Maternal and Cord Blood Serum Metabolite Associations with Childhood Adiposity and Body Composition Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Data and Sample Collection
2.1.1. Hyperglycemia and Adverse Pregnancy Outcome Study
2.1.2. Hyperglycemia and Adverse Pregnancy Outcome Follow-Up Study
2.2. Metabolomic Assays
2.2.1. Conventional Metabolites and Targeted Metabolomic Assays
2.2.2. Untargeted Assays
2.3. Outcomes and Predictors
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Maternal Metabolites
4. Discussion
4.1. Strength and Limitations
4.2. Clinical Significance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nelson, S.M.; Matthews, P.; Poston, L. Maternal metabolism and obesity: Modifiable determinants of pregnancy outcome. Hum. Reprod. Update 2010, 16, 255–275. [Google Scholar] [CrossRef] [Green Version]
- Damm, P.; Houshmand-Oeregaard, A.; Kelstrup, L.; Lauenborg, J.; Mathiesen, E.R.; Clausen, T.D. Gestational diabetes mellitus and long-term consequences for mother and offspring: A view from Denmark. Diabetologia 2016, 59, 1396–1399. [Google Scholar] [CrossRef] [Green Version]
- Catalano, P.M.; McIntyre, H.D.; Cruickshank, J.K.; McCance, D.R.; Dyer, A.R.; Metzger, B.E.; Lowe, L.P.; Trimble, E.R.; Coustan, D.R.; Hadden, D.R.; et al. The hyperglycemia and adverse pregnancy outcome study: Associations of GDM and obesity with pregnancy outcomes. Diabetes Care 2012, 35, 780–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Group, H.S.C.R. Hyperglycaemia and Adverse Pregnancy Outcome (HAPO) Study: Associations with maternal body mass index. BJOG 2010, 117, 575–584. [Google Scholar]
- Group, H.S.C.R.; Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar]
- Scholtens, D.M.; Kuang, A.; Lowe, L.P.; Hamilton, J.; Lawrence, J.M.; Lebenthal, Y.; Brickman, W.J.; Clayton, P.; Ma, R.C.; McCance, D.; et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): Maternal Glycemia and Childhood Glucose Metabolism. Diabetes Care 2019, 42, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Lowe, W.L., Jr.; Lowe, L.P.; Kuang, A.; Catalano, P.M.; Nodzenski, M.; Talbot, O.; Tam, W.H.; Sacks, D.A.; McCance, D.; Linder, B.; et al. Maternal glucose levels during pregnancy and childhood adiposity in the Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study. Diabetologia 2019, 62, 598–610. [Google Scholar] [CrossRef] [Green Version]
- Josefson, J.L.; Catalano, P.M.; Lowe, W.L.; Scholtens, D.M.; Kuang, A.; Dyer, A.R.; Lowe, L.P.; Metzger, B.E. The Joint Associations of Maternal BMI and Glycemia with Childhood Adiposity. J. Clin. Endocrinol. Metab. 2020, 105, 2177–2188. [Google Scholar] [CrossRef] [PubMed]
- Josefson, J.L.; Scholtens, D.M.; Kuang, A.; Catalano, P.M.; Lowe, L.P.; Dyer, A.R.; Petito, L.C.; Lowe, J.W.L.; Metzger, B.E.; Deerochanawong, C.; et al. Newborn Adiposity and Cord Blood C-Peptide as Mediators of the Maternal Metabolic Environment and Childhood Adiposity. Diabetes Care 2021, 44, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Nodzenski, M.; Reisetter, A.C.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; et al. Targeted Metabolomics Demonstrates Distinct and Overlapping Maternal Metabolites Associated With BMI, Glucose, and Insulin Sensitivity During Pregnancy Across Four Ancestry Groups. Diabetes Care 2017, 40, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Sandler, V.; Reisetter, A.C.; Bain, J.R.; Muehlbauer, M.J.; Nodzenski, M.; Stevens, R.D.; Ilkayeva, O.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; et al. Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia 2017, 60, 518–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleason, B.; Kuang, A.; Bain, J.R.; Muehlbauer, M.J.; Ilkayeva, O.R.; Scholtens, D.M.; Lowe, W.L., Jr. Association of Maternal Metabolites and Metabolite Networks with Newborn Outcomes in a Multi-Ancestry Cohort. Metabolites 2023, 13, 505. [Google Scholar] [CrossRef] [PubMed]
- Dabelea, D.; Crume, T. Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes 2011, 60, 1849–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalano, P.M.; Hauguel-De Mouzon, S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am. J. Obs. Gynecol 2011, 204, 479–487. [Google Scholar] [CrossRef]
- Scholtens, D.M.; Bain, J.R.; Reisetter, A.C.; Muehlbauer, M.J.; Nodzenski, M.; Stevens, R.D.; Ilkayeva, O.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; et al. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth. Diabetes 2016, 65, 2039–2050. [Google Scholar] [CrossRef] [Green Version]
- Kadakia, R.; Nodzenski, M.; Talbot, O.; Kuang, A.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.; O’Neal, S.K.; Lowe, L.P.; et al. Maternal metabolites during pregnancy are associated with newborn outcomes and hyperinsulinaemia across ancestries. Diabetologia 2019, 62, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Kadakia, R.; Talbot, O.; Kuang, A.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; et al. Cord Blood Metabolomics: Association With Newborn Anthropometrics and C-Peptide Across Ancestries. J. Clin. Endocrinol. Metab. 2019, 104, 4459–4472. [Google Scholar] [CrossRef]
- Kadakia, R.; Scholtens, D.M.; Rouleau, G.W.; Talbot, O.; Ilkayeva, O.R.; George, T.; Josefson, J.L. Cord Blood Metabolites Associated with Newborn Adiposity and Hyperinsulinemia. J. Pediatr. 2018, 203, 144–149.e1. [Google Scholar]
- Perng, W.; Rifas-Shiman, S.L.; McCulloch, S.; Chatzi, L.; Mantzoros, C.; Hivert, M.F.; Oken, E. Associations of cord blood metabolites with perinatal characteristics, newborn anthropometry, and cord blood hormones in project viva. Metabolism 2017, 76, 11–22. [Google Scholar] [CrossRef]
- Hamilton, C.M.; Strader, L.C.; Pratt, J.G.; Maiese, D.; Hendershot, T.; Kwok, R.K.; Hammond, J.A.; Huggins, J.A.; Jackman, D.; Pan, H.; et al. The PhenX Toolkit: Get the Most From Your Measures. Am. J. Epidemiol. 2011, 174, 253–260. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey: Anthropometry Procedures Manual; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Hyattsville, MD, USA, 2004. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/BM.pdf (accessed on 2 November 2010).
- Group, H.S.C.R.; Nesbitt, G.S.; Smye, M.; Sheridan, B.; Lappin, T.R.; Trimble, E.R. Integration of local and central laboratory functions in a worldwide multicentre study: Experience from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Clin. Trials 2006, 3, 397–407. [Google Scholar]
- Lowe, W.L., Jr.; Scholtens, D.M.; Lowe, L.P.; Kuang, A.; Nodzenski, M.; Talbot, O.; Catalano, P.M.; Linder, B.; Brickman, W.J.; Clayton, P.; et al. Association of Gestational Diabetes With Maternal Disorders of Glucose Metabolism and Childhood Adiposity. JAMA 2018, 320, 1005–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, W.L., Jr.; Scholtens, D.M.; Kuang, A.; Linder, B.; Lawrence, J.M.; Lebenthal, Y.; McCance, D.; Hamilton, J.; Nodzenski, M.; Talbot, O.; et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): Maternal Gestational Diabetes Mellitus and Childhood Glucose Metabolism. Diabetes Care 2019, 42, 372–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholtens, D.M.; Muehlbauer, M.J.; Daya, N.R.; Stevens, R.D.; Dyer, A.R.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; Bain, J.R.; Lowe, W.L., Jr.; et al. Metabolomics reveals broad-scale metabolic perturbations in hyperglycemic mothers during pregnancy. Diabetes Care 2014, 37, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halket, J.M.; Przyborowska, A.; Stein, S.E.; Mallard, W.G.; Down, S.; Chalmers, R.A. Deconvolution gas chromatography/mass spectrometry of urinary organic acids—Potential for pattern recognition and automated identification of metabolic disorders. Rapid. Commun. Mass. Spectrom. 1999, 13, 279–284. [Google Scholar] [CrossRef]
- Nodzenski, M.; Muehlbauer, M.J.; Bain, J.R.; Reisetter, A.C.; Lowe, W.L., Jr.; Scholtens, D.M. Metabomxtr: An R package for mixture-model analysis of non-targeted metabolomics data. Bioinformatics 2014, 30, 3287–3288. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A Practical and powerful approach to multiple testing. J. Roy Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Tan, K.M.; Tint, M.T.; Kothandaraman, N.; Michael, N.; Sadananthan, S.A.; Velan, S.S.; Fortier, M.V.; Yap, F.; Tan, K.H.; Gluckman, P.D.; et al. The Kynurenine Pathway Metabolites in Cord Blood Positively Correlate With Early Childhood Adiposity. J. Clin. Endocrinol. Metab. 2022, 107, e2464–e2473. [Google Scholar] [CrossRef]
- Perng, W.; Gillman, M.W.; Fleisch, A.F.; Michalek, R.D.; Watkins, S.M.; Isganaitis, E.; Patti, M.E.; Oken, E. Metabolomic profiles and childhood obesity. Obes. Silver Spring 2014, 22, 2570–2578. [Google Scholar] [CrossRef] [Green Version]
- Butte, N.F.; Liu, Y.; Zakeri, I.F.; Mohney, R.P.; Mehta, N.; Voruganti, V.S.; Goring, H.; Cole, S.A.; Comuzzie, A.G. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am. J. Clin. Nutr. 2015, 102, 256–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, E.C.; Kechris, K.; Cohen, C.C.; Michelotti, G.; Dabelea, D.; Perng, W. Metabolomic Profiles in Childhood and Adolescence Are Associated with Fetal Overnutrition. Metabolites 2022, 12, 265. [Google Scholar] [CrossRef]
- Battezzati, A.; Bertoli, S.; San Romerio, A.; Testolin, G. Body composition: An important determinant of homocysteine and methionine concentrations in healthy individuals. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Zeitz, J.O.; Mohrmann, S.; Kading, S.C.; Devlikamov, M.; Niewalda, I.; Whelan, R.; Helmbrecht, A.; Eder, K. Effects of methionine on muscle protein synthesis and degradation pathways in broilers. J. Anim. Physiol. Anim. Nutr. 2019, 103, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Vary, T.C.; Lynch, C.J. Nutrient signaling components controlling protein synthesis in striated muscle. J. Nutr. 2007, 137, 1835–1843. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Huerta, O.D.; Pastor-Villaescusa, B.; Gil, A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics 2019, 15, 93. [Google Scholar] [CrossRef] [Green Version]
- Asamiya, Y.; Otsubo, S.; Matsuda, Y.; Kimata, N.; Kikuchi, K.; Miwa, N.; Uchida, K.; Mineshima, M.; Mitani, M.; Ohta, H.; et al. The importance of low blood urea nitrogen levels in pregnant patients undergoing hemodialysis to optimize birth weight and gestational age. Kidney Int. 2009, 75, 1217–1222. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.E.; Larson, M.G.; Ghorbani, A.; Cheng, S.; Chen, M.-H.; Keyes, M.; Rhee, E.P.; Clish, C.B.; Vasan, R.S.; Gerszten, R.E.; et al. Metabolomic profiles of body mass index in the Framingham Heart Study reveal distinct cardiometabolic phenotypes. PLoS ONE 2016, 11, e0148361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neville, M.C.; Morton, J.; Umemura, S. Lactogenesis. The transition from pregnancy to lactation. Pediatr. Clin. N. Am. 2001, 48, 35–52. [Google Scholar] [CrossRef] [PubMed]
Characteristics—Mothers (n = 2324) | Mean (SD) |
---|---|
Age during OGTT (yrs.) | 29.6 (5.7) |
Gestational Age at OGTT (wks.) | 27.7 (1.7) |
Height (cm) | 161.4 (6.8) |
Weight (kg) | 72.2 (14.5) |
Body Mass Index (BMI) (kg/m2) | 27.7 (5.1) |
Mean Arterial Pressure (mmHg) | 80.5 (7.9) |
Fasting Plasma Glucose (mg/dL) | 81.2 (6.7) |
1 hr Plasma Glucose (mg/dL) | 133.9 (30.2) |
2 hr Plasma Glucose (mg/dL) | 112.0 (22.7) |
Sum of glucose z-scores | 0.1 (2.3) |
N (%) | |
Race/Ethnicity | |
White, Non-Hispanic | 629 (27.1) |
Hispanic | 359 (15.4) |
Black, Non-Hispanic | 629 (27.1) |
Asian | 699 (30.1) |
Other | 8 (0.3) |
Any Prenatal Smoking | 94 (4.0) |
Any Prenatal Alcohol Use | 157 (6.8) |
Parity (any prior delivery > 20 weeks) | 1208 (52.0) |
Characteristics—Children (n = 2324) | |
At Follow-up | Mean (SD) |
Age (yrs.) | 11.3 (1.1) |
Height (cm) | 148.5 (10.1) |
Weight (kg) | 43.7 (14.0) |
BMI (kg/m2) | 19.5 (4.6) |
BMI z-score | 0.5 (1.3) |
N (%) | |
Sex—Male | 1158 (49.8) |
Characteristics—Mothers (n = 937) | Mean (SD) |
---|---|
Age during OGTT (yrs.) | 28.9 (5.7) |
Gestational Age during OGTT (wks.) | 27.7 (1.9) |
Height (cm) | 160.3 (7.3) |
Weight (kg) | 72.4 (15.0) |
Body Mass Index (BMI) (kg/m2) | 28.2 (5.2) |
Mean Arterial Pressure (mmHg) | 81.3 (7.8) |
Fasting Plasma Glucose (mg/dL) | 82.1 (6.7) |
1 hr Plasma Glucose (mg/dL) | 136.0 (31.2) |
2 hr Plasma Glucose (mg/dL) | 112.8 (23.2) |
Sum of glucose z-scores | 0.3 (2.3) |
N (%) | |
Race/Ethnicity | |
White, Non-Hispanic | 239 (25.5) |
Hispanic | 239 (25.5) |
Black, Non-Hispanic | 247 (26.4) |
Asian | 212 (22.6) |
Other | 0 (0.0) |
Any Prenatal Smoking | 48 (5.1) |
Any Prenatal Alcohol Use | 69 (7.4) |
Parity (any prior delivery > 20 weeks) | 532 (56.8) |
Characteristics—Newborn (n = 937) | Mean (SD) |
Gestational age at birth (wk.) | 39.8 (1.2) |
Birth Weight (g) | 3411.5 (478.5) |
Characteristics—Children (n = 937) | |
At Follow-up | Mean (SD) |
Age (yrs.) | 11.5 (1.0) |
Height (cm) | 149.3 (9.2) |
Weight (kg) | 45.7 (13.9) |
BMI (kg/m2) | 20.2 (4.8) |
BMI z-score | 0.7 (1.3) |
N (%) | |
Sex—Male | 441 (47.1) |
Metabolite (Class) | Model 1 Beta, (CI), p-Value | Model 2 (M BMI) Beta, (CI), p-Value | Model 3 (M Glucose) Beta, (CI), p-Value | Model 4 Beta, (CI), p-Value |
---|---|---|---|---|
Child BMI Z-Score | ||||
Aminomalonic acid (AA) | 0.16, (0.05–0.28), 0.005 | 0.19, (0.08–0.29), 0.001 * | 0.16, (0.05–0.28), 0.005 | 0.19, (0.08–0.3), 0.001 * |
Urea (AA) | 0.17, (0.06–0.29), 0.003 | 0.19, (0.09–0.3), <0.001 * | 0.17, (0.06–0.29), 0.003 | 0.19, (0.09–0.3), <0.001 * |
Lactose (CHO) | −0.24, (−0.35–−0.13), 0 * | −0.17, (−0.28–−0.06), 0.002 * | −0.24, (−0.35–−0.13), <0.001 * | −0.17, (−0.28–−0.06), 0.002 * |
Child Fat-Free Mass (kg) | ||||
Urea (AA) | 0.83, (0.26–1.39), 0.004 | 0.93, (0.41–1.46), 0.001 * | 0.83, (0.26–1.39), 0.004 | 0.93, (0.41–1.46), 0.001 * |
Lactose (CHO) | −1.05, (−1.61–−0.48), <0.001 * | −0.71, (−1.26–−0.17), 0.01 | −1.06, (−1.62–−0.49), <0.001 * | −0.73, (−1.27–−0.19), 0.009 |
Maltose (CHO) | −0.85, (−1.39–−0.31), 0.002 * | −0.64, (−1.15–−0.13), 0.014 | −0.85, (−1.39–−0.31), 0.002 * | −0.6, (−1.11–−0.08), 0.023 |
5-alpha-Coprostanol or similar oxysterol (Lipid) | −1.21, (−1.94–−0.48), 0.001 * | −0.47, (−1.18–0.25), 0.2 | −1.26, (−2–−0.52), 0.001 * | −0.55, (−1.26–0.17), 0.134 |
Methionine (AA) | 0.42, (0.17–0.67), 0.001 * | 0.44, (0.2–0.68), <0.001 * | 0.43, (0.18–0.68), 0.001 | 0.44, (0.2–0.68), <0.001 * |
Child Fat Mass (kg) | ||||
Urea (AA) | 1.19, (0.43–1.95), 0.002 | 1.31, (0.58–2.04), <0.001 * | 1.19, (0.43–1.95), 0.002 | 1.31, (0.58–2.04), <0.001 * |
Lactose (CHO) | −1.56, (−2.31–−0.81), <0.001 * | −1.19, (−1.92–−0.45), 0.002 | −1.55, (−2.3–−0.8), <0.001 * | −1.19, (−1.93–−0.45), 0.002 |
Child Waist Circumference (iliac (cm)) | ||||
Urea (AA) | 1.79, (0.66–2.92), 0.002 * | 1.98, (0.91–3.05), <0.001 * | 1.8, (0.68–2.93), 0.002 * | 1.98, (0.91–3.05), <0.001 * |
Lactose (CHO) | −2.49, (−3.61–−1.37), <0.001 * | −1.85, (−2.94–−0.76), 0.001 * | −2.47, (−3.59–−1.34), <0.001 * | −1.85, (−2.94–−0.76), 0.001 * |
Hypoxanthine (PUR/PYR) | 1.84, (0.7–2.98), 0.002 * | 1.47, (0.37–2.57), 0.009 | 1.82, (0.68–2.96), 0.002 * | 1.47, (0.38–2.57), 0.009 |
Metabolite (Class) | Model 1 Beta, (CI), p-Value | Model 2 (M BMI) Beta, (CI), p-Value | Model 3 (M Glucose) Beta, (CI), p-Value | Model 4 Beta, (CI), p-Value |
---|---|---|---|---|
Child BMI z-score | ||||
Leucine/Isoleucine (AA) | 0.11, (0.06–0.17), <0.001 * | 0.04, (−0.01–0.09), 0.085 | 0.1, (0.05–0.15), <0.001 * | 0.04, (−0.01–0.09), 0.097 |
Glucose (CHO) | 0.21, (0.1–0.33), <0.001 * | 0.12, (0.01–0.23), 0.035 | 0.23, (0.11–0.35), <0.001 * | 0.14, (0.03–0.26), 0.015 |
Child Fat-Free Mass (kg) | ||||
Leucine/Isoleucine (AA) | 0.5, (0.24–0.75), <0.001 * | 0.21, (−0.04–0.46), 0.103 | 0.49, (0.23–0.75), <0.001 * | 0.25, (0–0.5), 0.051 |
Methionine (AA) | 0.59, (0.34–0.84), <0.001 * | 0.46, (0.22–0.7), <0.001 * | 0.59, (0.33–0.84), <0.001 * | 0.47, (0.22–0.71), <0.001 * |
Tyrosine (AA) | 0.46, (0.2–0.71), <0.001 * | 0.13, (−0.12–0.38), 0.296 | 0.45, (0.19–0.7), 0.001 * | 0.15, (−0.1–0.39), 0.243 |
Lactose (CHO) | −1.05, (−1.63–−0.47), <0.001 * | −0.68, (−1.24–−0.12), 0.018 | −1.07, (−1.65–−0.49), <0.001 * | −0.71, (−1.27–−0.15), 0.014 |
Child Fat Mass (kg) | ||||
Glycerol (Lipid) | 0.57, (0.25–0.89), 0.001 * | 0.31, (0–0.62), 0.053 | 0.49, (0.16–0.81), 0.003 * | 0.28, (−0.03–0.59), 0.08 |
AC C2 | 0.65, (0.32–0.98), <0.001 * | 0.16, (−0.17–0.48), 0.339 | 0.53, (0.2–0.87), 0.002 * | 0.12, (−0.21–0.44), 0.47 |
AC C12:1 | 0.65, (0.3–0.99), <0.001 * | 0.18, (−0.15–0.52), 0.289 | 0.54, (0.19–0.89), 0.002 * | 0.15, (−0.19–0.48), 0.392 |
AC C22 | −0.52, (−0.86–−0.19), 0.002 * | −0.42, (−0.74–−0.1), 0.011 | −0.52, (−0.85–−0.19), 0.002 * | −0.42, (−0.74–−0.1), 0.01 |
AC C8:1-DC | 0.58, (0.25–0.92), 0.001 * | 0.34, (0.01–0.66), 0.041 | 0.54, (0.21–0.87), 0.001 * | 0.32, (0–0.64), 0.048 |
3-Hydroxybutyrate (Lipid) | 0.74, (0.4–1.07), 0 * | 0, (−0.33–0.34), 0.984 | 0.54, (0.19–0.89), 0.003 * | −0.09, (−0.44–0.26), 0.615 |
Child Waist Circumference (iliac (cm)) | ||||
Glucose (CHO) | 1.97, (0.84–3.1), 0.001 * | 1.11, (0–2.22), 0.05 | 1.99, (0.78–3.2), 0.001 * | 1.24, (0.06–2.42), 0.04 |
Lactose (CHO) | −1.97, (−3.13–−0.81), 0.001 * | −1.23, (−2.36–−0.1), 0.033 | −1.92, (−3.09–−0.76), 0.001 * | −1.23, (−2.36–−0.1), 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, M.E.; Vu, M.H.; Bain, J.R.; Muehlbauer, M.J.; Ilkayeva, O.R.; Scholtens, D.M.; Josefson, J.; Lowe, W.L., Jr. Maternal and Cord Blood Serum Metabolite Associations with Childhood Adiposity and Body Composition Outcomes. Metabolites 2023, 13, 749. https://doi.org/10.3390/metabo13060749
Bianco ME, Vu MH, Bain JR, Muehlbauer MJ, Ilkayeva OR, Scholtens DM, Josefson J, Lowe WL Jr. Maternal and Cord Blood Serum Metabolite Associations with Childhood Adiposity and Body Composition Outcomes. Metabolites. 2023; 13(6):749. https://doi.org/10.3390/metabo13060749
Chicago/Turabian StyleBianco, Monica E., My H. Vu, James R. Bain, Michael J. Muehlbauer, Olga R. Ilkayeva, Denise M. Scholtens, Jami Josefson, and William L. Lowe, Jr. 2023. "Maternal and Cord Blood Serum Metabolite Associations with Childhood Adiposity and Body Composition Outcomes" Metabolites 13, no. 6: 749. https://doi.org/10.3390/metabo13060749
APA StyleBianco, M. E., Vu, M. H., Bain, J. R., Muehlbauer, M. J., Ilkayeva, O. R., Scholtens, D. M., Josefson, J., & Lowe, W. L., Jr. (2023). Maternal and Cord Blood Serum Metabolite Associations with Childhood Adiposity and Body Composition Outcomes. Metabolites, 13(6), 749. https://doi.org/10.3390/metabo13060749