Maternal and Child Health, Non-Communicable Diseases and Metabolites
Abstract
:1. Introduction
2. Maternal and Child Health and Developmental Programming
3. Diabetes, Cardiovascular Disease and Metabolites
4. Gestational Diabetes, Preeclampsia, Polycystic Ovary Syndrome and Metabolites
4.1. Gestational Diabetes
4.2. Preeclampsia
4.3. PCOS
5. Cancer
6. Mental Illness
7. Obesity
8. Maternal and Child Health, Non-Communicable Diseases and Metabolites
8.1. Gestational Origins and Interplay of Non-Communicable Diseases
8.2. Metabolite Pathways and Convergence of Non-Communicable Diseases
Disease | Increase (Supplementation) | Decrease (Deficiency) |
---|---|---|
Gestational diabetes | Arginine [51] | 3-hydroxy-isovalerylcarnitine, glycine [51]. |
Diabetes | 7-methylguanine, aspartate, cystine, glutamate, glutamic acid; glutamine, glycine, isoleucine, leucine, lysine, N-acetylcysteine, N-acetyl-D-galactosamine, phenylalanine, putrescine, trimethylamine N-oxide, tryptophan, tyrosine, valine [4,22,23,24,28,76,174]. | Alanine, serine [23]. |
Preeclampsia | 3-phosphoglycerate, arachidonic acid, glutamate; palmitoleic acid, sphingomyelins (SMs): SM C28:1, SM C30:1; oxidized phospholipids (PLs): OxPC, OxPI, OxPE; xanthine, C30:1, C32:1, C33:2, C34:2, C38:1, fatty acid esters of hydroxy fatty acid (FAHFA): (C18:0), PCs, PE, LysoPC, LysoPEs [11,175]. | Lipoxin A4 [64]. |
Cardiovascular disease | Betaine, choline, trimethylamine [77]. | Creatine, glutamate, isoleucine, proline, succinate, taurine, tryptophane [82]. |
PCOS | Isoleucine, leucine, trimethylamine N-oxide (TMAO) valine [6,176,177]. | |
Mental illness | Isoleucine [104]. | Leucine, valine [106,178,179], |
Cancer | PDAC Adrenic acid, arachidonic acid, linoleic acid, myristic acid, palmitic acid [82]. Colorectal Proline [78]. | creatine, glutamate, isoleucine, proline, succinate, taurine, tryptophane [82]. Histidine [78] |
Obesity | PC (18:1/16:0), PC plasmalogen (34:1) [116,117]. Elevated in children with high visceral fat Lysophosopholipids (LysoPC 14:0, LysoPC 16:3, LysoPC 16:1, LysoPC 16:0, LysoPS 21:1, LysoPS 25:6 and LysoPA 23:1), dimethylarginine, diacylglycerol (DG 40:10), sphingomyelin (SM 35:2; O2) [119]. Metabolically unhealthy obese phenotype Palmitic acid; stearic acid; asparagine; alanine; isoleucine; glycolic acid; * phosphate 3-hydroxypropionic acid; 2-hydroxypentanoic acid [7]. Metabolically unhealthy obese status 2-hydroxybutanoic acid; 3-hydroxypropionic acid; 5-methyluridine; acetophenone; beta-gentiobiose; cyanoalanine; furoylglycine; galactinol; glycerol-alpha-phosphate; isocitric acid minor; salicylaldehyde; shikimic acid [7]. | Elevated in children with low visceral fat Lysophosphatidylserine (LysoPSs), lysophosphosphatidic acid (LysoPA), sphingomyelin (SM) [119]. |
9. Conclusions
Funding
Conflicts of Interest
References
- Cerf, M.E. High Fat Programming of Beta Cell Compensation, Exhaustion, Death and Dysfunction. Pediatr. Diabetes 2015, 16, 71–78. [Google Scholar] [CrossRef]
- Jian, Q.; Wu, Y.; Zhang, F. Metabolomics in Diabetic Retinopathy: From Potential Biomarkers to Molecular Basis of Oxidative Stress. Cells 2022, 11, 3005. [Google Scholar] [CrossRef] [PubMed]
- Clish, C.B. Metabolomics: An Emerging but Powerful Tool for Precision Medicine. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevilla-Gonzalez, M.D.R.; Manning, A.K.; Westerman, K.E.; Aguilar-Salinas, C.A.; Deik, A.; Clish, C.B. Metabolomic Markers of Glucose Regulation after a Lifestyle Intervention in Prediabetes. BMJ Open Diabetes Res. Care 2022, 10, e003010. [Google Scholar] [CrossRef]
- Gonzalez Izundegui, D.; Miller, P.E.; Shah, R.V.; Clish, C.B.; Walker, M.E.; Mitchell, G.F.; Gerszten, R.E.; Larson, M.G.; Vasan, R.S.; Nayor, M. Response of Circulating Metabolites to an Oral Glucose Challenge and Risk of Cardiovascular Disease and Mortality in the Community. Cardiovasc. Diabetol. 2022, 21, 213. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Pang, Y. Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites 2021, 11, 869. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Tian, M.; Ma, X.; Bai, L.; Zhou, J.; Ding, W. Metabolome Profiling and Pathway Analysis in Metabolically Healthy and Unhealthy Obesity among Chinese Adolescents Aged 11–18 Years. Metabolites 2023, 13, 641. [Google Scholar] [CrossRef]
- Herrera, E. Implications of Dietary Fatty Acids during Pregnancy on Placental, Fetal and Postnatal Development—A Review. Placenta 2002, 23, S9–S19. [Google Scholar] [CrossRef]
- Burdge, G.C.; Lillycrop, K.A. Fatty Acids and Epigenetics. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 156–161. [Google Scholar] [CrossRef]
- Casas-Agustench, P.; Fernandes, F.S.; Tavares Do Carmo, M.G.; Visioli, F.; Herrera, E.; Dávalos, A. Consumption of Distinct Dietary Lipids during Early Pregnancy Differentially Modulates the Expression of MicroRNAs in Mothers and Offspring. PLoS ONE 2015, 10, e0117858. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, Y.; Lv, Y.; Ding, H. Dissecting the Roles of Lipids in Preeclampsia. Metabolites 2022, 12, 590. [Google Scholar] [CrossRef]
- Duncan, J.G. Lipotoxicity: What Is the Fate of Fatty Acids? J. Lipid Res. 2008, 49, 1375–1376. [Google Scholar] [CrossRef] [Green Version]
- Cerf, M.E.; Louw, J.; Herrera, E. High Fat Diet Exposure during Fetal Life Enhances Plasma and Hepatic Omega-6 Fatty Acid Profiles in Fetal Wistar Rats. Nutrients 2015, 7, 7231–7241. [Google Scholar] [CrossRef] [Green Version]
- Cerf, M.E.; Herrera, E. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat. Nutrients 2016, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Cerf, M.E.; Williams, K.; Nkomo, X.I.; Muller, C.J.; du Toit, D.F.; Louw, J.; Wolfe-Coote, S.A. Islet Cell Response in the Neonatal Rat after Exposure to a High-Fat Diet during Pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1122–R1128. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Fuel Metabolism in Pregnancy and in Gestational Diabetes Mellitus. Obstet. Gynecol. Clin. N. Am. 1996, 23. [Google Scholar] [CrossRef] [PubMed]
- Knopp, R.H. Hormone-Mediated Changes in Nutrient Metabolism in Pregnancy: A Physiological Basis for Normal Fetal Development. Ann. N. Y. Acad. Sci. 1997, 817, 251–271. [Google Scholar] [CrossRef]
- Homko, C.J.; Sivan, E.; Reece, E.A.; Boden, G. Fuel Metabolism during Pregnancy. Semin. Reprod. Med. 1999, 17, 119–125. [Google Scholar] [CrossRef]
- Scholl, T.O.; Sowers, M.; Chen, X.; Lenders, C. Maternal Glucose Concentration Influences Fetal Growth, Gestation, and Pregnancy Complications. Am. J. Epidemiol. 2001, 154, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Rogne, T.; Jacobsen, G.W. Association between Low Blood Glucose Increase during Glucose Tolerance Tests in Pregnancy and Impaired Fetal Growth. Acta Obstet. Gynecol. Scand. 2014, 93, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; United Nations University. Protein and Amino Acid Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Lu, Y.; Wang, Y.; Liang, X.; Zou, L.; Ong, C.N.; Yuan, J.M.; Koh, W.P.; Pan, A. Serum Amino Acids in Association with Prevalent and Incident Type 2 Diabetes in a Chinese Population. Metabolites 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Alqudah, A.; Wedyan, M.; Qnais, E.; Jawarneh, H.; McClements, L. Plasma Amino Acids Metabolomics’ Important in Glucose Management in Type 2 Diabetes. Front. Pharm. 2021, 12, 695418. [Google Scholar] [CrossRef]
- Murakami, S.; Funahashi, K.; Tamagawa, N.; Ning, M.; Ito, T. Taurine Ameliorates Streptozotocin-Induced Diabetes by Modulating Hepatic Glucose Metabolism and Oxidative Stress in Mice. Metabolites 2022, 12, 524. [Google Scholar] [CrossRef] [PubMed]
- Stentz, F.B.; Brewer, A.; Wan, J.; Garber, C.; Daniels, B.; Sands, C.; Kitabchi, A.E. Remission of Pre-Diabetes to Normal Glucose Tolerance in Obese Adults with High Protein versus High Carbohydrate Diet: Randomized Control Trial. BMJ Open Diabetes Res. Care 2016, 4, e000258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Klaauw, A.A.; Keogh, J.M.; Henning, E.; Trowse, V.M.; Dhillo, W.S.; Ghatei, M.A.; Farooqi, I.S. High Protein Intake Stimulates Postprandial GLP1 and PYY Release. Obesity 2013, 21, 1602–1607. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, Y.; Kawamata, K. Effects of Taurine on Plasma Glucose Concentration and Active Glucose Transport in the Small Intestine. Anim. Sci. J. 2017, 88, 1763–1767. [Google Scholar] [CrossRef] [PubMed]
- Haber, C.A.; Lam, T.K.T.; Yu, Z.; Gupta, N.; Goh, T.; Bogdanovic, E.; Giacca, A.; Fantus, I.G. N-Acetylcysteine and Taurine Prevent Hyperglycemia-Induced Insulin Resistance in Vivo: Possible Role of Oxidative Stress. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E744–E753. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. New Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [Green Version]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The Gut Microbiome in Health and in Disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, K.F.; Sayols-Baixeras, S.; Baldanzi, G.; Nowak, C.; Hammar, U.; Nguyen, D.; Varotsis, G.; Brunkwall, L.; Nielsen, N.; Eklund, A.C.; et al. An Online Atlas of Human Plasma Metabolite Signatures of Gut Microbiome Composition. Nat. Commun. 2022, 13, 5370. [Google Scholar] [CrossRef]
- Falony, G.; Joossens, M.; Vieira-Silva, S.; Wang, J.; Darzi, Y.; Faust, K.; Kurilshikov, A.; Bonder, M.J.; Valles-Colomer, M.; Vandeputte, D.; et al. Population-Level Analysis of Gut Microbiome Variation. Science 2016, 352, 560–564. [Google Scholar] [CrossRef]
- Goodrich, J.K.; Davenport, E.R.; Beaumont, M.; Jackson, M.A.; Knight, R.; Ober, C.; Spector, T.D.; Bell, J.T.; Clark, A.G.; Ley, R.E. Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe 2016, 19, 731–743. [Google Scholar] [CrossRef] [Green Version]
- Dimasuay, K.G.; Boeuf, P.; Powell, T.L.; Jansson, T. Placental Responses to Changes in the Maternal Environment Determine Fetal Growth. Front. Physiol. 2016, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.C.W.; Tutino, G.E.; Lillycrop, K.A.; Hanson, M.A.; Tam, W.H. Maternal Diabetes, Gestational Diabetes and the Role of Epigenetics in Their Long Term Effects on Offspring. Prog. Biophys. Mol. Biol. 2015, 118, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Briana, D.D.; Germanou, K.; Boutsikou, M.; Boutsikou, T.; Athanasopoulos, N.; Marmarinos, A.; Gourgiotis, D.; Malamitsi-Puchner, A. Potential Prognostic Biomarkers of Cardiovascular Disease in Fetal Macrosomia: The Impact of Gestational Diabetes. J. Matern. Fetal. Neonatal. Med. 2018, 31, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Sallam, N.A.; Palmgren, V.A.C.; Singh, R.D.; John, C.M.; Thompson, J.A. Programming of Vascular Dysfunction in the Intrauterine Milieu of Diabetic Pregnancies. Int. J. Mol. Sci. 2018, 19, 3665. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.J.; Hiscock, R.J.; Wein, P.; Walker, S.P.; Permezel, M. Gestational Diabetes Mellitus: Clinical Predictors and Long-Term Risk of Developing Type 2 Diabetes—A Retrospective Cohort Study Using Survival Analysis. Diabetes Care 2007, 30, 878–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Song, C.; Li, C.; Liu, P.; Sun, Z.; Yang, X. Increased Risk of Cardiovascular Disease in Women with Prior Gestational Diabetes: A Systematic Review and Meta-Analysis. Diabetes Res. Clin. Pract. 2018, 140, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Retnakaran, R.; Shah, B.R. Glucose Screening in Pregnancy and Future Risk of Cardiovascular Disease in Women: A Retrospective, Population-Based Cohort Study. Lancet Diabetes Endocrinol. 2019, 7, 378–384. [Google Scholar] [CrossRef]
- Catalano, P.M.; Tyzbir, E.D.; Roman, N.M.; Amini, S.B.; Sims, E.A.H. Longitudinal Changes in Insulin Release and Insulin Resistance in Nonobese Pregnant Women. Am. J. Obstet. Gynecol. 1991, 165, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, K.M.; Yaktine, A.L. Weight Gain during Pregnancy: Reexamining the Guidelines; National Academies Press: Washington, DC, USA, 2009; pp. 123–140. [Google Scholar]
- Bianchi, C.; Taricco, E.; Cardellicchio, M.; Mandò, C.; Massari, M.; Savasi, V.; Cetin, I. The Role of Obesity and Gestational Diabetes on Placental Size and Fetal Oxygenation. Placenta 2021, 103, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Shankar, K. Obesity and Pregnancy: Mechanisms of Short Term and Long Term Adverse Consequences for Mother and Child. BMJ 2017, 8, 356:j1. [Google Scholar] [CrossRef]
- Sedeek, M.; Montezano, A.C.; Hebert, R.L.; Gray, S.P.; di Marco, E.; Jha, J.C.; Cooper, M.E.; Jandeleit-Dahm, K.; Schiffrin, E.L.; Wilkinson-Berka, J.L.; et al. Oxidative Stress, Nox Isoforms and Complications of Diabetes-Potential Targets for Novel Therapies. J. Cardiovasc. Transl. Res. 2012, 5, 509–518. [Google Scholar] [CrossRef]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, K.; Akash, M.S.H. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J. Cell Biochem. 2017, 118, 3577–3585. [Google Scholar] [CrossRef] [PubMed]
- Radaelli, T.; Varastehpour, A.; Catalano, P.; Hauguel-De Mouzon, S. Gestational Diabetes Induces Placental Genes for Chronic Stress and Inflammatory Pathways. Diabetes 2003, 52, 2951–2958. [Google Scholar] [CrossRef] [Green Version]
- Koos, B.J.; Gornbein, J.A. Early Pregnancy Metabolites Predict Gestational Diabetes Mellitus: Implications for Fetal Programming. Am. J. Obstet. Gynecol. 2021, 224, 215.e1–215.e7. [Google Scholar] [CrossRef]
- Nevalainen, J.; Sairanen, M.; Appelblom, H.; Gissler, M.; Timonen, S.; Ryynänen, M. First-Trimester Maternal Serum Amino Acids and Acylcarnitines Are Significant Predictors of Gestational Diabetes. Rev. Diabet. Stud. 2016, 13, 236–245. [Google Scholar] [CrossRef]
- Law, K.P.; Han, T.L.; Mao, X.; Zhang, H. Tryptophan and Purine Metabolites Are Consistently Upregulated in the Urinary Metabolome of Patients Diagnosed with Gestational Diabetes Mellitus throughout Pregnancy: A Longitudinal Metabolomics Study of Chinese Pregnant Women Part 2. Clin. Chim. Acta 2017, 468, 126–139. [Google Scholar] [CrossRef]
- Ananth, C.V.; Keyes, K.M.; Wapner, R.J. Pre-Eclampsia Rates in the United States, 1980–2010: Age-Period-Cohort Analysis. BMJ 2013, 347, f6564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and Regional Estimates of Preeclampsia and Eclampsia: A Systematic Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.C.; Cluver, C.A.; Tong, S. Pre-eclampsia. Lancet 2021, 398, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Adank, M.C.; Benschop, L.; Peterbroers, K.R.; Smak Gregoor, A.M.; Kors, A.W.; Mulder, M.T.; Schalekamp-Timmermans, S.; Roeters Van Lennep, J.E.; Steegers, E.A.P. Is Maternal Lipid Profile in Early Pregnancy Associated with Pregnancy Complications and Blood Pressure in Pregnancy and Long Term Postpartum? Am. J. Obstet. Gynecol. 2019, 221, 150.e1–150.e13. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Jia, Z.; Su, S.; Han, L.; Meng, L.; Tang, G.; Wang, J.; Zhang, C.; Xie, X.; Zhang, Y.; et al. Establishment of Trimester-Specific Reference Intervals of Serum Lipids and the Associations with Pregnancy Complications and Adverse Perinatal Outcomes: A Population-Based Prospective Study. Ann. Med. 2021, 53, 1632–1641. [Google Scholar] [CrossRef]
- Melhem, H.; Kallol, S.; Huang, X.; Lüthi, M.; Ontsouka, C.E.; Keogh, A.; Stroka, D.; Thormann, W.; Schneider, H.; Albrecht, C. Placental Secretion of Apolipoprotein A1 and E: The Anti-Atherogenic Impact of the Placenta. Sci. Rep. 2019, 9, 6225. [Google Scholar] [CrossRef] [Green Version]
- Pitz Jacobsen, D.; Fjeldstad, H.E.; Johnsen, G.M.; Fosheim, I.K.; Moe, K.; Alnæs-Katjavivi, P.; Dechend, R.; Sugulle, M.; Staff, A.C. Acute Atherosis Lesions at the Fetal-Maternal Border: Current Knowledge and Implications for Maternal Cardiovascular Health. Front. Immunol. 2021, 12, 791606. [Google Scholar] [CrossRef]
- Rana, S.; Lemoine, E.; Granger, J.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Szczuko, M.; Kikut, J.; Komorniak, N.; Bilicki, J.; Celewicz, Z.; Ziętek, M. The Role of Arachidonic and Linoleic Acid Derivatives in Pathological Pregnancies and the Human Reproduction Process. Int. J. Mol. Sci. 2020, 21, 9628. [Google Scholar] [CrossRef]
- Spradley, F.T.; Palei, A.C.; Granger, J.P. Immune Mechanisms Linking Obesity and Preeclampsia. Biomolecules 2015, 5, 3142–3176. [Google Scholar] [CrossRef] [Green Version]
- Maderna, P.; Godson, C. Lipoxins: Resolutionary Road. Br. J. Pharmacol. 2009, 158, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhao, F.; Lin, F.; Xiang, H.; Wang, N.; Ye, D.; Huang, Y. Preeclampsia Is Associated with a Deficiency of Lipoxin A4, an Endogenous Anti-Inflammatory Mediator. Fertil. Steril. 2014, 102, 282–290.e4. [Google Scholar] [CrossRef]
- Dong, L.; Hou, X.; Liu, F.; Tao, H.; Zhang, Y.; Zhao, H.; Song, G. Regulation of Insulin Resistance by Targeting the Insulin-like Growth Factor 1 Receptor with MicroRNA-122-5p in Hepatic Cells. Cell Biol. Int. 2019, 43, 553–564. [Google Scholar] [CrossRef]
- Legro, R.S.; Kunselman, A.R.; Dunaif, A. Prevalence and Predictors of Dyslipidemia in Women with Polycystic Ovary Syndrome. Am. J. Med. 2001, 111, 607–613. [Google Scholar] [CrossRef]
- Yilmaz, M.; Biri, A.; Bukan, N.; Karakoç, A.; Sancak, B.; Törüner, F.; Paşaoǧlu, H. Levels of Lipoprotein and Homocysteine in Non-Obese and Obese Patients with Polycystic Ovary Syndrome. Gynecol. Endocrinol. 2005, 20, 258–263. [Google Scholar] [CrossRef]
- Palomba, S.; De Wilde, M.A.; Falbo, A.; Koster, M.P.H.; La Sala, G.B.; Fauser, B.C.J.M. Pregnancy Complications in Women with Polycystic Ovary Syndrome. Hum. Reprod. Update 2015, 21, 575–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boomsma, C.M.; Eijkemans, M.J.C.; Hughes, E.G.; Visser, G.H.A.; Fauser, B.C.J.M.; Macklon, N.S. A Meta-Analysis of Pregnancy Outcomes in Women with Polycystic Ovary Syndrome. Hum. Reprod. Update 2006, 12, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Kjerulff, L.E.; Sanchez-Ramos, L.; Duffy, D. Pregnancy Outcomes in Women with Polycystic Ovary Syndrome: A Metaanalysis. Am. J. Obstet. Gynecol. 2011, 204, 558.e1–558.e6. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.Z.; Pang, L.H.; Li, M.J.; Fan, X.J.; Huang, R.D.; Chen, H.Y. Obstetric Complications in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Reprod. Biol. Endocrinol. 2013, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Preeclampsia and High Blood Pressure During Pregnancy. Available online: https://www.acog.org/womens-health/faqs/preeclampsia-and-high-blood-pressure-during-pregnancy (accessed on 17 October 2022).
- Nobles, C.J.; Mendola, P.; Mumford, S.L.; Silver, R.M.; Kim, K.; Andriessen, V.C.; Connell, M.; Sjaarda, L.; Perkins, N.J.; Schisterman, E.F. Preconception Blood Pressure and Its Change into Early Pregnancy: Early Risk Factors for Preeclampsia and Gestational Hypertension. Hypertension 2020, 76, 922–929. [Google Scholar] [CrossRef]
- Neinast, M.; Murashige, D.; Arany, Z. Branched Chain Amino Acids. Annu. Rev. Physiol. 2019, 81, 139–164. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Li, D.Y.; Hazen, S.L. Dietary Metabolism, the Gut Microbiome, and Heart Failure. Nat. Rev. Cardiol. 2019, 16, 137–154. [Google Scholar] [CrossRef]
- Shan, Z.; Sun, T.; Huang, H.; Chen, S.; Chen, L.; Luo, C.; Yang, W.; Yang, X.; Yao, P.; Cheng, J.; et al. Association between Microbiota-Dependent Metabolite Trimethylamine-N-Oxide and Type 2 Diabetes. Am. J. Clin. Nutr. 2017, 106, 888–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Breeur, M.; Ferrari, P.; Dossus, L.; Jenab, M.; Johansson, M.; Rinaldi, S.; Travis, R.C.; His, M.; Key, T.J.; Schmidt, J.A.; et al. Pan-Cancer Analysis of Pre-Diagnostic Blood Metabolite Concentrations in the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2022, 20, 351. [Google Scholar] [CrossRef] [PubMed]
- Isoda, T.; Ford, A.M.; Tomizawa, D.; van Delft, F.W.; de Castro, D.G.; Mitsuiki, N.; Score, J.; Taki, T.; Morio, T.; Takagi, M.; et al. Immunologically Silent Cancer Clone Transmission from Mother to Offspring. Proc. Natl. Acad. Sci. USA 2009, 106, 17882–17885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arakawa, A.; Ichikawa, H.; Kubo, T.; Motoi, N.; Kumamoto, T.; Nakajima, M.; Yonemori, K.; Noguchi, E.; Sunami, K.; Shiraishi, K.; et al. Vaginal Transmission of Cancer from Mothers with Cervical Cancer to Infants. New Engl. J. Med. 2021, 384, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M.; Hughes, W. Cancer Cell Transmission via the Placenta. Evol. Med. Public Health 2018, 2018, 106–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Ren, S.; Li, C.; Guo, K.; Lu, Z.; Tian, L.; He, J.; Zhang, K.; Cao, Y.; Liu, S.; et al. Biomarkers for Pancreatic Cancer Based on Tissue and Serum Metabolomics Analysis in a Multicenter Study. Cancer Med. 2022, 12, 5158–5171. [Google Scholar] [CrossRef]
- Walter, K.; Hong, S.M.; Nyhan, S.; Canto, M.; Fedarko, N.; Klein, A.; Griffith, M.; Omura, N.; Medghalchi, S.; Kuhajda, F.; et al. Serum Fatty Acid Synthase as a Marker of Pancreatic Neoplasia. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2380–2385. [Google Scholar] [CrossRef] [Green Version]
- Menendez, J.A.; Lupu, R. Fatty Acid Synthase and the Lipogenic Phenotype in Cancer Pathogenesis. Nat. Rev. Cancer 2007, 7, 763–777. [Google Scholar] [CrossRef]
- Kawanishi, M.; Hisatomi, Y.; Oda, Y.; Shimohara, C.; Tsunematsu, Y.; Sato, M.; Hirayama, Y.; Miyoshi, N.; Iwashita, Y.; Yoshikawa, Y.; et al. In Vitro Genotoxicity Analyses of Colibactin-Producing E. Coli Isolated from a Japanese Colorectal Cancer Patient. J. Toxicol. Sci. 2019, 44, 871–876. [Google Scholar] [CrossRef] [Green Version]
- Healy, A.R.; Nikolayevskiy, H.; Patel, J.R.; Crawford, J.M.; Herzon, S.B. A Mechanistic Model for Colibactin-Induced Genotoxicity. J. Am. Chem. Soc. 2016, 138, 15563–15570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawanishi, M.; Shimohara, C.; Oda, Y.; Hisatomi, Y.; Tsunematsu, Y.; Sato, M.; Hirayama, Y.; Miyoshi, N.; Iwashita, Y.; Yoshikawa, Y.; et al. Genotyping of a Gene Cluster for Production of Colibactin and in Vitro Genotoxicity Analysis of Escherichia Coli Strains Obtained from the Japan Collection of Microorganisms. Genes Environ. 2020, 42, 12. [Google Scholar] [CrossRef] [Green Version]
- Tsunematsu, Y.; Hosomi, K.; Kunisawa, J.; Sato, M.; Shibuya, N.; Saito, E.; Murakami, H.; Yoshikawa, Y.; Iwashita, Y.; Miyoshi, N.; et al. Mother-to-Infant Transmission of the Carcinogenic Colibactin-Producing Bacteria. BMC Microbiol. 2021, 21, 235. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, K.M.; Zunszain, P.A.; Dazzan, P.; Pariante, C.M. Intergenerational Transmission of Depression: Clinical Observations and Molecular Mechanisms. Mol. Psychiatry 2019, 24, 1157–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoriadis, S.; VonderPorten, E.H.; Mamisashvili, L.; Tomlinson, G.; Dennis, C.L.; Koren, G.; Steiner, M.; Mousmanis, P.; Cheung, A.; Radford, K.; et al. The Impact of Maternal Depression during Pregnancy on Perinatal Outcomes: A Systematic Review and Meta-Analysis. J. Clin. Psychiatry 2013, 74, e321–e341. [Google Scholar] [CrossRef] [PubMed]
- Grote, N.K.; Bridge, J.A.; Gavin, A.R.; Melville, J.L.; Iyengar, S.; Katon, W.J. A Meta-Analysis of Depression during Pregnancy and the Risk of Preterm Birth, Low Birth Weight, and Intrauterine Growth Restriction. Arch. Gen. Psychiatry 2010, 67, 1012–1024. [Google Scholar] [CrossRef]
- Stein, A.; Pearson, R.M.; Goodman, S.H.; Rapa, E.; Rahman, A.; McCallum, M.; Howard, L.M.; Pariante, C.M. Effects of Perinatal Mental Disorders on the Fetus and Child. Lancet 2014, 384, 1800–1819. [Google Scholar] [CrossRef]
- Howard, L.M.; Molyneaux, E.; Dennis, C.L.; Rochat, T.; Stein, A.; Milgrom, J. Non-Psychotic Mental Disorders in the Perinatal Period. Lancet 2014, 384, 1775–1788. [Google Scholar] [CrossRef]
- Micali, N.; Treasure, J. Biological Effects of a Maternal ED on Pregnancy and Foetal Development: A Review. Eur. Eat. Disord. Rev. 2009, 17, 448–454. [Google Scholar] [CrossRef]
- Howard, L.M. Fertility and Pregnancy in Women with Psychotic Disorders. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 119, 3–10. [Google Scholar] [CrossRef]
- King-Hele, S.; Webb, R.T.; Mortensen, P.B.; Appleby, L.; Pickles, A.; Abel, K.M. Risk of Stillbirth and Neonatal Death Linked with Maternal Mental Illness: A National Cohort Study. Arch. Dis. Child. Fetal Neonatal Ed. 2009, 94, F105–F110. [Google Scholar] [CrossRef]
- Webb, R.; Abel, K.; Pickles, A.; Appleby, L. Mortality in Offspring of Parents with Psychotic Disorders: A Critical Review and Meta-Analysis. Am. J. Psychiatry 2005, 162, 1045–1056. [Google Scholar] [CrossRef]
- Bonari, L.; Pinto, N.; Ahn, E.; Einarson, A.; Steiner, M.; Koren, G. Perinatal Risks of Untreated Depression during Pregnancy. Can. J. Psychiatry 2004, 49, 726–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biaggi, A.; Conroy, S.; Pawlby, S.; Pariante, C.M. Identifying the Women at Risk of Antenatal Anxiety and Depression: A Systematic Review. J. Affect. Disord. 2016, 191, 62–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, R.M.; Evans, J.; Kounali, D.; Lewis, G.; Heron, J.; Ramchandani, P.G.; O’Connor, T.G.; Stein, A. Maternal Depression during Pregnancy and the Postnatal Period Risks and Possible Mechanisms for Offspring Depression at Age 18 Years. JAMA Psychiatry 2013, 70, 1312–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlby, S.; Hay, D.F.; Sharp, D.; Waters, C.S.; O’Keane, V. Antenatal Depression Predicts Depression in Adolescent Offspring: Prospective Longitudinal Community-Based Study. J. Affect. Disord. 2009, 113, 236–243. [Google Scholar] [CrossRef]
- Newman, L.; Judd, F.; Olsson, C.A.; Castle, D.; Bousman, C.; Sheehan, P.; Pantelis, C.; Craig, J.M.; Komiti, A.; Everall, I. Early Origins of Mental Disorder—Risk Factors in the Perinatal and Infant Period. BMC Psychiatry 2016, 16, 270. [Google Scholar] [CrossRef] [Green Version]
- Lozoff, B. Iron Deficiency and Child Development. Food Nutr. Bull. 2007, 28, S560–S571. [Google Scholar] [CrossRef]
- Bot, M.; Milaneschi, Y.; Al-Shehri, T.; Amin, N.; Garmaeva, S.; Onderwater, G.L.J.; Pool, R.; Thesing, C.S.; Vijfhuizen, L.S.; Vogelzangs, N.; et al. Metabolomics Profile in Depression: A Pooled Analysis of 230 Metabolic Markers in 5283 Cases With Depression and 10,145 Controls. Biol. Psychiatry 2020, 87, 409–418. [Google Scholar] [CrossRef]
- Whipp, A.M.; Vuoksimaa, E.; Korhonen, T.; Pool, R.; But, A.; Ligthart, L.; Hagenbeek, F.A.; Bartels, M.; Bogl, L.H.; Pulkkinen, L.; et al. Ketone Body 3-Hydroxybutyrate as a Biomarker of Aggression. Sci. Rep. 2021, 11, 5813. [Google Scholar] [CrossRef]
- Whipp, A.M.; Heinonen-Guzejev, M.; Pietiläinen, K.H.; van Kamp, I.; Kaprio, J. Branched-Chain Amino Acids Linked to Depression in Young Adults. Front. Neurosci. 2022, 16, 935858. [Google Scholar] [CrossRef]
- van Kamp, I.; Waye, K.P.; Kanninen, K.; Gulliver, J.; Bozzon, A.; Psyllidis, A.; Boshuizen, H.; Selander, J.; van den Hazel, P.; Brambilla, M.; et al. Early Environmental Quality and Life-Course Mental Health Effects: The Equal-Life Project. Environ. Epidemiol. 2021, 6, e183. [Google Scholar] [CrossRef]
- Guak, H.; Sheldon, R.D.; Beddows, I.; Vander Ark, A.; Weiland, M.J.; Shen, H.; Jones, R.G.; St-Pierre, J.; Ma, E.H.; Krawczyk, C.M. PGC-1β Maintains Mitochondrial Metabolism and Restrains Inflammatory Gene Expression. Sci. Rep. 2022, 12, 16028. [Google Scholar] [CrossRef]
- Aye, I.L.M.H.; Lager, S.; Ramirez, V.I.; Gaccioli, F.; Dudley, D.J.; Jansson, T.; Powell, T.L. Increasing Maternal Body Mass Index Is Associated with Systemic Inflammation in the Mother and the Activation of Distinct Placental Inflammatory Pathways. Biol. Reprod. 2014, 90, 129. [Google Scholar] [CrossRef]
- Challier, J.C.; Basu, S.; Bintein, T.; Minium, J.; Hotmire, K.; Catalano, P.M.; Hauguel-de Mouzon, S. Obesity in Pregnancy Stimulates Macrophage Accumulation and Inflammation in the Placenta. Placenta 2008, 29, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, J.E.; Ferrell, W.R.; Crawford, L.; Wallace, A.M.; Greer, I.A.; Sattar, N. Maternal Obesity Is Associated with Dysregulation of Metabolic, Vascular, and Inflammatory Pathways. J. Clin. Endocrinol. Metab. 2002, 87, 4231–4237. [Google Scholar] [CrossRef] [PubMed]
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)-Zinc Review. J. Nutr. 2015, 146, 858S–885S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliosa, P.R.; Zaniqueli, D.D.A.; Barbosa, M.C.R.; Mill, J.G. Relationship between Body Composition and Dyslipidemia in Children and Adolescents. Cienc. E Saude Coletiva 2019, 24, 3743–3752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, P.; Henrikson, N.B.; Morrison, C.C.; Dunn, J.; Nguyen, M.; Blasi, P.R.; Whitlock, E.P. Lipid Screening in Childhood and Adolescence for Detection of Multifactorial Dyslipidemia: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2016, 316, 634–644. [Google Scholar] [CrossRef]
- Butte, N.F.; Liu, Y.; Zakeri, I.F.; Mohney, R.P.; Mehta, N.; Voruganti, V.S.; Göring, H.; Cole, S.A.; Comuzzie, A.G. Global Metabolomic Profiling Targeting Childhood Obesity in the Hispanic Population. Am. J. Clin. Nutr. 2015, 102, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Furse, S.; Billing, G.; Snowden, S.G.; Smith, J.; Goldberg, G.; Koulman, A. Relationship between the Lipid Composition of Maternal Plasma and Infant Plasma through Breast Milk. Metabolomics 2019, 15, 129. [Google Scholar] [CrossRef] [Green Version]
- Prentice, P.; Koulman, A.; Matthews, L.; Acerini, C.L.; Ong, K.K.; Dunger, D.B. Lipidomic Analyses, Breast- and Formula-Feeding, and Growth in Infants. J. Pediatr. 2015, 166, 276–281.e6. [Google Scholar] [CrossRef] [Green Version]
- van Beijsterveldt, I.A.L.P.; Snowden, S.G.; Myers, P.N.; de Fluiter, K.S.; van de Heijning, B.; Brix, S.; Ong, K.K.; Dunger, D.B.; Hokken-Koelega, A.C.S.; Koulman, A. Metabolomics in Early Life and the Association with Body Composition at Age 2 Years. Pediatr. Obes. 2022, 17, e12859. [Google Scholar] [CrossRef]
- van Beijsterveldt, I.A.L.P.; Myers, P.N.; Snowden, S.G.; Ong, K.K.; Brix, S.; Hokken-Koelega, A.C.S.; Koulman, A. Distinct Infant Feeding Type-Specific Plasma Metabolites at Age 3 Months Associate with Body Composition at 2 Years. Clin. Nutr. 2022, 41, 1290–1296. [Google Scholar] [CrossRef]
- Leiguez, E.; Motta, P.; Marques, R.M.; Lomonte, B.; Sampaio, S.V.; Teixeira, C. A Representative GIIA Phospholipase A2 Activates Preadipocytes to Produce Inflammatory Mediators Implicated in Obesity Development. Biomolecules 2020, 10, 1593. [Google Scholar] [CrossRef] [PubMed]
- Garces, F.; López, F.; Nĩo, C.; Fernandez, A.; Chacin, L.; Hurt-Camejo, E.; Camejo, G.; Apitz-Castro, R. High Plasma Phospholipase A 2 Activity, Inflammation Markers, and LDL Alterations in Obesity with or without Type 2 Diabetes. Obesity 2010, 18, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Frasch, S.C.; Bratton, D.L. Emerging Roles for Lysophosphatidylserine in Resolution of Inflammation. Prog. Lipid Res. 2012, 51, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, J.; Inoue, A.; Okudaira, S. Two Pathways for Lysophosphatidic Acid Production. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2008, 1781, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Luquain, C.; Sciorra, V.A.; Morris, A.J. Lysophosphatidic Acid Signaling: How a Small Lipid Does Big Things. Trends Biochem. Sci. 2003, 28, 377–383. [Google Scholar] [CrossRef]
- Bexkens, M.L.; Houweling, M.; Burgers, P.C.; Luider, T.M.; Tielens, A.G.M.; van Hellemond, J.J. A Mono-Acyl Phospholipid (20:1 Lyso-PS) Activates Toll-Like Receptor 2/6 Hetero-Dimer. Chem. Phys. Lipids 2020, 232, 104951. [Google Scholar] [CrossRef]
- Perrakis, A.; Moolenaar, W.H. Autotaxin: Structure-Function and Signaling. J. Lipid Res. 2014, 55, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Furse, S.; Richardson, L.; Koulman, A. The Validation of Biomarkers of Metabolic Efficacy in Infant Nutrition. Nutr. Bull 2018, 43, 296–300. [Google Scholar] [CrossRef]
- Sousa, A.P.; Cunha, D.M.; Franco, C.; Teixeira, C.; Gojon, F.; Baylina, P.; Fernandes, R. Which Role Plays 2-Hydroxybutyric Acid on Insulin Resistance? Metabolites 2021, 11, 835. [Google Scholar] [CrossRef] [PubMed]
- Aleliunas, R.E.; Aljaadi, A.M.; Laher, I.; Glier, M.B.; Green, T.J.; Murphy, M.; Miller, J.W.; Devlin, A.M. Folic Acid Supplementation of Female Mice, with or without Vitamin B-12, before and during Pregnancy and Lactation Programs Adiposity and Vascular Health in Adult Male Offspring. J. Nutr. 2016, 146, 688–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reusens, B.; Theys, N.; Dumortier, O.; Goosse, K.; Remacle, C. Maternal Malnutrition Programs the Endocrine Pancreas in Progeny. Am. J. Clin. Nutr. 2011, 94, 1824S–1829S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feghali, M.; Miodovnik, M. Diabetes: Hypertension during Pregnancy and Future Diabetes Mellitus. Nat. Rev. Endocrinol. 2013, 9, 446–447. [Google Scholar] [CrossRef]
- Feig, D.S.; Shah, B.R.; Lipscombe, L.L.; Wu, C.F.; Ray, J.G.; Lowe, J.; Hwee, J.; Booth, G.L. Preeclampsia as a Risk Factor for Diabetes: A Population-Based Cohort Study. PLoS Med. 2013, 10, e1001425. [Google Scholar] [CrossRef] [Green Version]
- Sabour, S.; Franx, A.; Rutten, A.; Grobbee, D.E.; Prokop, M.; Bartelink, M.L.; Van Der Schouw, Y.T.; Bots, M.L. High Blood Pressure in Pregnancy and Coronary Calcification. Hypertension 2007, 49, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Veltman-Verhulst, S.M.; Fauser, B.C.J.M.; Eijkemans, M.J. High Singleton Live Birth Rate Confirmed after Ovulation Induction in Women with Anovulatory Polycystic Ovary Syndrome: Validation of a Prediction Model for Clinical Practice. Fertil. Steril. 2012, 98, 761–768.e1. [Google Scholar] [CrossRef]
- Fraser, A.; Nelson, S.M.; MacDonald-Wallis, C.; Cherry, L.; Butler, E.; Sattar, N.; Lawlor, D.A. Associations of Pregnancy Complications with Calculated Cardiovascular Disease Risk and Cardiovascular Risk Factors in Middle Age: The Avon Longitudinal Study of Parents and Children. Circulation 2012, 125, 1367–1380. [Google Scholar] [CrossRef] [PubMed]
- Foroozanfard, F.; Moosavi, S.G.A.; Mansouri, F.; Bazarganipour, F. Obstetric and Neonatal Outcome in PCOS with Gestational Diabetes Mellitus. J. Fam. Reprod Health 2014, 8, 7–12. [Google Scholar]
- Grieger, J.A.; Hutchesson, M.J.; Cooray, S.D.; Bahri Khomami, M.; Zaman, S.; Segan, L.; Teede, H.; Moran, L.J. A Review of Maternal Overweight and Obesity and Its Impact on Cardiometabolic Outcomes during Pregnancy and Postpartum. Adv. Reprod. Health 2021, 15, 263349412098654. [Google Scholar] [CrossRef]
- Ogunwole, S.M.; Mwinnyaa, G.; Wang, X.; Hong, X.; Henderson, J.; Bennett, W.L. Preeclampsia across Pregnancies and Associated Risk Factors: Findings from a High-Risk US Birth Cohort. J. Am. Heart Assoc. 2021, 10, e019612. [Google Scholar] [CrossRef]
- Sokołowska, E.M.; Jassem-Bobowicz, J.M.; Drążkowska, I.; Świąder, Z.; Domżalska-Popadiuk, I. Gestational Hypertension and Human Breast Milk Composition in Correlation with the Assessment of Fetal Growth—A Pilot Study. Nutrients 2023, 15, 2404. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Detraux, J.; De Lepeleire, J.; De Hert, M. Effects of Antipsychotics, Antidepressants and Mood Stabilizers on Risk for Physical Diseases in People with Schizophrenia, Depression and Bipolar Disorder. World Psychiatry 2015, 14, 119–136. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.; Gastaldelli, A.; Yki-Järvinen, H.; Scherer, P.E. Why Does Obesity Cause Diabetes? Cell Metab. 2022, 34, 11–20. [Google Scholar] [CrossRef]
- Lopez-Jimenez, F.; Almahmeed, W.; Bays, H.; Cuevas, A.; Di Angelantonio, E.; le Roux, C.W.; Sattar, N.; Sun, M.C.; Wittert, G.; Pinto, F.J.; et al. Obesity and Cardiovascular Disease: Mechanistic Insights and Management Strategies. A Joint Position Paper by the World Heart Federation and World Obesity Federation. Eur. J. Prev. Cardiol. 2022, 29, 2218–2237. [Google Scholar] [CrossRef]
- Piché, M.E.; Tchernof, A.; Després, J.P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef]
- Wiebe, N.; Stenvinkel, P.; Tonelli, M. Associations of Chronic Inflammation, Insulin Resistance, and Severe Obesity With Mortality, Myocardial Infarction, Cancer, and Chronic Pulmonary Disease. JAMA Netw. Open 2019, 2, e1910456. [Google Scholar] [CrossRef] [Green Version]
- Mazereel, V.; Detraux, J.; Vancampfort, D.; van Winkel, R.; De Hert, M. Impact of Psychotropic Medication Effects on Obesity and the Metabolic Syndrome in People With Serious Mental Illness. Front. Endocrinol. 2020, 11, 573479. [Google Scholar] [CrossRef] [PubMed]
- de Caluwé, L.; van Buitenen, N.; Gelan, P.J.; Crunelle, C.L.; Thomas, R.; Casseres, S.; Matthys, F.; van Harten, P.; Cahn, W. Prevalence of Metabolic Syndrome and Its Associated Risk Factors in an African–Caribbean Population with Severe Mental Illness. Psychiatry Res. 2019, 281, 112558. [Google Scholar] [CrossRef]
- Saloojee, S.; Burns, J.K.; Motala, A.A. High Risk of Metabolic Syndrome among Black South African Women with Severe Mental Illness. South Afr. J. Psychiatry 2017, 23, 1089. [Google Scholar] [CrossRef] [Green Version]
- Fernández Guijarro, S.; Miguel García, C.; Pomarol-Clotet, E.; Egea López, E.N.; Burjales Martí, M.D.; Rigol Cuadra, M.A. Metabolic Syndrome Screening in People With Severe Mental Illness: Results From Two Spanish Community Mental Health Centers. J. Am. Psychiatr. Nurses Assoc. 2020, 26, 162–171. [Google Scholar] [CrossRef]
- Henderson, D.C.; Vincenzi, B.; Andrea, N.V.; Ulloa, M.; Copeland, P.M. Pathophysiological Mechanisms of Increased Cardiometabolic Risk in People with Schizophrenia and Other Severe Mental Illnesses. Lancet Psychiatry 2015, 2, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.M.; Parretti, H.M.; Pearce, E.; Price, M.J.; Riley, M.; Ryan, R.; Tyldesley-Marshall, N.; Avşar, T.S.; Matthewman, G.; Lee, A.; et al. Temporal Trends in Associations between Severe Mental Illness and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis. PLoS Med. 2022, 19, e1003960. [Google Scholar] [CrossRef] [PubMed]
- McKibbin, C.L.; Lee, A.; Glaser, D.; Kanuch, S.; Cassidy, K.; Thomas, C.; Gunzler, D.; McCormick, R.; Dawson, N.V.; Sajatovic, M. Functional Health Status of Adults with Serious Mental Illness and Diabetes Mellitus: A Latent Profile Analysis. Int. J. Psychiatry Med. 2019, 54, 22–38. [Google Scholar] [CrossRef]
- Kominiarek, M.A.; Rajan, P. Nutrition Recommendations in Pregnancy and Lactation. Med. Clin. North Am. 2016, 100, 1199–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicalini, I.; Moffa, S.; Tommolini, M.L.; Valentinuzzi, S.; Zucchelli, M.; Bucci, I.; Chiacchiaretta, P.; Fontana, A.; Federici, L.; De Laurenzi, V.; et al. Impact of Maternal Lifestyle and Dietary Habits during Pregnancy on Newborn Metabolic Profile. Nutrients 2023, 15, 2297. [Google Scholar] [CrossRef]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative Stress and Inflammatory Markers in Prediabetes and Diabetes. J. Physiol. Pharmacol. 2019, 70, 809–824. [Google Scholar] [CrossRef]
- Dula, S.B.; Jecmenica, M.; Wu, R.; Jahanshahi, P.; Verrilli, G.M.; Carter, J.D.; Brayman, K.L.; Nunemaker, C.S. Evidence That Low-Grade Systemic Inflammation Can Induce Islet Dysfunction as Measured by Impaired Calcium Handling. Cell Calcium 2010, 48, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Bryson, C.L.; Ioannou, G.N.; Rulyak, S.J.; Critchlow, C. Association between Gestational Diabetes and Pregnancy-Induced Hypertension. Am. J. Epidemiol. 2003, 158, 1148–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, W.; Luo, C.; Huang, J.; Li, C.; Liu, Z.; Liu, F. Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes: Systematic Review and Meta-Analysis. BMJ 2022, 377, e067946. [Google Scholar] [CrossRef]
- Ovesen, P.G.; Jensen, D.M.; Damm, P.; Rasmussen, S.; Kesmodel, U.S. Maternal and Neonatal Outcomes in Pregnancies Complicated by Gestational Diabetes. A Nation-Wide Study. J. Matern. -Fetal Neonatal Med. 2015, 28, 1720–1724. [Google Scholar] [CrossRef]
- Shook, L.L.; Kislal, S.; Edlow, A.G. Fetal Brain and Placental Programming in Maternal Obesity: A Review of Human and Animal Model Studies. Prenat. Diagn. 2020, 40, 1126–1137. [Google Scholar] [CrossRef]
- Harder, T.; Rodekamp, E.; Schellong, K.; Dudenhausen, J.W.; Plagemann, A. Birth Weight and Subsequent Risk of Type 2 Diabetes: A Meta-Analysis. Am. J. Epidemiol. 2007, 165, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Boney, C.M.; Verma, A.; Tucker, R.; Vohr, B.R. Metabolic Syndrome in Childhood: Association With Birth Weight, Maternal Obesity, and Gestational Diabetes Mellitus. Pediatrics 2005, 115, e290–e296. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic-Peterson, L.; Peterson, C.M.; Reed, G.F.; Metzger, B.E.; Mills, J.L.; Knopp, R.H.; Aarons, J.H. Maternal Postprandial Glucose Levels and Infant Birth Weight: The Diabetes in Early Pregnancy Study. The National Institute of Child Health and Human Development--Diabetes in Early Pregnancy Study. Am. J. Obstet. Gynecol. 1991, 164, 103–111. [Google Scholar] [CrossRef]
- Berends, L.M.; Fernandez-Twinn, D.S.; Martin-Gronert, M.S.; Cripps, R.L.; Ozanne, S.E. Catch-up Growth Following Intra-Uterine Growth-Restriction Programmes an Insulin-Resistant Phenotype in Adipose Tissue. Int. J. Obes. 2013, 37, 1051–1057. [Google Scholar] [CrossRef] [Green Version]
- Bogdarina, I.; Welham, S.; King, P.J.; Burns, S.P.; Clark, A.J.L. Epigenetic Modification of the Renin-Angiotensin System in the Fetal Programming of Hypertension. Circ. Res. 2007, 100, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Tyrrell, J.; Richmond, R.C.; Palmer, T.M.; Feenstra, B.; Rangarajan, J.; Metrustry, S.; Cavadino, A.; Paternoster, L.; Armstrong, L.L.; De Silva, N.M.; et al. Genetic Evidence for Causal Relationships between Maternal Obesity-Related Traits and Birth Weight. JAMA 2016, 315, 1129–1140. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Zheng, Q.; Ford, S.P.; Nathanielsz, P.W.; Ren, J. Maternal Obesity, Lipotoxicity and Cardiovascular Diseases in Offspring. J. Mol. Cell Cardiol. 2013, 55, 111–116. [Google Scholar] [CrossRef]
- White, C.L.; Purpera, M.N.; Morrison, C.D. Maternal Obesity Is Necessary for Programming Effect of High-Fat Diet on Offspring. AJP: Regul. Integr. Comp. Physiol. 2009, 296, R1464–R1472. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, M.; Katewa, S.D.; Palaniyappan, A.; Pandya, J.D.; Patel, M.S. Maternal High-Fat Diet Consumption Results in Fetal Malprogramming Predisposing to the Onset of Metabolic Syndrome-like Phenotype in Adulthood. AJP: Endocrinol. Metab. 2006, 291, E792–E799. [Google Scholar] [CrossRef]
- Sheen, J.M.; Yu, H.R.; Tain, Y.L.; Tsai, W.L.; Tiao, M.M.; Lin, I.C.; Tsai, C.C.; Lin, Y.J.; Huang, L.T. Combined Maternal and Postnatal High-Fat Diet Leads to Metabolic Syndrome and Is Effectively Reversed by Resveratrol: A Multiple-Organ Study. Sci. Rep. 2018, 8, 5607. [Google Scholar] [CrossRef] [Green Version]
- Horwich, T.B.; Fonarow, G.C. Glucose, Obesity, Metabolic Syndrome, and Diabetes. Relevance to Incidence of Heart Failure. J. Am. Coll. Cardiol. 2010, 55, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Petrie, J.R.; Guzik, T.J.; Touyz, R. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Stothard, K.J.; Tennant, P.W.G.; Bell, R.; Rankin, J. Maternal Overweight and Obesity and the Risk of Congenital Anomalies: A Systematic Review and Meta-Analysis. JAMA 2009, 301, 636–650. [Google Scholar] [CrossRef]
- Reynolds, R.M.; Allan, K.M.; Raja, E.A.; Bhattacharya, S.; McNeill, G.; Hannaford, P.C.; Sarwar, N.; Lee, A.J.; Norman, J.E. Maternal Obesity during Pregnancy and Premature Mortality from Cardiovascular Events in Adult Offspring: Follow-up of 1,323,275 Person Years. BMJ 2013, 347, f4539. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Zhang, Z.; Yang, Z.; Rao, B. The Effects of Taurine Supplementation on Diabetes Mellitus in Humans: A Systematic Review and Meta-Analysis. Food Chem. Mol. Sci. 2022, 4, 100106. [Google Scholar] [CrossRef]
- Lee, S.M.; Kang, Y.; Lee, E.M.; Jung, Y.M.; Hong, S.; Park, S.J.; Park, C.W.; Norwitz, E.R.; Lee, D.Y.; Park, J.S. Metabolomic Biomarkers in Midtrimester Maternal Plasma Can Accurately Predict the Development of Preeclampsia. Sci. Rep. 2020, 10, 16142. [Google Scholar] [CrossRef]
- Eyupoglu, N.D.; Caliskan Guzelce, E.; Acikgoz, A.; Uyanik, E.; Bjørndal, B.; Berge, R.K.; Svardal, A.; Yildiz, B.O. Circulating Gut Microbiota Metabolite Trimethylamine N-Oxide and Oral Contraceptive Use in Polycystic Ovary Syndrome. Clin. Endocrinol. 2019, 91, 810–815. [Google Scholar] [CrossRef]
- Huang, J.; Liu, L.; Chen, C.; Gao, Y. PCOS without Hyperandrogenism Is Associated with Higher Plasma Trimethylamine N-Oxide Levels. BMC Endocr. Disord. 2020, 20, 3. [Google Scholar] [CrossRef]
- Baranyi, A.; Amouzadeh-Ghadikolai, O.; Von Lewinski, D.; Rothenhäusler, H.B.; Theokas, S.; Robier, C.; Mangge, H.; Reicht, G.; Hlade, P.; Meinitzer, A. Branched-Chain Amino Acids as New Biomarkers of Major Depression—A Novel Neurobiology of Mood Disorder. PLoS ONE 2016, 11, e0160542. [Google Scholar] [CrossRef] [Green Version]
- Koochakpoor, G.; Salari-Moghaddam, A.; Keshteli, A.H.; Afshar, H.; Esmaillzadeh, A.; Adibi, P. Dietary Intake of Branched-Chain Amino Acids in Relation to Depression, Anxiety and Psychological Distress. Nutr. J. 2021, 20, 11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerf, M.E. Maternal and Child Health, Non-Communicable Diseases and Metabolites. Metabolites 2023, 13, 756. https://doi.org/10.3390/metabo13060756
Cerf ME. Maternal and Child Health, Non-Communicable Diseases and Metabolites. Metabolites. 2023; 13(6):756. https://doi.org/10.3390/metabo13060756
Chicago/Turabian StyleCerf, Marlon E. 2023. "Maternal and Child Health, Non-Communicable Diseases and Metabolites" Metabolites 13, no. 6: 756. https://doi.org/10.3390/metabo13060756
APA StyleCerf, M. E. (2023). Maternal and Child Health, Non-Communicable Diseases and Metabolites. Metabolites, 13(6), 756. https://doi.org/10.3390/metabo13060756