Prenylated Isoflavanones with Antimicrobial Potential from the Root Bark of Dalbergia melanoxylon
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction and Isolation
2.4. Biological Assays
2.4.1. Antibacterial Assays
2.4.2. Antifungal Assays
2.4.3. Anthelmintic Assay
2.4.4. Cytotoxicity Assay
2.4.5. Agar Diffusion Assay
2.4.6. Cytotoxicity Testing (Compound 7)
3. Results and Discussion
3.1. Isolation and Structure Elucidation
3.2. Biological Activity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beentje, H.J. Kenya Trees, Shrubs, and Lianas; National Museums of Kenya: Nairobi, Kenya, 1994. [Google Scholar]
- Saha, S.; Shilpi, J.A.; Mondal, H.; Hossain, F.; Anisuzzman, M.; Hasan, M.M.; Cordell, G.A. Ethnomedicinal, phytochemical, and pharmacological profile of the genus Dalbergia L. (Fabaceae). Phytopharmacology 2013, 4, 291–346. [Google Scholar]
- Vatanparast, M.; Klitgård, B.B.; Adema, F.A.C.B.; Pennington, R.T.; Yahara, T.; Kajita, T. First molecular phylogeny of the pantropical genus Dalbergia: Implications for infrageneric circumscription and biogeography. S. Afr. J. Bot. 2013, 89, 143–149. [Google Scholar] [CrossRef]
- Zheng, L.; Huang, X.; Wang, L.; Chen, Z. Physicochemical properties, chemical composition, and antioxidant activity of Dalbergia odorifera T. Chen seed oil. J. Am. Oil Chem. Soc. 2012, 89, 883–890. [Google Scholar]
- Chan, S.C.; Chang, Y.S.; Wang, J.P.; Chen, S.C.; Kuo, S.C. Three new flavonoids and antiallergic, anti-inflammatory constituents from the heartwood of Dalbergia odorifera. Planta Med. 1998, 64, 153–158. [Google Scholar] [CrossRef]
- Gundidza, M.; Gaza, N. Antimicrobial activity of Dalbergia melanoxylon extracts. J. Ethnopharmacol. 1993, 40, 127–130. [Google Scholar] [CrossRef]
- Beldjoudi, N.; Mambu, L.; Labaïed, M.; Grellier, P.; Ramanitrahasimbola, D.; Rasoanaivo, P.; Martin, M.T.; Frappier, F. Flavonoids from Dalbergia louvelii and their antiplasmodial activity. J. Nat. Prod. 2003, 66, 1447–1450. [Google Scholar] [CrossRef]
- Ansari, M.A.; Razdan, R.K.; Tandon, M.; Vasudevan, P. Larvicidal and repellent actions of Dalbergia sissoo Roxb. (F. leguminosae) oil against mosquitoes. Bioresour. Technol. 2000, 73, 207–211. [Google Scholar] [CrossRef]
- Kalaskar, M.G.; Divekar, V.B.; Chaugule, P.D.; Surana, S.J.; Baheti, D.G. Studies on anti-diarrheal activity of Dalberjia sissoo Roxb. in experimental animals. Pharmacologyonline 2010, 1, 453–457. [Google Scholar]
- Hood, M.M.; Tembhurne, S.V.; Sakarkar, D.M. Anthelmintic activity of different extracts of Dalbergia sissoo Roxb. on Indian adult earthworms. Pharma Chem. 2011, 3, 142–146. [Google Scholar]
- Choi, C.W.; Choi, Y.H.; Cha, M.R.; Kim, Y.S.; Yon, G.H.; Kim, Y.K.; Choi, S.U.; Kim, Y.H.; Ryu, S.Y. Antitumor components isolated from the heartwood extract of Dalbergia odorifera. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 375–379. [Google Scholar] [CrossRef]
- Niranjan, P.S.; Singh, D.; Prajapati, K.; Jain, S.K. Antidiabetic activity of ethanolic extract of Dalbergia sissoo L. leaves in alloxan-induced diabetic rats. Int. J. Curr. Pharm. Res. 2010, 2, 24–27. [Google Scholar]
- Khan, I.A.; Avery, M.A.; Burandt, C.L.; Goins, D.K.; Mikell, J.R.; Nash, T.E.; Azadegan, A.; Walker, L.A. Antigiardial activity of isoflavones from Dalbergia frutescens bark. J. Nat. Prod. 2000, 63, 1414–1416. [Google Scholar] [CrossRef]
- Vasudeva, N.; Vats, M.; Sharma, S.K.; Sardana, S. Chemistry and biological activities of the genus Dalbergia—A review. Pharmacogn. Rev. 2009, 3, 307–319. [Google Scholar]
- Henderson, M.C.; Miranda, C.L.; Stevens, J.F.; Deinzer, M.L.; Buhler, D.R. In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 2000, 30, 235–251. [Google Scholar] [CrossRef]
- Mutai, P.; Heydenreich, M.; Thoithi, G.; Mugumbate, G.; Chibale, K.; Yenesew, A. 3-Hydroxyisoflavanones from the stem bark of Dalbergia melanoxylon: Isolation, antimycobacterial evaluation and molecular docking studies. Phytochem. Lett. 2013, 6, 671–675. [Google Scholar] [CrossRef]
- Iinuma, M.; Ohyama, M.; Tanaka, T.; Mizuno, M.; Soon-Keun, H. Three 2’,4’,6’-trioxygenated flavanones in roots of Echinosophora koreensis. Phytochemistry 1992, 31, 665–669. [Google Scholar] [CrossRef]
- Tanaka, T.; Iinuma, M.; Asai, F.; Ohyama, M.; Burandt, C.L. Flavonoids from the root and stem of Sophora tomentosa. Phytochemistry 1997, 46, 1431–1437. [Google Scholar] [CrossRef]
- Sohn, H.Y.; Son, K.H.; Kwon, C.S.; Kwon, G.S.; Kang, S.S. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 2004, 11, 666–672. [Google Scholar] [CrossRef]
- Wessjohann, L.; Zakharova, S.; Schulze, D.; Kufka, J.; Weber, R.; Bräuer, L.; Brandt, W. Enzymatic C–C-coupling prenylation: Bioinformatics–modelling–mechanism–protein-redesign–biocatalytic application. Chimia 2009, 63, 340–344. [Google Scholar] [CrossRef]
- Wessjohann, L.; Schreckenbach, H.F.; Kaluđerović, G.N. Enzymatic C-alkylation of aromatic compounds. In Biocatalysis in Organic Synthesis (Science of Synthesis); Faber, K., Fessner, W.-D., Turner, N.J., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 2015; Volume 2, pp. 177–211. [Google Scholar]
- Simons, R.; Gruppen, H.; Bovee, T.F.; Verbruggen, M.A.; Vincken, J.P. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food. Funct. 2012, 3, 810–827. [Google Scholar] [CrossRef]
- Kareru, P.G.; Gachanja, A.N.; Keriko, J.M.; Kenji, G.M. Antimicrobial activity of some medicinal plants used by herbalists in Eastern province, Kenya. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Kokwaro, J.O. Medicinal Plants of East Africa, 3rd ed.; University of Nairobi Press: Nairobi, Kenya, 2009; pp. 1–310. [Google Scholar]
- Amri, E.; Juma, S. Evaluation of antimicrobial activity and qualitative phytochemical screening of solvent extracts of Dalbergia melanoxylon (Guill. & Perr.). Int. J. Curr. Microbiol. App. Sci. 2016, 5, 412–423. [Google Scholar]
- Amri, E.; Lyaruu, H.V.M.; Nyomora, A.S.; Kanyeka, Z.L. Vegetative propagation of African blackwood (Dalbergia melanoxylon Guill. & Perr.): Effects of age of donor plant, IBA treatment and cutting position on rooting ability of stem cuttings. New. For. 2010, 39, 183–194. [Google Scholar]
- Donnelly, B.J.; Donnelly, D.M.X.; O’Sullivan, A.M.; Prendergast, J.P. Dalbergia Species—VII: The isolation and structure of melanoxin a new dihydrobenzofuran from Dalbergia melanoxylon Guill. and Perr. (Leguminoseae). Tetrahedron 1969, 25, 4409–4414. [Google Scholar] [CrossRef]
- Dervilla, M.X.D.; O’Reilly, J.; Whalley, W.B. Neoflavanoids of Dalbergia melanoxylon. Phytochemistry 1975, 14, 2287–2290. [Google Scholar]
- Lin, S.; Liu, R.H.; Ma, G.Q.; Mei, D.Y.; Shao, F.; Chen, L.Y. Two new compounds from the heartwood of Dalbergia melanoxylon. Nat. Prod. Res. 2020, 34, 2794–2801. [Google Scholar] [CrossRef]
- Liu, Y.; Shu, J.C.; Wang, M.F.; Xu, Z.J.; Yang, L.; Meng, X.W.; Chen, L.Y. Melanoxylonin AG, neoflavonoids from the heartwood of Dalbergia melanoxylon and their cardioprotective effects. Phytochemistry 2021, 189, 112845. [Google Scholar] [CrossRef]
- dos Santos, C.H.C.; de Carvalho, M.G.; Franke, K.; Wessjohann, L. Dammarane-type triterpenoids from the stem of Ziziphus glaziovii Warm. (Rhamnaceae). Phytochemistry 2019, 162, 250–259. [Google Scholar] [CrossRef]
- Otto, A.; Porzel, A.; Schmidt, J.; Brandt, W.; Wessjohann, L.; Arnold, N. Structure and absolute configuration of pseudohygrophorones A12 and B12, alkyl cyclohexenone derivatives from Hygrophorus abieticola (Basidiomycetes). J. Nat. Prod. 2016, 79, 74–80. [Google Scholar] [CrossRef]
- Thomsen, H.; Reider, K.; Franke, K.; Wessjohann, L.A.; Keiser, J.; Dagne, E.; Arnold, N. Characterization of constituents and anthelmintic properties of Hagenia abyssinica. Sci. Pharm. 2012, 80, 433–446. [Google Scholar] [CrossRef]
- Khan, M.F.; Nasr, F.A.; Noman, O.M.; Alyhya, N.A.; Ali, I.; Saoud, M.; Rennert, R.; Dube, M.; Hussain, W.; Green, I.R.; et al. Cichorins D-F: Three new compounds from Cichorium intybus and their biological effects. Molecules 2020, 25, 4160. [Google Scholar] [CrossRef]
- Krieg, R.; Jortzik, E.; Goetz, A.A.; Blandin, S.; Wittlin, S.; Elhabiri, M.; Rahbari, M.; Nuryyeva, S.; Voigt, K.; Dahse, H.M.; et al. Arylmethylamino steroids as antiparasitic agents. Nat. Commun. 2017, 8, 14478–14489. [Google Scholar] [CrossRef]
- Iinuma, M.; Ohyama, M.; Tanaka, T.; Mizuno, M.; Soon-Keun, H. Five flavonoid compounds from Echinosophora koreensis. Phytochemistry 1993, 33, 1241–1245. [Google Scholar] [CrossRef]
- Kumar, P.; Kushwaha, P.; Khedgikar, V.; Gautam, J.; Choudhary, D.; Singh, D.; Trivedi, R.; Maurya, R. Neoflavonoids as potential osteogenic agents from Dalbergia sissoo heartwood. Bioorganic Med. Chem. Lett. 2014, 24, 2664–2668. [Google Scholar] [CrossRef]
- Chan, S.C.; Chang, Y.S.; Kuo, S.C. Neoflavonoids from Dalbergia odorifera. Phytochemistry 1997, 46, 947–949. [Google Scholar] [CrossRef]
- Herath, H.M.T.B.; deSilva, S. New constituents from Gliricidia sepium. Fitoterapia 2000, 71, 722–724. [Google Scholar] [CrossRef]
- Fan, J.R.; Kuang, Y.; Dong, Z.Y.; Yi, Y.; Zhou, Y.X.; Li, B.; Qiao, X.; Ye, M. Prenylated phenolic compounds from the aerial parts of Glycyrrhiza uralensis as PTP1B and α-glucosidase inhibitors. J. Nat. Prod. 2020, 83, 814–824. [Google Scholar] [CrossRef]
- Yang, X.D.; Xu, L.Z.; Yang, S.L. Xanthones from the stems of Securidaca inappendiculata. Phytochemistry 2001, 58, 1245–1249. [Google Scholar] [CrossRef]
- Gurmessa, G.T.; Kusari, S.; Laatsch, H.; Bojase, G.; Tatolo, G.; Masesane, I.B.; Spiteller, M.; Majinda, R.R.T. Chemical constituents from the stem bark of Erythrina brucei. Phytochem. Lett. 2018, 25, 37–42. [Google Scholar] [CrossRef]
- Slade, D.; Ferreira, D.; Marais, J.P.J. Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry 2005, 66, 2177–2215. [Google Scholar] [CrossRef]
- Bedane, K.G.; Kusari, S.; Bullach, A.; Masesane, I.B.; Mihigo, S.O.; Spiteller, M.; Majinda, R.R.T. Chemical constituents of the root bark of Erythrina droogmansiana. Phytochem. Lett. 2017, 20, 84–88. [Google Scholar] [CrossRef]
- Kinoshita, T.; Ichinose, K.; Takahashi, C.; Wu, J.-B.; Sankawa, U. Chemical studies on Sophora tomentosa: The isolation of a new class of isoflavonoid. Chem. Pharm. Bull. 1990, 38, 2756–2759. [Google Scholar] [CrossRef]
- Fukai, T.; Nomura, T. Structure of 6- or 8-isoprenoid substituted flavanone: Chemical shift of the hydrogen-bonded hydroxyl group. Heterocycles 1990, 31, 1861–1872. [Google Scholar]
- Zhang, G.P.; Xiao, Z.Y.; Rafique, J.; Arfan, M.; Smith, P.J.; Lategan, C.A.; Hu, L.H. Antiplasmodial isoflavanones from the roots of Sophora mollis. J. Nat. Prod. 2009, 72, 1265–1268. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Li, R.T.; Mao, Y.L.; Zhang, H.J.; Li, S.H.; Song, Q.S.; Sun, H.D. Four new prenylated isoflavonoids in Tadehagi triquetrum. J. Agric. Food Chem. 2005, 53, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Panahipour, L.; Omerbasic, A.; Tangm, F.; Gruber, R. Dalbergiones lower the inflammatory response in oral cells in vitro. Clin. Oral Investig. 2022, 26, 5419–5428. [Google Scholar] [CrossRef]
- Chen, X.; Mukwaya, E.; Wong, M.S.; Zhang, Y. A systematic review on biological activities of prenylated flavonoids. Pharm. Biol. 2014, 52, 655–660. [Google Scholar] [CrossRef]
- Kalli, S.; Araya-Cloutier, C.; Hageman, J.; Vincken, J.-P. Insights into the molecular properties underlying antibacterial activity of prenylated (iso)flavonoids against MRSA. Sci. Rep. 2021, 11, 14180. [Google Scholar] [CrossRef]
- Boozari, M.; Soltani, S.; Iranshahi, M. Biologically active prenylated flavonoids from the genus Sophora and their structure-activity relationship—A review. Phytother. Res. 2019, 33, 546–560. [Google Scholar] [CrossRef]
Position | 1 a | 2 a | 3 b | 4 b | 5 b | 6 c |
---|---|---|---|---|---|---|
2A | 4.70, d (11.8) | 4.40, d (8.9) | 4.39, d (8.9) | 4.40, d (6.5) | 4.40, m | 4.53, t (10.8) |
2B | 4.03, d (11.8) | 4.39, d (6.7) | 4.38, d (6.8) | 4.39, d (9.1) | 4.38, m | 4.41, dd (10.8, 5.5) |
3 | 4.26, dd (8.9, 6.7) | 4.24, dd (8.9, 6.8) | 4.27, dd (9.1, 6.5) | 4.27, m | 4.17, dd (10.8, 5.5) | |
6 | 5.93, d (2.0) | 5.94, s | ||||
8 | 5.88, d (2.0) | 5.94, s | 5.94, s | 5.93, s | 5.94, s | |
3′ | 6.33, d (2.4) | |||||
5′ | 6.61, d (8.5) | 6.55, d (8.4) | 6.55, d (8.4) | 6.55, d (8.4) | 6.53, d (8.4) | 6.26, dd (8.3, 2.4) |
6′ | 7.27, d (8.5) | 6.78, d (8.4) | 6.78, d (8.4) | 6.77, d (8.4) | 6.88, d (8.4) | 6.83, d (8.3) |
1″A | 3.40, dd (14.9, 6.4) | 3.37, dd (14.4, 6.7) | 3.36, dd (14.8, 7.1) | 3.34, m | 3.02, m | |
1″B | 3.33, dd (14.9, 6.4) | 3.30 d | 3.32 d | 2.70, m | ||
2″ | 5.52, t (6.4) | 5.24, t (6.7) | 5.24, br t (7.2) | 5.24 br t (7.2) | 3.74, m | |
4″ | 3.91, s | 1.68, s | 1.67, s | 1.67, s | 1.32/1.34, s | |
5″ | 1.76, s | 1.76, s | 1.77, s | 1.76, s | 1.26/1.27, s | |
1‴ | 3.22, d (7.2) | 3.24, d (7.3) | 3.23, br d (6.5) | 3.22, d (7.2) | 3.21, br d (7.1) | |
2‴ | 5.20, t (7.2) | 5.25, br t (7.3) | 5.24, br t (6.5) | 5.19, br t (6.5) | 5.20, br t (7.1) | |
4‴ | 1.95, m | 2.65, br d (4.5) | 1.97, m | 1.94, d (7.6) | 2.18, m | |
5‴ | 2.05, m | 5.57, m | 1.59, m | 2.05, m | 2.08, m | |
6‴ | 5.05, br t (6.8) | 5.57, m | 3.95, t (6.7) | 5.05, m | 5.16, m | |
7‴ | ||||||
8‴ | 1.61, s | 1.24, s | A 4.85 m B 4.76 m | 1.61, s | 1.67, s | |
9‴ | 1.74, s | 1.74, s | 1.77, s | 1.74, s | 1.65, s | |
10‴ | 1.55, s | 1.24, s | 1.67, s | 1.56, s | 1.61, s | |
2′-OCH3 | 3.58, s | 3.71, s | 3.71, s | 3.70, s | 3.76/3.75, s | |
5-OH | 12.09, s | 12.41, s | 12.41, s | 12.41, s | 12.21, s |
Position | 1 a | 2 a | 3 b | 4 b | 5 b | 6 c | 7 a | 9 a |
---|---|---|---|---|---|---|---|---|
2 | 75.8 | 72.5 | 72.0 d | 72.2 d | 72.0 d | 71.4 | 71.5 | 75.6 |
3 | 75.4 | 47.0 | 46.8 d | 46.8 d | 46.9 d | 47.9 | 47.9 | 75.7 |
4 | 197.1 | 199.4 | 199.6 e | 199.2 e | 199.1 e | 199.8 | 199.8 | 197.3 |
5 | 166.4 | 162.8 | 162.9 e | 165.6 e | 162.8 e | 163.5 | 163.5 | 163.3 |
6 | 97.3 | 109.8 | 109.8 e | 109.4 e | 109.8 e | 96.4 | 96.4 | 109.9 |
7 | 168.3 | 166.0 | 166.1 e | 165.5 e | 166.0 e | 165.8 | 165.8 | 165.9 |
8 | 96.1 | 95.3 | 94.8 d | 95.0 d | 95.3 d | 108.9 | 108.9 | 95.4 |
9 | 164.5 | 162.8 | 162.9 e | 162.5 e | 162.8 e | 161.8 | 161.8 | 162.1 |
10 | 102.1 | 103.8 | 103.9 e | 103.5 e | 103.7 e | 103.9 | 103.8 | 102.0 |
1′ | 123.7 | 120.7 | 120.8 e | 120.4 e | 121.1 e | 113.8 | 114.1 | 122.7 |
2′ | 157.7 | 159.2 | 159.3 e | 158.8 e | 158.8 e | 157.7 | 157.6 | 157.7 |
3′ | 122.1 | 123.2 | 123.3 e | 122.8 e | 115.3 e | 103.8 | 103.8 | 124.5 |
4′ | 158.7 | 157.5 | 157.7 e | 157.2 e | 155.2 e | 159.1 | 159.1 | 158.6 |
5′ | 111.2 | 112.3 | 111.9 d | 112.1 d | 113.9d | 107.8 | 107.8 | 111.3 |
6′ | 126.8 | 128.3 | 127.8 d | 128.0 d | 129.0 d | 131.9 | 131.9 | 126.6 |
1″ | 24.4 | 24.4 | 24.2 d | 24.1 d | 27.6 d | 4.8 | ||
2″ | 125.8 | 124.6 | 124.2 d | 124.1 d | 70.0 d | 124.0 | ||
3″ | 135.8 | 131.7 | 131.4 e | 131.4 e | 77.8 d | 132.2 | ||
4″ | 68.9 | 25.9 | 25.6 d | 25.6 d | 25.6 d | 25.9 | ||
5″ | 14.0 | 18.0 | 17.8 d | 17.7 d | 20.8 d | 17.9 | ||
1‴ | 21.8 | 21.7 d | 21.6 d | 21.5 d | 22.1 | 22.2 | 22.0 | |
2‴ | 124.0 | 124.2d | 124.3 d | 123.6 d | 124.7 | 124.2 | 123.9 | |
3‴ | 135.2 | 134.5 e | 134.7 e | 135.2 e | 135.6 | 135.2 | 131.6 | |
4‴ | 40.9 | 43.4 d | 36.5 d | 40.7 d | 32.9 | 40.8 | 25.8 | |
5‴ | 27.7 | 126.0 d | 34.1 d | 27.7 d | 27.7 | 27.6 | 18.0 | |
6‴ | 125.5 | 139.8 d | 75.9 d | 125.2 d | 125.7 | 125.4 | ||
7‴ | 132.0 | 71.3 e | 148.4 e | 132.0 d | 131.9 | 132.1 | ||
8‴ | 25.9 | 29.6 d | 111.2 d | 25.6 d | 25.9 | 25.9 | ||
9‴ | 16.2 | 16.0 d | 16.0 d | 16.0 d | 23.7 | 16.2 | ||
10‴ | 17.7 | 29.6 d | 17.4 d | 17.4 d | 17.7 | 17.7 | ||
2′-OCH3 | 62.0 | 62.5 | 62.2 d | 62.2 d | 61.1 d | 61.9 |
Antibacterial Assays | Antifungal Assays | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
B. subtilis | A. fischeri | P. infestans | B. cinerea | S. tritici | ||||||
Extract | 500 μg/mL | 50 μg/mL | 500 μg/mL | 50 μg/mL | 125 μg/mL | 42 μg/mL | 125 μg/mL | 42 μg/mL | 125 μg/mL | 42 μg/mL |
CH2Cl2 | 77 ± 13 | 97 ± 0 | 100 ± 0 | 25 ± 2 | 96 ± 3 | 22 ± 10 | 89 ± 1 | 69 ± 8 | 73 ± 4 | 18 ± 19 |
Compounds | 100 μM | 1 μM | 100 μM | 1 μM | 125 μg/mL | 42 μg/mL | 125 μg/mL | 42 μg/mL | 125 μg/mL | 42 μg/mL |
1 | −7 ± 23 | 23 ± 34 | −5 ± 26 | 3 ± 25 | −68 ± 36 | 1 ± 19 | −56 ± 40 | −24 ± 11 | 6 ± 9 | −1 ± 13 |
2 | 60 ± 2 | −79 ± 17 | 24 ± 14 | −25 ± 27 | −32 ± 2 | −14 ± 5 | −38 ± 12 | −20 ± 3 | −24 ± 15 | −1 ± 4 |
7 | 63 ± 2 | −33 ± 73 | −52 ± 23 | −2 ± 28 | 81 ± 1 | 2 ± 3 | 95 ± 4 | 99 ± 0 | 88 ± 3 | 74 ± 10 |
9 | 96 ± 0 | 40 ± 2 | 67 ± 8 | 20 ± 18 | 71 ± 14 | 23 ± 12 | 0 ± 30 | 26 ± 5 | 76 ± 11 | −16 ± 10 |
10 | 99 ± 0 | n.d. | 99 ± 0 | 8 ± 16 | 58 ± 12 | 86 ± 1 | 58 ± 13 | 56 ± 5 | 115 ± 6 | 13 ± 11 |
Positive control | 100 μM chloramphenicol | 100 μM chloramphenicol | 42 μM terbinafine | 42 μM epoxiconazole | 42 μM epoxiconazole | |||||
100 ± 0 | 100 ± 0 | 87 ± 5 | 67 ± 8 | 99 ± 2 | 100 ± 0 | 97 ± 0 | 97 ± 0 |
B. subtilis | S. aureus | E. coli | P. aeruginosa | P. aeruginosa | S. aureus (MRSA) | E. faecalis (VRE) | M. vaccae | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | 6633 B1 | 511 B3 | 458 B4 | SG137 B7 | K799/61 B9 | 134/93 R9 | 1528 R10 | 10670 M4 | |||
(1 mg/mL) | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | [μg/mL] | [mm] | [μg/mL] | [mm] | [μg/mL] |
1 | 10 | 11 | 13P | 0 | 0 | 0/A | n.t. | 0 | n.t. | 15p | n.t. |
2 | 11/13p | 10 | 0 | 0/A | 0 | 11 | n.t. | 11 | n.t. | 12 | n.t. |
7 | 23 | 23 | 14P | 0 | 0 | 24 | 1.56 | 22F | 1.56 | 27 | 0.78 |
9 | 24 | 25 | 15P | 0 | 0/A | 26 | 3.12 | 18/23p/F | 6.25 | 27/33p | 1.56 |
10 | 20/23P | 20/23p-P | 14P | 0 | 0 | 21 | 25 | 17/25p/F | 25 | 20/32p | 3.12 |
CIP a | 29 EK | 18 | 23/31p | 25 | 28/35p | 0 | 12.5 | 16F | 0.78 | 20p | 0.2 |
DMSO b | 11P | 13P | 12P | 12P | 12P | 11P | >100 | 12p-P | 100 | 11P | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalo, D.M.; Franke, K.; Nchiozem-Ngnitedem, V.-A.; Kakudidi, E.; Origa-Oryem, H.; Namukobe, J.; Kloss, F.; Yenesew, A.; Wessjohann, L.A. Prenylated Isoflavanones with Antimicrobial Potential from the Root Bark of Dalbergia melanoxylon. Metabolites 2023, 13, 678. https://doi.org/10.3390/metabo13060678
Chalo DM, Franke K, Nchiozem-Ngnitedem V-A, Kakudidi E, Origa-Oryem H, Namukobe J, Kloss F, Yenesew A, Wessjohann LA. Prenylated Isoflavanones with Antimicrobial Potential from the Root Bark of Dalbergia melanoxylon. Metabolites. 2023; 13(6):678. https://doi.org/10.3390/metabo13060678
Chicago/Turabian StyleChalo, Duncan Mutiso, Katrin Franke, Vaderament-A. Nchiozem-Ngnitedem, Esezah Kakudidi, Hannington Origa-Oryem, Jane Namukobe, Florian Kloss, Abiy Yenesew, and Ludger A. Wessjohann. 2023. "Prenylated Isoflavanones with Antimicrobial Potential from the Root Bark of Dalbergia melanoxylon" Metabolites 13, no. 6: 678. https://doi.org/10.3390/metabo13060678
APA StyleChalo, D. M., Franke, K., Nchiozem-Ngnitedem, V. -A., Kakudidi, E., Origa-Oryem, H., Namukobe, J., Kloss, F., Yenesew, A., & Wessjohann, L. A. (2023). Prenylated Isoflavanones with Antimicrobial Potential from the Root Bark of Dalbergia melanoxylon. Metabolites, 13(6), 678. https://doi.org/10.3390/metabo13060678