Differentiation of the Organoleptic Volatile Organic Compound Profile of Three Edible Seaweeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweeds Samples
2.2. Sample Preparation
2.3. Instrumentation
2.4. Data Processing
3. Results and Discussion
3.1. Seaweed Emission Patterns
3.2. Seaweed Differentiation
3.3. VOC Identification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mabeau, S.; Fleurence, J. Seaweed in food products: Biochemical and nutritional aspects. Trends Food Sci. Technol. 1993, 4, 103–107. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Subramani, K.; Shanmugam, M.; Seedevi, P.; Park, S.; Alfarhan, A.H.; Rajagopal, R.; Balasubramanian, B. A comparison of nutritional value of underexploited edible seaweeds with recommended dietary allowances. J. King Saud Univ. Sci. 2020, 32, 1206–1211. [Google Scholar] [CrossRef]
- Mouritsen, O.G. Seaweeds: Edible, Available & Sustainable, 1st ed.; University of Chicago Press: Chicago, IL, USA, 2013. [Google Scholar]
- Fleurence, J.; Levine, I. Seaweed in Health and Disease Prevention, 1st ed.; Elsevier Inc: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Kim, S.K. Handbook of Marine Macroalgae: Biotechnology and Applied Phycology, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Holdt, S.L. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Polat, S.; Trif, M.; Rusu, A.; Simat, V.; Cagalj, M.; Alak, G.; Meral, R.; Özogul, Y.; Polat, A.; Özogul, F. Recent advances in industrial applications of seaweeds. Crit. Rev. Food Sci. Nutr. 2021, 1–30. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef]
- Vieira, E.F.; Soares, C.; Machado, S.; Correia, M.; Ramalhosa, M.J.; Oliva-teles, M.T.; Carvalho, A.P.; Domingues, V.F.; Antunes, F.; Oliveira, T.A.C.; et al. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chem. 2018, 269, 264–275. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Williams, L.; Bjerregaard, R.; Duelund, L. Seaweeds for Umami Flavour in the New Nordic Cuisine. Flavour 2012, 1, 4. [Google Scholar] [CrossRef]
- Maarse, H. Volatile Compounds in Foods and Beverages, 1st ed.; Marcel Dekker, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Berneira, L.M.; Silva, C.C.; Passos, L.F.; Mansilla, A.; Aurélio, M.; Santos, Z.; Pereira, C.M.P. Evaluation of volatile organic compounds in brown and red sub-Antartic macroalgae. Braz. J. Bot. 2021, 44, 79–84. [Google Scholar] [CrossRef]
- Hosoglu, M.I. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food Chem. 2017, 240, 1210–1218. [Google Scholar] [CrossRef]
- Kawai, T.; Fujimura, T. Enzymes and Seaweed Flavor. In Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality, 1st ed.; Haard, N.F., Simpson, B.K., Eds.; CRC Press: New York, NY, USA, 2000; pp. 385–409. [Google Scholar]
- Kladi, M.; Vagias, C.; Roussis, V. Volatile halogenated metabolites from marine red algae. Phytochem. Rev. 2004, 3, 337–366. [Google Scholar] [CrossRef]
- Mirzayeva, A.; Castro, R.; Barroso, C.G.; Durán-Guerrero, E. Characterization and differentiation of seaweeds on the basis of their volatile composition. Food Chem. 2021, 336, 127725. [Google Scholar] [CrossRef]
- Wang, P.; Chen, J.; Chen, L.; Shi, L.; Liu, H. Characteristic Volatile Composition of Seven Seaweeds from the Yellow Sea of China. Mar. Drugs 2021, 19, 192. [Google Scholar] [CrossRef] [PubMed]
- Armenta, S.; Alcala, M.; Blanco, M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114–123. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126–158. [Google Scholar] [CrossRef] [PubMed]
- Karpas, Z. Applications of ion mobility spectrometry (IMS) in the field of foodomics. Food Res. Int. 2013, 54, 1146–1151. [Google Scholar] [CrossRef]
- Chen, T.; Chen, X.; Lu, D.; Chen, B. Detection of Adulteration in Canola Oil by Using GC-IMS and Chemometric Analysis. Int. J. Anal. Chem. 2018, 2018, 3160265. [Google Scholar] [CrossRef]
- Espalha, C.; Fernandes, J.M.; Diniz, M.S.; Vassilenko, V. Fast and Direct Detection of Biogenic Amines in Fish by GC-IMS Technology. In Proceedings of the IEEE 6th Portuguese Meeting on Bioengineering—ENBENG, Lisbon, Portugal, 22–23 February 2019. [Google Scholar]
- Moura, P.C.; Vassilenko, V.; Fernandes, J.M.; Santos, P.H. Indoor and Outdoor Air Profiling with GC-IMS. In Proceedings of the 11th Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2020, Costa de Caparica, Portugal, 29 June–1 July 2020. [Google Scholar]
- Moura, P.C.; Vassilenko, V.; Ribeiro, P.A. Ion Mobility Spectrometry Towards Environmental Volatile Organic Compounds Identification and Quantification: A Comparative Overview over Infrared Spectroscopy. Emiss. Control Sci. Technol. 2023, 9, 25–46. [Google Scholar] [CrossRef]
- Scheinemann, A.; Sielemann, S.; Walter, J.; Doll, T. Evaluation Strategies for Coupled GC-IMS Measurement including the Systematic Use of Parametrized ANN Training Data. Open J. Appl. Sci. 2012, 2, 257–266. [Google Scholar]
- Moura, P.C.; Vassilenko, V. Gas Chromatography—Ion Mobility Spectrometry as a tool for quick detection of hazardous volatile organic compounds in indoor and ambient air: A university campus case study. Eur. J. Mass Spectrom. 2022, 28, 113–126. [Google Scholar] [CrossRef]
- Moura, P.C.; Vassilenko, V. Contemporary ion mobility spectrometry applications and future trends towards environmental, health and food research: A review. Int. J. Mass Spectrom. 2023, 486, 117012. [Google Scholar] [CrossRef]
- Gabelica, V.; Marklund, E. Fundamentals of ion mobility spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Creaser, C.S.; Griffiths, J.R.; Bramwell, C.J.; Noreen, S.; Hill, C.A.; Thomas, C.L.P. Ion mobility spectrometry: A review. Part 1. Structural analysis by mobility measurement. Analyst 2004, 129, 984–994. [Google Scholar] [CrossRef]
- Li, F.; Xie, Z.; Schmidt, H.; Sielemann, S.; Baumbach, J.I. Ion mobility spectrometer for online monitoring of trace compounds. Spectrochim. B 2002, 57, 1563–1574. [Google Scholar] [CrossRef]
- Kanu, B.; Hill, H.H. Ion mobility spectrometry detection for gas chromatography. J. Chromatogr. A 2018, 1177, 12–27. [Google Scholar] [CrossRef]
- Fernades, J.M.; Vassilenko, V.; Moura, P.C.; Fetter, V. Gas Chromatography—Ion Mobility Spectrometry Instrument for Medical Applications: A Calibration Protocol for ppb and ppt Concentration Range. In Proceedings of the 12th Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2021, Costa de Caparica, Portugal, 7–9 July 2021. [Google Scholar]
Parameters | Values | Units |
---|---|---|
Sample Loop Volume | 1 | mL |
GC Column Model | MXT-200 | – |
GC Column Length | 30 | m |
GC Column Diameter | 0.53 | mm |
GC Temperature | 343.15 | K |
Ionization Source | Tritium—β Radiation | – |
Ionization Polarity | Positive | – |
Drift Region Length | 9.8 | cm |
Drift Potential Difference | 5 | kV |
IMS Temperature | 343.15 | K |
IMS Pressure Range | 742–760 | Torr |
Gas Nature | Purified Air | – |
Carrier Gas Flow | 10–50 | mL/min |
Drift Gas Flow | 150 | mL/min |
Resolving Power | 100 | – |
Analysis Duration | 15 | min |
Volatile Organic Compounds | Grateloupia turuturu | Codium tomentosum | Bifurcaria bifurcata |
---|---|---|---|
Ethanol | X | X | X |
Diethyl Ether | X | X | |
Isopropanol | X | X | |
Acetone | X | X | X |
Benzene | X | ||
2-Butanone | X | X | X |
2-Ethylfuran | X | X | X |
2-Pentanone | X | ||
Hexanal | X | X | X |
2-Hexenal | X | X | X |
4-Heptenal | X | ||
Heptanal | X | ||
2-Heptenal | X |
Volatile Organic Compounds | Retention Time (s) | Relative Drift Time | CAS Number | Note |
---|---|---|---|---|
Ethanol | 73 | 1.057 | 64-17-5 | Monomer |
1.153 | Dimer | |||
Diethyl Ether | 75 | 1.091 | 60-29-7 | Monomer |
1.201 | Dimer | |||
Isopropanol | 80 | 1.104 | 67-63-0 | Monomer |
1.256 | Dimer | |||
Acetone | 89 | 1.161 | 67-64-1 | Monomer |
Benzene | 117 | 1.113 | 71-43-2 | Monomer |
2-Butanone | 122 | 1.082 | 78-93-3 | Monomer |
1.302 | Dimer | |||
2-Ethylfuran | 133 | 1.081 | 3208-16-0 | Monomer |
2-Pentanone | 170 | 1.146 | 107-87-9 | Monomer |
1.439 | Dimer | |||
Hexanal | 250 | 1.286 | 66-25-1 | Monomer |
1.642 | Dimer | |||
2-Hexenal | 368 | 1.216 | 6728-26-3 | Monomer |
1.598 | Dimer | |||
4-Heptenal | 394 | 1.191 | 6728-31-0 | Monomer |
Heptanal | 405 | 1.366 | 111-71-7 | Monomer |
1.789 | Dimer | |||
2-Heptenal | 613 | 1.300 | 18829-55-5 | Monomer |
1.783 | Dimer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, P.C.; Fernandes, J.M.; Diniz, M.S.; Fetter, V.; Vassilenko, V. Differentiation of the Organoleptic Volatile Organic Compound Profile of Three Edible Seaweeds. Metabolites 2023, 13, 713. https://doi.org/10.3390/metabo13060713
Moura PC, Fernandes JM, Diniz MS, Fetter V, Vassilenko V. Differentiation of the Organoleptic Volatile Organic Compound Profile of Three Edible Seaweeds. Metabolites. 2023; 13(6):713. https://doi.org/10.3390/metabo13060713
Chicago/Turabian StyleMoura, Pedro Catalão, Jorge Manuel Fernandes, Mário Sousa Diniz, Viktor Fetter, and Valentina Vassilenko. 2023. "Differentiation of the Organoleptic Volatile Organic Compound Profile of Three Edible Seaweeds" Metabolites 13, no. 6: 713. https://doi.org/10.3390/metabo13060713
APA StyleMoura, P. C., Fernandes, J. M., Diniz, M. S., Fetter, V., & Vassilenko, V. (2023). Differentiation of the Organoleptic Volatile Organic Compound Profile of Three Edible Seaweeds. Metabolites, 13(6), 713. https://doi.org/10.3390/metabo13060713