Tear Fluid Biomarkers and Quality of Life in People with Type 2 Diabetes and Dry Eye Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Tests
2.2.1. OSDI Questionnaire
2.2.2. DEQS Questionnaire
2.2.3. TER Assessment
2.2.4. Schirmer 1 Test
2.2.5. fTBUT
2.2.6. CFS
2.3. Tear Collection and Tear Fluid Analysis
2.4. Statistical Analysis
3. Results
3.1. Demographics, Clinical Signs and Symptoms of DED and Clinical Data of T2D
3.2. Biomarkers’ Concentrations in Tears among Groups
3.3. The Relationship between Tear Fluid Biomarkers and Clinical Signs and Symptoms of DED
3.4. The Relationship between Tear Fluid Biomarkers and Clinical Data of T2D
3.5. An Effect of DED on QoL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2021, 183, 109119. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Deng, S.; Sun, X.; Wang, N. Dry Eye Syndrome in Patients with Diabetes Mellitus: Prevalence, Etiology, and Clinical Characteristics. J. Ophthalmol. 2016, 2016, 8201053. [Google Scholar] [CrossRef] [Green Version]
- Manaviat, M.R.; Rashidi, M.; Afkhami-Ardekani, M.; Shoja, M.R. Prevalence of dry eye syndrome and diabetic retinopathy in type 2 diabetic patients. BMC Ophthalmol. 2008, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Onwubiko, S.; Eze, B.I.; Udeh, N.N.; Arinze, O.C.; Onwasigwe, E.N.; Umeh, R.E. Dry eye disease: Prevalence, distribution and determinants in a hospital-based population. Contact Lens Anterior Eye 2014, 37, 157–161. [Google Scholar] [CrossRef]
- Schiffman, R.M.; Walt, J.G.; Jacobsen, G.; Doyle, J.J.; Lebovics, G.; Sumner, W. Utility assessment among patients with dry eye disease. Ophthalmology 2003, 110, 1412–1419. [Google Scholar] [CrossRef]
- Shigeyasu, C.; for the DECS-J study group; Yamada, M.; Kawashima, M.; Suwaki, K.; Uchino, M.; Hiratsuka, Y.; Yokoi, N.; Tsubota, K. Quality of life measures and health utility values among dry eye subgroups. Health Qual. Life Outcomes 2018, 16, 170. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Alfaro, P.; Garcia, S.; Rodriguez, I.; Vergés, C. Dry eye disease symptoms and quality of life in perimenopausal and postmenopausal women. Climacteric 2020, 24, 261–266. [Google Scholar] [CrossRef]
- Sayegh, R.R.; Yu, Y.; Farrar, J.T.; Kuklinski, E.J.; Shtein, R.M.; Asbell, P.A.; Maguire, M.G. Ocular Discomfort and Quality of Life Among Patients in the Dry Eye Assessment and Management Study. Cornea 2020, 40, 869–876. [Google Scholar] [CrossRef]
- Morthen, M.K.; Magno, M.S.; Utheim, T.P.; Snieder, H.; Hammond, C.J.; Vehof, J. The physical and mental burden of dry eye disease: A large population-based study investigating the relationship with health-related quality of life and its determinants. Ocul. Surf. 2021, 21, 107–117. [Google Scholar] [CrossRef]
- Yazdani-Ibn-Taz, K.; Han, M.M.; Jonuscheit, S.; Collier, A.; Nally, J.E.; Hagan, S. Patient-reported severity of dry eye and quality of life in diabetes. Clin. Ophthalmol. 2019, 13, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Hagan, S.; Byambajav, M.; Elshein, R.; Collier, A.; Jonuscheit, S. Quality of life and dry eye disease severity in people with diabetes. Invest Ophthalmol. Vis. Sci. 2018, 59, 4865. [Google Scholar]
- Zhmud, T.; Malachkova, N.; Redjak, R.; Costagliola, C.; Concilio, M.; Drozhzhyna, G.; Mario, D.T.; Veretelnyk, S. Dry eye disease severity and impact on quality of life in type II diabetes mellitus. Front. Med. 2023, 10, 1103400. [Google Scholar] [CrossRef] [PubMed]
- Downie, L.E.; Rumney, N.; Gad, A.; Keller, P.R.; Purslow, C.; Vingrys, A.J. Comparing self-reported optometric dry eye clinical practices in Australia and the United Kingdom: Is there scope for practice improvement? Ophthalmic Physiol. Opt. 2016, 36, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Asiedu, K.; Kyei, S.; Ayobi, B.; Agyemang, F.O.; Ablordeppey, R.K. Survey of eye practitioners’ preference of diagnostic tests and treatment modalities for dry eye in Ghana. Contact Lens Anterior Eye 2016, 39, 411–415. [Google Scholar] [CrossRef]
- Xue, A.L.; Downie, L.E.; Ormonde, S.E.; Craig, J.P. A comparison of the self-reported dry eye practices of New Zealand optometrists and ophthalmologists. Ophthalmic Physiol. Opt. 2017, 37, 191–201. [Google Scholar] [CrossRef]
- Bunya, V.Y.; Fernandez, K.B.; Ying, G.-S.; Massaro-Giordano, M.; Macchi, I.; Sulewski, M.E.; Hammersmith, K.M.; Nagra, P.K.; Rapuano, C.J.; Orlin, S.E. Survey of Ophthalmologists Regarding Practice Patterns for Dry Eye and Sjogren Syndrome. Eye Contact Lens Sci. Clin. Pract. 2018, 44, S196–S201. [Google Scholar] [CrossRef]
- Rizal, S.O.J. Survey on the Knowledge, Attitudes, and Practice Patterns of Ophthalmologists in the Philippines on the Diagnosis and Management of Dry Eye Disease. Philipp. J. Ophthalmol. 2019, 44, 68–74. [Google Scholar]
- Almutairi, A.H.; Alalawi, B.S.; Badr, G.H.; Alawaz, R.A.; Albarry, M.; Elbadawy, H.M. Prevalence of dry eye syndrome in association with the use of contact lenses in Saudi Arabia. BMC Ophthalmol. 2021, 21, 147. [Google Scholar] [CrossRef]
- Begley, C.G.; Chalmers, R.L.; Abetz, L.; Venkataraman, K.; Mertzanis, P.; Caffery, B.A.; Snyder, C.; Edrington, T.; Nelson, D.; Simpson, T. The Relationship between Habitual Patient-Reported Symptoms and Clinical Signs among Patients with Dry Eye of Varying Severity. Investig. Opthalmol. Vis. Sci. 2003, 44, 4753–4761. [Google Scholar] [CrossRef] [Green Version]
- Nichols, K.K.; Nichols, J.J.; Mph; Mitchell, G.L. The Lack of Association Between Signs and Symptoms in Patients with Dry Eye Disease. Cornea 2004, 23, 762–770. [Google Scholar] [CrossRef]
- Sullivan, B. Challenges in Using Signs and Symptoms to Evaluate New Biomarkers of Dry Eye Disease. Ocul. Surf. 2014, 12, 2–9. [Google Scholar] [CrossRef]
- Hagan, S.; Tomlinson, A. Tear Fluid Biomarker Profiling: A Review of Multiplex Bead Analysis. Ocul. Surf. 2013, 11, 219–235. [Google Scholar] [CrossRef]
- Martin, E.; Oliver, K.M.; Pearce, E.I.; Tomlinson, A.; Simmons, P.; Hagan, S. Effect of tear supplements on signs, symptoms and inflammatory markers in dry eye. Cytokine 2018, 105, 37–44. [Google Scholar] [CrossRef]
- Hagan, S.; Martin, E.; Enríquez-de-Salamanca, A. Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J. 2016, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Ma, B.; Gao, Y.; Ma, B.; Liu, Y.; Qi, H. Tear Inflammatory Cytokines Analysis and Clinical Correlations in Diabetes and Nondiabetes with Dry Eye. Am. J. Ophthalmol. 2019, 200, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Byambajav, M.; Arroyo-del Arroyo, C.; Enríquez-de-Salamanca, A.; Fernández, I.; Martin, E.; Hagan, S. A Pilot Proteomic Study of Normal Human Tears: Leptin as a Potential Biomarker of Metabolic Disorders. Appl. Sci. 2021, 11, 5755. [Google Scholar] [CrossRef]
- General Assembly of the World Medical Association World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Coll. Dent. 2014, 81, 14–18.
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef]
- Edman, M.C.; Janga, S.R.; Kakan, S.S.; Okamoto, C.T.; Freire, D.; Feigenbaum, D.; Lew, M.; Hamm-Alvarez, S.F. Tears–more to them than meets the eye: Why tears are a good source of biomarkers in Parkinson’s disease. Biomark. Med. 2020, 14, 151–163. [Google Scholar] [CrossRef]
- Ramamoorthy, P.; Khanal, S.; Nichols, J.J. Inflammatory proteins associated with contact lens-related dry eye. Contact Lens Anterior Eye 2021, 45, 101442. [Google Scholar] [CrossRef]
- Benito, M.J.; González-García, M.J.; Tesón, M.; García, N.; Fernández, I.; Calonge, M.; Enríquez-De-Salamanca, A. Intra- and inter-day variation of cytokines and chemokines in tears of healthy subjects. Exp. Eye Res. 2014, 120, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Rohit, A.; Ehrmann, K.; Naduvilath, T.; Willcox, M.; Stapleton, F. Validating a new device for measuring tear evaporation rates. Ophthalmic Physiol. Opt. 2013, 34, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Lira, M.; Oliveira, M.E.C.R.; Franco, S. Comparison of the tear film clinical parameters at two different times of the day. Clin. Exp. Optom. 2011, 94, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.M.; Lane, K.J.; Ousler, G.W.; Abelson, M.B. Diurnal Variation of Visual Function and the Signs and Symptoms of Dry Eye. Cornea 2010, 29, 607–612. [Google Scholar] [CrossRef]
- Grubbs, J.R.; Tolleson-Rinehart, S.; Huynh, K.; Davis, R.M. A Review of Quality of Life Measures in Dry Eye Questionnaires. Cornea 2014, 33, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Németh, O.; Langenbucher, A.; Eppig, T.; Lepper, S.; Milioti, G.; Abdin, A.; Nagy, Z.Z.; Seitz, B.; Szentmáry, N. Ocular Surface Disease Index and Ocular Thermography in Keratoconus Patients. J. Ophthalmol. 2020, 2020, 1571283. [Google Scholar] [CrossRef] [Green Version]
- Sakane, Y.; Yamaguchi, M.; Yokoi, N.; Uchino, M.; Dogru, M.; Oishi, T.; Ohashi, Y.; Ohashi, Y. Development and Validation of the Dry Eye–Related Quality-of-Life Score Questionnaire. JAMA Ophthalmol. 2013, 131, 1331–1338. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. TFOS DEWS II Diagnostic Methodology report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef]
- Inomata, T.; Nakamura, M.; Iwagami, M.; Midorikawa-Inomata, A.; Okumura, Y.; Fujimoto, K.; Iwata, N.; Eguchi, A.; Shokirova, H.; Miura, M.; et al. Comparing the Japanese Version of the Ocular Surface Disease Index and Dry Eye-Related Quality-of-Life Score for Dry Eye Symptom Assessment. Diagnostics 2020, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Kaido, M.; Kawashima, M.; Shigeno, Y.; Yamada, Y.; Tsubota, K. Randomized Controlled Study to Investigate the Effect of Topical Diquafosol Tetrasodium on Corneal Sensitivity in Short Tear Break-Up Time Dry Eye. Adv. Ther. 2018, 35, 697–706. [Google Scholar] [CrossRef]
- de Monchy, I.; Gendron, G.; Miceli, C.; Pogorzalek, N.; Mariette, X.; Labetoulle, M. Combination of the Schirmer I and Phenol Red Thread Tests as a Rescue Strategy for Diagnosis of Ocular Dryness Associated with Sjögren’s Syndrome. Investig. Opthalmol. Vis. Sci. 2011, 52, 5167–5173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bron, A.J. Diagnosis of Dry Eye. Surv. Ophthalmol. 2001, 45, S221–S226. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Fraga, J.; Enríquez-de-Salamanca, A.; Calonge, M.; González-García, M.J.; López-Miguel, A.; López-de la Rosa, A.; García-Vázquez, C.; Calder, V.; Stern, M.E.; Fernández, I. Severity, therapeutic, and activity tear biomarkers in dry eye disease: An analysis from a phase III clinical trial. Ocul. Surf. 2018, 16, 368–376. [Google Scholar] [CrossRef] [PubMed]
- González-García, M.J.; Murillo, G.M.; Pinto-Fraga, J.; García, N.; Fernández, I.; Maldonado, M.J.; Calonge, M.; Enríquez-De-Salamanca, A. Clinical and tear cytokine profiles after advanced surface ablation refractive surgery: A six-month follow-up. Exp. Eye Res. 2020, 193, 107976. [Google Scholar] [CrossRef]
- Arroyo, C.A.-D.; Byambajav, M.; Fernández, I.; Martin, E.; González-García, M.J.; López-Miguel, A.; Valencia-Nieto, L.; Hagan, S.; Enríquez-De-Salamanca, A. Diurnal variation on tear stability and correlation with tear cytokine concentration. Contact Lens Anterior Eye 2022, 45, 101705. [Google Scholar] [CrossRef]
- Numis, A.L.; Fox, C.H.; Lowenstein, D.J.; Norris, P.J.; Di Germanio, C. Comparison of multiplex cytokine assays in a pediatric cohort with epilepsy. Heliyon 2021, 7, e06445. [Google Scholar] [CrossRef]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Martín-Montañez, V.; Enríquez-de-Salamanca, A.; López-de la Rosa, A.; López-Miguel, A.; Fernández, I.; Calonge, M.; González-Méijome, J.M.; González-García, M.J. Effect of Environmental Conditions on the Concentration of Tear Inflammatory Mediators During Contact Lens Wear. Cornea 2016, 35, 1192–1198. [Google Scholar] [CrossRef] [Green Version]
- Lubin, J.H.; Colt, J.S.; Camann, D.; Davis, S.; Cerhan, J.R.; Severson, R.K.; Bernstein, L.; Hartge, P. Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits. Environ. Health Perspect. 2004, 112, 1691–1696. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Vázquez, M.; Vázquez, A.; Fernández, I.; Novo-Diez, A.; Martínez-Plaza, E.; García-Vázquez, C.; González-García, M.J.; Sobas, E.M.; Calonge, M.; Enríquez-De-Salamanca, A. Inflammation-related molecules in tears of patients with chronic ocular pain and dry eye disease. Exp. Eye Res. 2022, 219, 109057. [Google Scholar] [CrossRef] [PubMed]
- Zar, J.H. Biostatistical Analysis; Regents/Prentice Hall: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Byambajav, M.; Collier, A.; Xinhua, S.; Koshy, Z.; Hagan, S. Tear Fluid Inflammatory Cytokines and Metabolic Proteins Levels in Type 2 Diabetes-Related Dry Eye. Invest Ophthalmol. Vis. Sci. 2020, 61, 39. [Google Scholar]
- Wu, H.; Fang, X.; Luo, S.; Shang, X.; Xie, Z.; Dong, N.; Xiao, X.; Lin, Z.; Liu, Z. Meibomian Glands and Tear Film Findings in Type 2 Diabetic Patients: A Cross-Sectional Study. Front. Med. 2022, 9, 762493. [Google Scholar] [CrossRef] [PubMed]
- Sorkhabi, R.; Ahoor, M.H.; Haghjo, A.G.; Tabei, E.; Taheri, N. Assessment of tear inflammatory cytokines concentration in patients with diabetes with varying severity of involvement. Exp. Eye Res. 2022, 224, 109233. [Google Scholar] [CrossRef]
- Jung, J.W.; Han, S.J.; Nam, S.M.; Kim, T.-I.; Kim, E.K.; Seo, K.Y. Meibomian gland dysfunction and tear cytokines after cataract surgery according to preoperative meibomian gland status. Clin. Exp. Ophthalmol. 2016, 44, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Beckman, K.A. Characterization of Dry Eye Disease in Diabetic Patients Versus Nondiabetic Patients. Cornea 2014, 33, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Wang, S.; Zhang, P.; Lu, L.; Zou, H. Quantitative Proteomics and Weighted Correlation Network Analysis of Tear Samples in Adults and Children with Diabetes and Dry Eye. Transl. Vis. Sci. Technol. 2020, 9, 8. [Google Scholar] [CrossRef]
- Manchikanti, V.; Kasturi, N.; Rajappa, M.; Gochhait, D. Ocular surface disorder among adult patients with type II diabetes mellitus and its correlation with tear film markers: A pilot study. Taiwan J. Ophthalmol. 2021, 11, 156–160. [Google Scholar] [CrossRef] [PubMed]
- de Paiva, C.S. Effects of Aging in Dry Eye. Int. Ophthalmol. Clin. 2017, 57, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Yoo, T.K.; Oh, E. Diabetes mellitus is associated with dry eye syndrome: A meta-analysis. Int. Ophthalmol. 2019, 39, 2611–2620. [Google Scholar] [CrossRef]
- Patterson, C.; Guariguata, L.; Dahlquist, G.; Soltész, G.; Ogle, G.; Silink, M. Diabetes in the young—A global view and worldwide estimates of numbers of children with type 1 diabetes. Diabetes Res. Clin. Pract. 2014, 103, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Jia, Y.; Li, T.; Wang, A.; Gao, L.; Yang, C.; Zou, H. Dry eye disease is more prevalent in children with diabetes than in those without diabetes. Curr. Eye Res. 2019, 44, 1299–1305. [Google Scholar] [CrossRef]
Parameters | Healthy Control (n = 17) | DED-Only (n = 17) | T2D-Only (n = 41) | T2D + DED (n = 47) | p-Values |
---|---|---|---|---|---|
Sex | 0.14 | ||||
M, n (%) | 6 (35.3%) | 7 (41.2%) | 25 (61%) | 29 (61.7%) | |
F, n (%) | 11 (64.7%) | 10 (58.8%) | 16 (39%) | 18 (38.3%) | |
Age (years) | 52 (16) c,d | 60 (20) d | 62 (21) a | 64 (16) a,b | 0.03 |
T2D duration (years) | N/A | N/A | 10.6 (8.7) | 15.4 (9.4) | 0.21 |
TER (g/m2h) | 46.3 (18) | 48 (30) | 51.6 (26.7) | 48.6 (33.6) | 0.48 |
fTBUT (s) | 7 (5.5) b,d | 4 (4.5) a,c | 8 (5.5) b,d | 5 (2) a,c | <0.001 |
CFS (0–4) | 0 (0) d | 0 (1) | 0 (0) d | 1 (1) a,c | 0.002 |
Schirmer (mm) | 20 (23) b,d | 8 (12) a,c | 18 (12) b,d | 8 (14) a,c | <0.001 |
OSDI (0–100) | 2 (3.2) b,d | 20 (29.2) a,c | 2.2 (6.9) b,d | 18.7 (27.1) a,c | <0.001 |
DEQS (0–100) | 8 (8.5) b,d | 26 (36.5) a,c | 6 (8.5) b,d | 21 (35) a,c | <0.001 |
HbA1C (mmol/L) | N/A | N/A | 64 (23.5) | 60 (25) | 0.45 |
Total Cholesterol (mmol/L) | N/A | N/A | 4.1 (1.4) | 3.8 (1.9) | 0.45 |
HDL (mmol/L) | N/A | N/A | 1.25 (0.4) | 1.18 (0.51) | 0.28 |
Parameters | T2D + DED vs. DED-Only | T2D + DED vs. T2D-Only | T2D + DED vs. Healthy Controls | T2D-Only vs. DED-Only | T2D-Only vs. Healthy Controls | DED-Only vs. Healthy Controls |
---|---|---|---|---|---|---|
Age (years) | 0.03 | 0.81 | 0.001 | 0.06 | 0.003 | 0.37 |
fTBUT (s) | 0.84 | <0.001 | 0.004 | 0.003 | 0.93 | 0.01 |
CFS (0–4) | 0.19 | 0.003 | 0.001 | 0.35 | 0.24 | 0.08 |
Schirmer (mm) | 0.63 | <0.001 | <0.001 | <0.001 | 0.55 | <0.001 |
OSDI (0–100) | 0.53 | <0.001 | <0.001 | 0.002 | 0.29 | 0.001 |
DEQS (0–100) | 0.91 | <0.001 | 0.001 | 0.002 | 0.89 | 0.01 |
Biomarkers | Healthy Controls (n = 17) | DED-Only (n = 17) | T2D-Only (n = 41) | T2D + DED (n = 47) | p-Values |
---|---|---|---|---|---|
IL-1RA | 4111.5 (7679.6) c | 2080 (11,699.6) | 869 (2969.6) a,d | 3159.6 (9877.7) c | 0.01 |
IL-6 | 3.3 (40.5) d | 0.7 (17.6) d | 5.6 (61.9) d | 28.3 (85.6) a,b,c | 0.005 |
IL-8 | 94.9 (103.5) d | 141.1 (287.9) d | 163.2 (278) d | 279.5 (645.5) a,b,c | 0.03 |
EGF | 1817.9 (1137.6) | 1586.1 (1028) | 1324.9 (1158) | 1634.5 (831.1) | 0.45 |
Fractalkine | 1182 (648.7) | 1135.1 (921) | 1084 (377) | 1052.5 (410.5) | 0.9 |
IL-1β | 10.9 (47.9) | 36.5 (57.9) | 24.4 (51.2) | 24.4 (56) | 0.64 |
IL-10 | 27.4 (74.2) | 41 (85.1) | 27.4 (61.9) | 27.4 (96.9) | 0.8 |
IP-10 | 15,541.5 (20,968) | 31,954 (31,916) | 19,541 (24,780) | 21,055 (34,857) | 0.26 |
MCP-1 | 257.5 (1363.4) | 900.7 (1296.2) | 394 (820.2) | 720.1 (1305.4) | 0.06 |
TNF-α | 27 (40.7) | 27.5 (45.5) | 36.7 (29.3) | 39.9 (26.4) | 0.82 |
VEGF | 629 (479.8) | 423.9 (456.8) | 488.3 (346.1) | 553.1 (477.6) | 0.5 |
Insulin | 435 (645.2) | 517.6 (1032.7) | 821.2 (1083.8) | 1203.4 (2278.5) | 0.2 |
Leptin | 73.1 (24.6) | 74.8 (40.2) | 73.1 (22.7) | 77.7 (23.1) | 0.75 |
Parameters | T2D + DED vs. DED-Only | T2D + DED vs. T2D-Only | T2D + DED vs. Healthy Controls | T2D-Only vs. DED-Only | T2D-Only vs. Healthy Controls | DED-Only vs. Healthy Controls |
---|---|---|---|---|---|---|
IL-1RA | 0.61 | 0.002 | 0.68 | 0.07 | 0.05 | 0.93 |
IL-6 | 0.001 | 0.03 | 0.02 | 0.12 | 0.54 | 0.44 |
IL-8 | 0.05 | 0.03 | 0.01 | 0.77 | 0.42 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byambajav, M.; Collier, A.; Shu, X.; Hagan, S. Tear Fluid Biomarkers and Quality of Life in People with Type 2 Diabetes and Dry Eye Disease. Metabolites 2023, 13, 733. https://doi.org/10.3390/metabo13060733
Byambajav M, Collier A, Shu X, Hagan S. Tear Fluid Biomarkers and Quality of Life in People with Type 2 Diabetes and Dry Eye Disease. Metabolites. 2023; 13(6):733. https://doi.org/10.3390/metabo13060733
Chicago/Turabian StyleByambajav, Mungunshur, Andrew Collier, Xinhua Shu, and Suzanne Hagan. 2023. "Tear Fluid Biomarkers and Quality of Life in People with Type 2 Diabetes and Dry Eye Disease" Metabolites 13, no. 6: 733. https://doi.org/10.3390/metabo13060733
APA StyleByambajav, M., Collier, A., Shu, X., & Hagan, S. (2023). Tear Fluid Biomarkers and Quality of Life in People with Type 2 Diabetes and Dry Eye Disease. Metabolites, 13(6), 733. https://doi.org/10.3390/metabo13060733