Voicu, G.; Perlea, P. The Effect of Dental Pulp-Capping Materials on Hard-Tissue Barrier Formation: A Systematic Review and Meta-Analysis. J. Am. Dent. Assoc. 2018, 149, 903–917.e4. [Google Scholar] [CrossRef]
- Lin, L.M.; Ricucci, D.; Saoud, T.M.; Sigurdsson, A.; Kahler, B. Vital Pulp Therapy of Mature Permanent Teeth with Irreversible Pulpitis from the Perspective of Pulp Biology. Aust. Endod. J. 2020, 46, 154–166. [Google Scholar] [CrossRef]
- Taha, N.A.; Abdelkhader, S.Z. Outcome of full pulpotomy using Biodentine in adult patients with symptoms indicative of irreversible pulpitis. Int. Endod. J. 2018, 51, 819–828. [Google Scholar] [CrossRef]
- Asgary, S.; Eghbal, M.J.; Bagheban, A.A. Long-term outcomes of pulpotomy in permanent teeth with irreversible pulpitis: A multi-center randomized controlled trial. Am. J. Dent. 2017, 30, 151–155. [Google Scholar] [PubMed]
Study | Potential Inflammatory and Metabolic Mediators |
---|---|
Bletsa et al., 2006 [52] | IL-1α, IL-1β and TNF-α (locally produced), IFN-γ and IL-6 (produced systemically) |
Brodzikowska et al., 2019 [53] | miR-410 and MMP-14 |
Feng et al., 2018 [54] | N6-methyladenosine, N6-adenosine methyltransferase (METTL3) via the NF-κB and MAPK signalling pathways |
Gatta et al., 2012 [55] | IL-1β and CD40 |
Hayama et al., 2016 [56] | kallikrein (KLKB1), protease-activated receptor-1 |
Huang et al., 2005 [57] | tissue-type plasminogen activator |
Hui et al., 2018 [58] | enhancer of zeste homolog 2 |
Kamio et al., 2008 [59] | plasmin, protease-activated receptor-1 |
Killough et al., 2009 [60] | substance P |
Liao et al., 2019 [61] | sclerostin |
Liu et al., 2017 [62] | octamer-binding transcription factor 4-B1 |
Liu et al., 2021 [63] | lncRNA MEG3 |
Mehboob et al., 2021 [64] | receptor neurokinin-1 |
Mente et al., 2016 [65] | matrix metalloproteinase-9 |
Miyauchi et al., 1996 [66] | PGE2, PGF2, and 6-keto-PGFl |
Okiji et al., 1992 [67] | 12-hydroxyeicosatetraenoic acid and prostaglandin I2, leukotriene B4 |
Rethnam et al., 2010 [68] | neuropeptide Y (NPY) Y1 receptor (Y1R) |
Sugiuchi et al., 2018 [69] | IL-1β and IL-6, Wnt5a, Runx2, and alkaline phosphatase |
Tancharoen et al., 2014 [70] | high-mobility group box 1 (HMGB1), receptor for advanced glycation end products (RAGE) |
Wang et al., 2021 [71] | NUTM2A antisense RNA 1, HMGB1 |
Metabolic Mediators | Anti-Inflammatory Interaction Mechanisms | Study |
---|---|---|
Nel-like molecule type 1 | suppressed expression of proinflammatory cytokines and chemokines (IL-6 and IL-8) mediated via p38 and ERK MAPK signaling pathways | Cao et al., 2021 [165] |
Ketoprofen (nonsteroidal anti-inflammatory agent) | suppressed processes, such as IL-1β and TNF-α production, phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase and the mitogen-activated protein kinase pathway | Choi et al., 2013 [166] |
Matrix metalloproteinase 3 | decrease in the number of macrophage and antigen-presenting cells, suppressed IL-6 expression; enhanced extracellular matrix formation; modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA) complexes possibly via the degradation of versican | Eba et al., 2012 [167] |
Taxifolin (natural flavonoid) | increased cell viability and reduced apoptosis; increased carbonic anhydrase IX (CA9) expression | Fu et al., 2021 [168] |
Saxagliptin (inhibitor of dipeptidyl peptidase-4) | increased levels of mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP); enhanced processes, such as cell viability and LDH release; suppressed processes, such as ROS production, expression of TNF-α, IL-1β and IL-6, phosphorylation of p38 and activation of NF-κB | Guo and Chen, 2019 [169] |
Sirtuin 6 (NAD-dependent protein deacetylase) | suppressed processes, such as expression of proinflammatory cytokines (IL-6, IL-1β and TNF-α) and DMP-1, and activation of NF-κB pathway; enhanced ubiquitination of the TRPV1 channel, leading to its degradation and deactivation | Hu et al., 2020 [170] |
Sappanchalcone (flavonoid isolated from Caesalpinia sappan L.) | enhanced heme oxygenase (HO)-1 protein expression leading to protect from H2O2-induced cytotoxicity and ROS production; suppressed release of NO, PGE2, IL-1β, TNF-α, IL-6 and IL-12 in addition to iNOS and COX-2 expression; the transient activation of c-Jun NH2-terminal kinase (JNK) and NF-E2-related factor-2 (Nrf2) | Jeong et al., 2010 [171] |
Terrein (fungal metabolite from Aspergillus terreus) | suppressed processes, such as ICAM-1 and VCAM-1 expression, AKT phosphorylation and NF-κB translocation | Lee et al., 2008 [172] |
Davallialactone (hispidin analogue from the mushroom Inonotus xeranticus) | suppressed H2O2 and ROS production, cellular toxicity and release of inflammatory molecules; restored dentine mineralisation | Lee et al., 2013 [173] |
Teneligliptin (inhibitor of dipeptidyl peptidase-4) | enhanced processes, such as overall cell survival and LDH release; suppressed processes, such as ROS production, expression of TNF-α, IL-1β and IL-6, and activation of JNK/AP1/NF-κB signal pathways | Liu et al., 2019 [174] |
6-6 bieckol (EB1) and pholorofucofuroeckolA (EB5) from brown seaweed marine algae (Eisenia bicyclis) | suppressed processes, such as phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) and phosphorylated-c-jun N-terminal kinases (p-JNK) signalling, NF-κB translocation; enhanced expression of dentinogenic and osteogenic molecules, and dentine mineralisation via ALP activity | Paudel et al., 2014 [175] |
Metformin | enhanced processes, such as mineralised nodule formation, alkaline phosphatase activity and expression of odontoblastic markers (DSPP, DMP-1, Runx2 and OCN) via activation of the AMPK signalling pathway | Qin et al., 2018 [176] |
Berberine | enhanced cell proliferation; suppressed inflammatory response via miR-21/KBTBD7 axis regulating NF-κB signal pathway | Song et al., 2020 [177] |
Phoenixin-20 (via activation of GPR173) | suppressed processes, such as release of proinflammatory mediators (IL-6, MCP-1, VCAM-1, ICAM-1, MMP-2 and MMP-9), activation of TLR-4 and Myd88 and activation of the NF-κB pathway | Sun et al., 2020 [178] |
Concentrated growth factor (CGF) | enhanced cell proliferation and mineralisation via activation of the BMP-2/SMAD5/Runx2 signaling pathway; enhanced expression of DSPP, DMP-1, BSP, and ALP | Tian et al., 2019 [179] |
Epigallocatechin or epigallocatechin 3-gallate (catechins) | suppressed expression of TNF-α, IL-1β, IL-6 and p-p65 protein, and activation of the NF-κB pathway | Wang et al., 2020 [180] |
Let-7c-5p | suppressed DMP-1 expression and NF-κB pathway | Yuan et al., 2018 [181] |
Exosomes derived from human umbilical cord mesenchymal stem cells and human dental pulp stem cells | increased proliferation and reduced apoptosis, suppressed release of inflammatory cytokines | Zeng et al., 2022 [182] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nijakowski, K.; Ortarzewska, M.; Jankowski, J.; Lehmann, A.; Surdacka, A. The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review. Metabolites 2023, 13, 520. https://doi.org/10.3390/metabo13040520
Nijakowski K, Ortarzewska M, Jankowski J, Lehmann A, Surdacka A. The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review. Metabolites. 2023; 13(4):520. https://doi.org/10.3390/metabo13040520
Chicago/Turabian StyleNijakowski, Kacper, Martyna Ortarzewska, Jakub Jankowski, Anna Lehmann, and Anna Surdacka. 2023. "The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review" Metabolites 13, no. 4: 520. https://doi.org/10.3390/metabo13040520
APA StyleNijakowski, K., Ortarzewska, M., Jankowski, J., Lehmann, A., & Surdacka, A. (2023). The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review. Metabolites, 13(4), 520. https://doi.org/10.3390/metabo13040520