The Specific Binding and Promotion Effect of Azoles on Human Aldo-Keto Reductase 7A2
Abstract
:1. Introduction
2. Results
2.1. Effect of Azole Drugs on AKR7A2 Catalytic Kinetics
2.2. Affinity Determination of Azole Drugs with AKR7A2 by Biacore Assays
2.3. The Binding Area of Azole Drugs on AKR7A2 Predicted by Docking
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cloning, Protein Expression, and Purification of Human AKR7A2
4.3. Steady-State Kinetics
4.4. Biacore Assays
4.5. Docking Studies
4.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Penning, T.M.; Jonnalagadda, S.; Trippier, P.C.; Rizner, T.L. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol. Rev. 2021, 73, 1150–1171. [Google Scholar] [CrossRef] [PubMed]
- Penning, T.M. The aldo-keto reductases (AKRs): Overview. Chem. Biol. Interact. 2015, 234, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Knight, L.P.; Primiano, T.; Groopman, J.D.; Kensler, T.W.; Sutter, T.R. cDNA cloning, expression and activity of a second human aflatoxin B1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis 1999, 20, 1215–1223. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Arneson, K.O.; Williams, K.M.; Deng, Z.; Harris, T.M. Reaction of aflatoxin B(1) oxidation products with lysine. Chem. Res. Toxicol. 2002, 15, 780–792. [Google Scholar] [CrossRef]
- Lyon, R.C.; Johnston, S.M.; Watson, D.G.; McGarvie, G.; Ellis, E.M. Synthesis and catabolism of gamma-hydroxybutyrate in SH-SY5Y human neuroblastoma cells: Role of the aldo-keto reductase AKR7A2. J. Biol. Chem. 2007, 282, 25986–25992. [Google Scholar] [CrossRef]
- Schaller, M.; Schaffhauser, M.; Sans, N.; Wermuth, B. Cloning and expression of succinic semialdehyde reductase from human brain. Identity with aflatoxin B1 aldehyde reductase. Eur. J. Biochem. 1999, 265, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Picklo, M.J., Sr.; Olson, S.J.; Hayes, J.D.; Markesbery, W.R.; Montine, T.J. Elevation of AKR7A2 (succinic semialdehyde reductase) in neurodegenerative disease. Brain Res. 2001, 916, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ferrari, M.; Ellis, E.M. Human aldo-keto reductase AKR7A2 protects against the cytotoxicity and mutagenicity of reactive aldehydes and lowers intracellular reactive oxygen species in hamster V79-4 cells. Chem. Biol. Interact. 2012, 195, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Gu, Z.; Zhang, J.; Ma, S. Protective effect of inducible aldo-keto reductases on 4-hydroxynonenal- induced hepatotoxicity. Chem. Biol. Interact. 2019, 304, 124–130. [Google Scholar] [CrossRef]
- Li, D.; Ma, S.; Ellis, E.M. Nrf2-mediated adaptive response to methyl glyoxal in HepG2 cells involves the induction of AKR7A2. Chem. Biol. Interact. 2015, 234, 366–371. [Google Scholar] [CrossRef]
- Bains, O.S.; Grigliatti, T.A.; Reid, R.E.; Riggs, K.W. Naturally occurring variants of human aldo-keto reductases with reduced in vitro metabolism of daunorubicin and doxorubicin. J. Pharmacol. Exp. Ther. 2010, 335, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Rajib, S.A.; Sharif Siam, M.K. Characterization and Analysis of Mammalian AKR7A Gene Promoters: Implications for Transcriptional Regulation. Biochem. Genet. 2020, 58, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Quinones-Lombrana, A.; Intini, A.; Blanco, J.G. Insights into the transcriptional regulation of the anthracycline reductase AKR7A2 in human cardiomyocytes. Toxicol. Lett. 2019, 307, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, M.; Peyton, L.; Hashemzadeh, M.; Foroumadi, A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg. Chem. 2020, 104, 104240. [Google Scholar] [CrossRef]
- Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev. Anti. Infect. Ther. 2015, 13, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Firooz, A.; Nafisi, S.; Maibach, H.I. Novel drug delivery strategies for improving econazole antifungal action. Int. J. Pharm. 2015, 495, 599–607. [Google Scholar] [CrossRef]
- Heeres, J.; Backx, L.J.; Mostmans, J.H.; Van Cutsem, J. Antimycotic imidazoles. part 4. Synthesis and antifungal activity of ketoconazole, a new potent orally active broad-spectrum antifungal agent. J. Med. Chem. 1979, 22, 1003–1005. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; Acosta, D., Jr. Comparison of ketoconazole- and fluconazole-induced hepatotoxicity in a primary culture system of rat hepatocytes. Toxicology 1995, 96, 83–92. [Google Scholar] [CrossRef]
- Richardson, K. The discovery and profile of fluconazole. J. Chemother. 1990, 2, 51–54. [Google Scholar] [CrossRef]
- Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Troke, P.F.; Andrews, R.J.; Pye, G.W.; Richardson, K. Fluconazole and other azoles: Translation of in vitro activity to in vivo and clinical efficacy. Rev. Infect. Dis. 1990, 12 (Suppl. 3), S276–S280. [Google Scholar] [CrossRef]
- Cha, R.; Sobel, J.D. Fluconazole for the treatment of candidiasis: 15 years experience. Expert Rev. Anti Infect. Ther. 2004, 2, 357–366. [Google Scholar] [CrossRef]
- Anaissie, E.J.; Darouiche, R.O.; Abi-Said, D.; Uzun, O.; Mera, J.; Gentry, L.O.; Williams, T.; Kontoyiannis, D.P.; Karl, C.L.; Bodey, G.P. Management of invasive candidal infections: Results of a prospective, randomized, multicenter study of fluconazole versus amphotericin B and review of the literature. Clin. Infect. Dis. 1996, 23, 964–972. [Google Scholar] [CrossRef]
- Stevens, D.A.; Lee, J.Y. Analysis of compassionate use itraconazole therapy for invasive aspergillosis by the NIAID Mycoses Study Group criteria. Arch. Intern. Med. 1997, 157, 1857–1862. [Google Scholar] [CrossRef]
- Slain, D.; Rogers, P.D.; Cleary, J.D.; Chapman, S.W. Intravenous itraconazole. Ann. Pharmacother. 2001, 35, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S.; Heath, E.I.; Smith, D.C.; Rathkopf, D.; Blackford, A.L.; Danila, D.C.; King, S.; Frost, A.; Ajiboye, A.S.; Zhao, M.; et al. Repurposing itraconazole as a treatment for advanced prostate cancer: A noncomparative randomized phase II trial in men with metastatic castration-resistant prostate cancer. Oncologist 2013, 18, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Tang, J.Y.; Gong, R.; Kim, J.; Lee, J.J.; Clemons, K.V.; Chong, C.R.; Chang, K.S.; Fereshteh, M.; Gardner, D.; et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 2010, 17, 388–399. [Google Scholar] [CrossRef]
- Strating, J.R.; van der Linden, L.; Albulescu, L.; Bigay, J.; Arita, M.; Delang, L.; Leyssen, P.; van der Schaar, H.M.; Lanke, K.H.; Thibaut, H.J.; et al. Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein. Cell Rep. 2015, 10, 600–615. [Google Scholar] [CrossRef] [PubMed]
- Schloer, S.; Goretzko, J.; Kuhnl, A.; Brunotte, L.; Ludwig, S.; Rescher, U. The clinically licensed antifungal drug itraconazole inhibits influenza virus in vitro and in vivo. Emerg. Microbes Infect. 2019, 8, 80–93. [Google Scholar] [CrossRef]
- Schloer, S.; Brunotte, L.; Mecate-Zambrano, A.; Zheng, S.; Tang, J.; Ludwig, S.; Rescher, U. Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine and itraconazole effectively impairs SARS-CoV-2 infection in vitro. Br. J. Pharmacol. 2021, 178, 2339–2350. [Google Scholar] [CrossRef]
- Van Damme, E.; De Meyer, S.; Bojkova, D.; Ciesek, S.; Cinatl, J.; De Jonghe, S.; Jochmans, D.; Leyssen, P.; Buyck, C.; Neyts, J.; et al. In vitro activity of itraconazole against SARS-CoV-2. J. Med. Virol. 2021, 93, 4454–4460. [Google Scholar] [CrossRef]
- Maertens, J.A. History of the development of azole derivatives. Clin. Microbiol. Infect. 2004, 10 (Suppl. 1), 1–10. [Google Scholar] [CrossRef] [PubMed]
- Salmeron, G.; Porcher, R.; Bergeron, A.; Robin, M.; Peffault de Latour, R.; Ferry, C.; Rocha, V.; Petropoulou, A.; Xhaard, A.; Lacroix, C.; et al. Persistent poor long-term prognosis of allogeneic hematopoietic stem cell transplant recipients surviving invasive aspergillosis. Haematologica 2012, 97, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Vigouroux, S.; Morin, O.; Moreau, P.; Mechinaud, F.; Morineau, N.; Mahe, B.; Chevallier, P.; Guillaume, T.; Dubruille, V.; Harousseau, J.L.; et al. Zygomycosis after prolonged use of voriconazole in immunocompromised patients with hematologic disease: Attention required. Clin. Infect. Dis. 2005, 40, e35–e37. [Google Scholar] [CrossRef] [PubMed]
- Manavathu, E.K.; Cutright, J.L.; Loebenberg, D.; Chandrasekar, P.H. A comparative study of the in vitro susceptibilities of clinical and laboratory-selected resistant isolates of Aspergillus spp. to amphotericin B, itraconazole, voriconazole and posaconazole (SCH 56592). J. Antimicrob. Chemother. 2000, 46, 229–234. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Messer, S.A.; Hollis, R.J.; Jones, R.N.; Group, S.P. Antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus spp. and other filamentous fungi: Report from SENTRY Antimicrobial Surveillance Program, 2000. Antimicrob. Agents Chemother. 2002, 46, 1032–1037. [Google Scholar]
- Pfaller, M.A.; Messer, S.A.; Mills, K.; Bolmstrom, A.; Jones, R.N. Evaluation of Etest method for determining posaconazole MICs for 314 clinical isolates of Candida species. J. Clin. Microbiol. 2001, 39, 3952–3954. [Google Scholar] [CrossRef]
- Cacciapuoti, A.; Loebenberg, D.; Corcoran, E.; Menzel, F., Jr.; Moss, E.L., Jr.; Norris, C.; Michalski, M.; Raynor, K.; Halpern, J.; Mendrick, C.; et al. In vitro and in vivo activities of SCH 56592 (posaconazole), a new triazole antifungal agent, against Aspergillus and Candida. Antimicrob. Agents Chemother. 2000, 44, 2017–2022. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Messer, S.A.; Hollis, R.J.; Jones, R.N. In vitro activities of posaconazole (Sch 56592) compared with those of itraconazole and fluconazole against 3685 clinical isolates of Candida spp. and Cryptococcus neoformans. Antimicrob. Agents Chemother. 2001, 45, 2862–2864. [Google Scholar] [CrossRef]
- Barchiesi, F.; Schimizzi, A.M.; Caselli, F.; Giannini, D.; Camiletti, V.; Fileni, B.; Giacometti, A.; Di Francesco, L.F.; Scalise, G. Activity of the new antifungal triazole, posaconazole, against Cryptococcus neoformans. J. Antimicrob. Chemother. 2001, 48, 769–773. [Google Scholar] [CrossRef]
- Sun, Q.N.; Fothergill, A.W.; McCarthy, D.I.; Rinaldi, M.G.; Graybill, J.R. In vitro activities of posaconazole, itraconazole, voriconazole, amphotericin B, and fluconazole against 37 clinical isolates of zygomycetes. Antimicrob. Agents Chemother. 2002, 46, 1581–1582. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Krekels, E.H.J.; Verweij, P.E.; Buil, J.B.; Knibbe, C.A.J.; Bruggemann, R.J.M. Pharmacokinetics and Pharmacodynamics of Posaconazole. Drugs 2020, 80, 671–695. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, A.J.; Lipton, J.H.; Vesole, D.H.; Chandrasekar, P.; Langston, A.; Tarantolo, S.R.; Greinix, H.; Morais de Azevedo, W.; Reddy, V.; Boparai, N.; et al. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N. Engl. J. Med. 2007, 356, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Maertens, J.; Winston, D.J.; Perfect, J.; Ullmann, A.J.; Walsh, T.J.; Helfgott, D.; Holowiecki, J.; Stockelberg, D.; Goh, Y.T.; et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N. Engl. J. Med. 2007, 356, 348–359. [Google Scholar] [CrossRef]
- Groll, A.H.; Abdel-Azim, H.; Lehrnbecher, T.; Steinbach, W.J.; Paschke, A.; Mangin, E.; Winchell, G.A.; Waskin, H.; Bruno, C.J. Pharmacokinetics and safety of posaconazole intravenous solution and powder for oral suspension in children with neutropenia: An open-label, sequential dose-escalation trial. Int. J. Antimicrob. Agents 2020, 56, 106084. [Google Scholar] [CrossRef]
- Wu, J.; Xu, W.; Zhang, C.; Chang, Q.; Tang, X.; Li, K.; Deng, Y. Trp266 determines the binding specificity of a porcine aflatoxin B(1) aldehyde reductase for aflatoxin B(1)-dialdehyde. Biochem. Pharmacol. 2013, 86, 1357–1365. [Google Scholar] [CrossRef]
- Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8; Schrodinger, LLC: New York, NY, USA, 2015.
- Akins, R.A. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med. Mycol. 2005, 43, 285–318. [Google Scholar] [CrossRef]
- Shukla, P.K.; Singh, P.; Yadav, R.K.; Pandey, S.; Bhunia, S.S. Past, present, and future of antifungal drug development. Top. Med. Chem. 2018, 29, 44. [Google Scholar]
- Podust, L.M.; Poulos, T.L.; Waterman, M.R. Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA 2001, 98, 3068–3073. [Google Scholar] [CrossRef]
- Mercorelli, B.; Luganini, A.; Celegato, M.; Palu, G.; Gribaudo, G.; Lepesheva, G.I.; Loregian, A. The Clinically Approved Antifungal Drug Posaconazole Inhibits Human Cytomegalovirus Replication. Antimicrob Agents Chemother 2020, 64, e00056-20. [Google Scholar] [CrossRef]
- Isoherranen, N.; Kunze, K.L.; Allen, K.E.; Nelson, W.L.; Thummel, K.E. Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab. Dispos. 2004, 32, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Yanni, S.B.; Annaert, P.P.; Augustijns, P.; Ibrahim, J.G.; Benjamin, D.K., Jr.; Thakker, D.R. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: Role of CYP2C19 and flavin-containing monooxygenase 3. Drug Metab. Dispos. 2010, 38, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Sorgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef]
- Lutsar, I.; Roffey, S.; Troke, P. Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea pigs and immunocompromised patients. Clin. Infect. Dis. 2003, 37, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Briggs, G.E.; Haldane, J.B. A Note on the Kinetics of Enzyme Action. Biochem. J. 1925, 19, 338–339. [Google Scholar] [CrossRef]
- Michaelis, L.; Menten, M.L. Die Kinetik der Invertinwirkung. Biochem. Z. 1913, 49, 333–369. [Google Scholar]
Protein/Drug | Drug Concentration (μM) | Km (μM) | kcat (min−1) | kcat/Km (min−1 ∗ μM−1) | Normalized Value (kcat/Km) |
---|---|---|---|---|---|
AKR7A2 | 0 | 11.21 ± 0.53 | 71.72 ± 0.93 | 6.40 | 1.00 |
posaconazole | 5 | 10.18 ± 0.66 | 74.33 ± 1.27 | 7.30 | 1.14 |
posaconazole | 20 | 9.64 ± 0.84 | 76.40 ± 1.74 | 7.93 * | 1.24 |
posaconazole | 50 | 5.56 ± 0.63 | 61.75 ± 1.77 | 11.10 **** | 1.74 |
miconazole | 5 | 11.34 ± 0.81 | 72.31 ± 1.37 | 6.38 | 1.00 |
miconazole | 20 | 8.73 ± 0.68 | 71.78 ± 1.41 | 8.22 | 1.28 |
miconazole | 50 | 6.93 ± 0.70 | 74.13 ± 1.75 | 10.69 ** | 1.67 |
fluconazole | 20 | 8.62 ± 0.50 | 71.68 ± 1.04 | 8.31 | 1.30 |
fluconazole | 50 | 8.79 ± 0.54 | 73.24 ± 1.15 | 8.33 | 1.30 |
fluconazole | 100 | 6.12 ± 0.47 | 64.35 ± 1.11 | 10.51 *** | 1.64 |
itraconazole | 5 | 10.91 ± 0.70 | 80.53 ± 1.42 | 7.38 | 1.15 |
itraconazole | 20 | 8.84 ± 0.48 | 73.12 ± 1.00 | 8.27 ** | 1.29 |
itraconazole | 50 | 7.71 ± 0.63 | 66.42 ± 1.38 | 8.61 *** | 1.35 |
voriconazole | 20 | 9.33 ± 0.52 | 67.56 ± 0.98 | 7.24 | 1.13 |
voriconazole | 50 | 10.77 ± 0.56 | 74.24 ± 1.01 | 6.89 | 1.08 |
voriconazole | 100 | 10.35 ± 0.77 | 75.51 ± 1.49 | 7.30 | 1.14 |
ketoconazole | 20 | 11.95 ± 0.90 | 78.09 ± 1.61 | 6.53 | 1.02 |
ketoconazole | 50 | 11.13 ± 0.98 | 76.28 ± 1.82 | 6.85 | 1.07 |
ketoconazole | 100 | 13.47 ± 1.13 | 86.37 ± 2.09 | 6.41 | 1.00 |
econazole | 5 | 10.28 ± 0.90 | 71.64 ± 1.71 | 6.97 | 1.09 |
econazole | 20 | 13.96 ± 1.02 | 72.76 ± 1.55 | 5.21 | 0.81 |
econazole | 50 | 12.73 ± 2.26 | 75.70 ± 3.81 | 5.95 | 0.93 |
Analytes | M.W. (Da) | ka (M−1s−1) × 10−3 | kd (s−1) × 102 | KD (μM) |
---|---|---|---|---|
2-CBA | 150.13 | 1.19 ± 1.36 | 2.29 ± 2.02 | 19.30 ± 14.87 |
posaconazole | 700.78 | 17.3 ± 16.7 | 2.98 ± 0.59 | 1.35 ± 0.44 |
itraconazole | 705.64 | 32.4 ± 8.0 | 2.63 ± 0.35 | 0.81 ± 0.44 |
voriconazole | 349.32 | 5.64 ± 3.41 | 1.68 ± 0.72 | 2.98 ± 2.11 |
fluconazole | 306.28 | 2.68 ± 0.95 | 2.18 ± 0.46 | 8.11 ± 4.83 |
miconazole | 416.13 | 0.63 ± 0.23 | 5.36 ± 0.17 | 84.94 ± 7.21 |
ketoconazole | 531.43 | 0.070 ± 0.044 | 12.6 ± 1.91 | 1803 ± 438 |
econazole | 381.68 | 0.28 ± 0.086 | 15.9 ± 0.72 | 565 ± 84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Jiang, T.; Lin, H.; Chen, C.; Wang, L.; Wen, J.; Wu, J.; Deng, Y. The Specific Binding and Promotion Effect of Azoles on Human Aldo-Keto Reductase 7A2. Metabolites 2023, 13, 601. https://doi.org/10.3390/metabo13050601
Wu W, Jiang T, Lin H, Chen C, Wang L, Wen J, Wu J, Deng Y. The Specific Binding and Promotion Effect of Azoles on Human Aldo-Keto Reductase 7A2. Metabolites. 2023; 13(5):601. https://doi.org/10.3390/metabo13050601
Chicago/Turabian StyleWu, Wanying, Tianqing Jiang, Haihui Lin, Chao Chen, Lingling Wang, Jikai Wen, Jun Wu, and Yiqun Deng. 2023. "The Specific Binding and Promotion Effect of Azoles on Human Aldo-Keto Reductase 7A2" Metabolites 13, no. 5: 601. https://doi.org/10.3390/metabo13050601
APA StyleWu, W., Jiang, T., Lin, H., Chen, C., Wang, L., Wen, J., Wu, J., & Deng, Y. (2023). The Specific Binding and Promotion Effect of Azoles on Human Aldo-Keto Reductase 7A2. Metabolites, 13(5), 601. https://doi.org/10.3390/metabo13050601