Metabolomics-Based Investigation on the Metabolic Changes in Crassostrea gigas Experimentally Exposed to Galvanic Anodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Organisms
2.2. Experimental Setup
2.3. Cathodic Protection
2.4. Chemical Modelling
2.5. Trace Element Assessments
2.5.1. Sampling and Chemical Analysis of Digestive Gland
2.5.2. Chemical Analysis of Passive Samplers
2.5.3. Statistical Analysis
2.6. Metabolomic Sample Analysis
2.6.1. Tissue Sample Preparation
2.6.2. UHPLC/QToF MS Analysis of Samples
2.7. Statistical Analysis
2.8. Metabolite Identification
- -
- Score 1: identification using a standard (same retention times, m/z, and fragments).
- -
- Score 2a: annotation using fragmentation data from all databases proposed by Sirius with an unambiguous spectrum–structure match.
- -
- Score 2b: the fragments obtained match completely with the proposed structure, which excludes other possibilities, but the data are not completely available in the databases.
- -
- Score 3: proposed annotation of one or more isomeric molecules without the possibility of distinguishing between them because few or no fragments were obtained, or the fragments were common to the different positional isomers.
3. Results
3.1. Chemical Modelling of Species, Corresponding to the Degradation Products of the Al-Zn-In- and Zn-Anodes
3.2. Levels of Trace Elements
3.3. LC/MS Data Processing and Analyses
3.4. Metabolites Modulation
3.4.1. Modulations Observed for Zn-Anode Exposed Oysters
3.4.2. Modulations Observed for Al-Zn-In Anode-Exposed Oysters
4. Discussion
4.1. Chemical Modelling and Its Implications
4.2. Bioaccumulation
4.3. Ecotoxicological Effects of Zn- and Al-Zn-In Anodes on Marine Organisms Assessed by Other Methods Than Metabolomics
4.4. Ecotoxicological Effects of Zn- and Al-Zn-In Anodes on Marine Organisms Assessed by Metabolomics in the Present Study
4.4.1. Energy Metabolism
4.4.2. Osmoregulation
4.4.3. Oxidative Stress
4.4.4. Lipid Metabolism
4.4.5. Nucleotide and Nucleoside Metabolism
4.4.6. Amino Acids Metabolism
4.4.7. Defense or Signaling Pathways
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davy, H. On the corrosion of copper sheeting by sea water, and on methods of preventing this effect; and on their application to ships of war and other ships. Philos. Trans. R. Soc. Lond. 1824, 114, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Lemieux, E.; Hartt, W.H.; Lucas, K.E. A critical review of Al anode activation and dissolution mechanisms and performance. In Proceedings of the Paper NACE-01509, CORROSION 2001 Conference, Houston, TX, USA, 11–16 March 2001. [Google Scholar]
- Muñoz, A.G.; Saidman, S.B.; Bessone, J.B. Corrosion of an Al–Zn–In alloy in chloride media. Corros. Sci. 2002, 44, 2171–2182. [Google Scholar] [CrossRef]
- Ma, J.; Wen, J.; Zhai, W.; Li, Q. In situ corrosion of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy. Mater. Charac. 2012, 65, 86–92. [Google Scholar] [CrossRef]
- Caplat, C.; Oral, R.; Mahaut, M.-L.; Mao, A.; Barillier, D.; Guida, M.; Della Rocca, C.; Pagano, G. Comparative toxicities of aluminum and zinc from sacrificial anodes or from sulfate salt in sea urchin embryos and sperm. Ecotoxicol. Environ. Saf. 2010, 73, 1138–1143. [Google Scholar] [CrossRef]
- Muttin, E.; Caplat, C.; Latire, T.; Mottier, A.; Mahaut, M.-P.; Costil, K.; Barillier, D.; Lebel, J.-M.; Serpentini, A. Effect of zinc sacrificial anode degradation on the defence system of the Pacific oyster, Crassostrea gigas: Chronic and acute exposures. Mar. Pollut. Bull. 2012, 64, 1911–1920. [Google Scholar] [CrossRef]
- Barbarin, M.; Turquois, C.; Dubillot, E.; Huet, V.; Churlaud, C.; Muttin, F.; Thomas, H. First quantitative biomonitoring study of two ports (marina, commerce) in French littoral area: Evaluation of metals released into the marine environment and resulting from galvanic anodes. Sci. Total Environ. 2023, 857, 159244. [Google Scholar] [CrossRef] [PubMed]
- Levallois, A.; Caplat, C.; Basuyaux, O.; Lebel, J.-M.; Laisney, A.; Costil, K.; Serpentini, A. Effects of chronic exposure of metals released from the dissolution of an aluminium galvanic anode on the Pacific oyster Crassostrea gigas. Aquat. Toxicol. 2022, 249, 1062232022. [Google Scholar] [CrossRef]
- Levallois, A.; Nivelais, L.; Caplat, C.; Lebel, J.-M.; Basuyaux, O.; Costil, K.; Serpentini, A. Impact assessment of metals realeased by aluminium-based galvanic anode on the physiology of the abalone Haliotis tuberculata in controlled conditions. Ecotoxicology 2023, 32, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, M.; Vigneau, E.; Viricel, A.; Becquet, V.; Lacroix, C.; Erb, M.; Huet, V.; Churlaud, C.; Le Floch, S.; Guillot, B.; et al. What is the relationship between the bioaccumulation of chemical contaminants in the variegated scallop Mimachlamys varia and its health status? A study carried out on the French Atlantic coast using the Path ComDim model. Sci. Total Environ. 2018, 640, 662–670. [Google Scholar] [CrossRef]
- Gibson, G. Behavior of Al-Zn-In anodes at elevated temperature. In Proceedings of the Paper NACE-10369, CORROSION 2010 Conference, San Antonio, TX, USA, 14–18 March 2010. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. User’s guide to PHREEQC (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey. Water-Resour. Investig. Rep. 1999, 99, 312. [Google Scholar]
- Allison, J.D.; Brown, D.S.; Novo-Gradac, K.J. MINTEQA2/PRODEFA2—A Geochemical Assessment Model for Environmental Systems—Version 3.0 User’s Manual; Environmental Research Laboratory, Office of Research and Development U.S. Environmental Protection Agency: Athens, GA, USA, 1990. [Google Scholar]
- US Environmental Protection Agency. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems—User Manual Supplement for Version 4.0; National Exposure Research Laboratory, Ecosystems Research Division: Athens, GA, USA, 1998. [Google Scholar]
- ASTM D1141-98(2021); Standard Practice for Preparation of Substitute Ocean Water. ASTM International: West Conshohocken, PA, USA, 2021.
- Breitwieser, M.; Viricel, A.; Graber, M.; Murillo, L.; Becquet, V.; Churlaud, C.; Fruitier-Arnaudin, I.; Huet, V.; Lacroix, C.; Pante, E.; et al. Short-Term and Long-Term Biological Effects of Chronic Chemical Contamination on Natural Populations of a Marine Bivalve. PLoS ONE 2016, 11, e0150184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miramand, P.; Bustamante, P.; Bentley, D.; Kouéta, N. Variation of heavy metal concentrations (Ag, Cd, Co, Cu, Fe, Pb, V, and Zn) during the life cycle of the common cuttlefish Sepia officinalis. Sci. Total Environ. 2006, 361, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Metian, M.; Warnau, M.; Oberhansli, F.; Teyssie, J.L.; Bustamante, P. Interspecific comparison of Cd bioaccumulation in European Pectinidae (Chlamys varia and Pecten maximus). J. Exp. Mar. Biol. Ecol. 2007, 353, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Deborde, J.; Refait, P.; Bustamante, P.; Caplat, C.; Basuyaux, O.; Grolleau, A.M.; Mahaut, M.L.; Brach-Papa, C.; Gonzalez, J.L.; Pineau, S. Impact of Galvanic Anode Dissolution on Metal Trace Element Concentrations in Marine Waters. Water Air Soil Pollut. 2015, 226, 423. [Google Scholar] [CrossRef]
- Ory, P.; Hamani, V.; Bodet, P.E.; Murillo, L.; Graber, M. The variegated scallop, Mimachlamys varia, undergoes alterations in several of its metabolic pathways under short-term zinc exposure. Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 37, 100779. [Google Scholar] [CrossRef]
- Mondeguer, F.; Abadie, E.; Herve, F.; Bardouil, M.; Sechet, V.; Raimbault, V.; Berteaux, T.; Zendong, S.Z.; Palvadeau, H.; Amzil, Z.; et al. Pinnatoxines en Lien Avec L’espèce Vulcanodinium rugosum (II). 2015. Available online: http://archimer.ifremer.fr/doc/00285/39635/ (accessed on 31 March 2023).
- Ory, P.; Bonnet, A.; Mondeguer, F.; Breitwieser, M.; Dubillot, E.; Graber, M. Metabolomics based on UHPLC-QToF- and APGCQToF-MS reveals metabolic pathways reprogramming in response to tidal cycles in the sub-littoral species Mimachlamys varia exposed to aerial emergence. Comp. Biochem. Physiol. Part D Genom. Proteom. 2019, 29, 74–85. [Google Scholar]
- Van Der Kloet, F.M.; Bobeldijk, I.; Verheij, E.R.; Jellema, R.H. Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. J. Proteome Res. 2009, 8, 5132–5141. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Gensemer, R.W.; Playle, R.C. The bioavailability and toxicity of aluminum in aquatic environments. Crit. Rev. Environ. Sci. Technol. 1999, 29, 315–450. [Google Scholar] [CrossRef]
- Breitwieser, M.; Barbarin, M.; Huet, V.; Dubillot, E.; Graber, M.; Thomas, H. Comparative biomarkers study in two scallop organs to establish guidelines for evaluating French Atlantic coastline water quality. In Marine Environmental Quality: Healthy Coastal Waters, 1st ed.; Muttin, F., Thomas, H., Eds.; John Wiley & Sons: Chichester, UK, 2021; pp. 41–53. [Google Scholar]
- Trevisan, R.; Mello, D.F.; Delapedra, G.; Silva, D.G.H.; Arl, M.; Danielli, N.M.; Metian, M.; Almeida, E.A.; Dafre, A.L. Gills as a glutathione-dependent metabolic barrier in Pacific oysters Crassostrea gigas: Absorption, metabolism and excretion of a model electrophile. Aquat. Toxicol. 2016, 173, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Caplat, C.; Mottin, E.; Lebel, J.-M.; Serpentini, A.; Barillier, D.; Mahaut, M.-L. Impact of a Sacrificial Anode as Assessed by Zinc Accumulation in Different Organs of the Oyster Crassostrea gigas: Results from Long- and Short-Term Laboratory Tests. Arch. Environ. Contam. Toxicol. 2012, 62, 638–649. [Google Scholar] [CrossRef]
- Mao, A.; Mahaut, M.-L.; Pineau, S.; Barillier, D. Assessment of sacrificial anode impact by aluminum accumulation in mussel Mytilus edulis: A large-scale laboratory test. Mar. Pollut. Bull. 2011, 62, 2707–2713. [Google Scholar] [CrossRef]
- Kirchgeorg, T.; Weinberg, I.; Hörnig, M.; Baier, R.; Schmid, M.J.; Brockmeyer, B. Emissions from corrosion protection systems of offshore wind farms: Evaluation of the potential impact on the marine environment. Mar. Pollut. Bull. 2018, 136, 257–268. [Google Scholar] [CrossRef]
- Yang, J.-L. Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper (II) on freshwater swamp shrimp (Macrobrachium nipponense). Biol. Res. 2014, 47, 13. [Google Scholar]
- Séguin, A.; Caplat, C.; Serpentini, A.; Lebel, J.-M.; Menet-Nedelec, F.; Costil, K. Metal bioaccumulation and physiological condition of the Pacific oyster (Crassostrea gigas) reared in two shellfish basins and a marina in Normandy (northwest France). Mar. Pollut. Bull. 2016, 106, 202–214. [Google Scholar]
- Ivanina, A.V.; Cherkasov, A.S.; Sokolova, I.M. Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, Crassostrea virginica Gmelin. J. Exp. Biol. 2008, 211, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Sokolova, I.M.; Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: Implications of global climate change. Clim. Res. 2008, 37, 181–201. [Google Scholar]
- Sokolova, I.M.; Frederich, M.; Bagwe, R.; Lannig, G.; Sukhotin, A.A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 2012, 79, 1–15. [Google Scholar] [CrossRef]
- Meng, J.; Wang, W.-X.; Li, L.; Zhang, G. Respiration disruption and detoxification at the protein expression levels in the Pacific oyster (Crassostrea gigas) under zinc exposure. Aquat. Toxicol. 2017, 191, 34–41. [Google Scholar] [CrossRef]
- Liu, X.; Sun, H.; Wang, Y.; Ma, M.; Zhang, Y. Gender-specific metabolic responses in hepatopancreas of mussel Mytilus galloprovincialis challenged by Vibrio harveyi. Fish Shellfish. Immunol. 2014, 40, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, G.; Gomez, E.; Dumas, T.; Rosain, D.; Mathieu, O.; Fenet, H.; Courant, F. Early Biological Modulations Resulting from 1-Week Venlafaxine Exposure of Marine Mussels Mytilus galloprovincialis Determined by a Metabolomic Approach. Metabolites 2022, 12, 197. [Google Scholar] [CrossRef]
- Lucena, M.N.; Garçone, D.P.; Fontes, C.F.L.; Fabria, L.M.; Moraes, C.M.; McNamara, J.C.; Leone, F.A. Dopamine binding directly up-regulates (Na+, K+)-ATPase activity in the gills of the freshwater shrimp Macrobrachium amazonicum. Comp. Biochem. Physiol. Part A 2019, 233, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.A.; Catapane, E.J. The nervous system controls of lateral ciliary activity of the gill of the bivalve mollusc, Crassostrea virginica. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 148, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Aru, V.; Sarais, G.; Savorani, F.; Engelsen, S.B.; Cesare Marincola, F. Metabolic responses of clams, Ruditapes decussatus and Ruditapes philippinarum, to short-term exposure to lead and zinc. Mar. Pollut. Bull. 2016, 107, 292–299. [Google Scholar] [CrossRef]
- Christgen, S.L.; Becker, D.F. Role of Proline in Pathogen and Host Interactions. Antioxid. Redox Signal. 2019, 30, 683–709. [Google Scholar] [CrossRef]
- Tikunov, A.P.; Johnson, C.B.; Lee, H.; Stoskopf, M.K.; Macdonald, J.M. Metabolomic Investigations of American Oysters Using 1H-NMR Spectroscopy. Mar. Drugs 2010, 8, 2578–2596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Song, H.; Feng, J.; Hu, Z.; Yang, M.J.; Shi, P.; Guo, Y.J.; Li, H.Z.; Zhang, T. Metabolomics and biochemical assays reveal the metabolic responses to hypo-salinity stress and osmoregulatory role of cAMP-PKA pathway in Mercenaria mercenaria. Comput. Struct. Biotechnol. J. 2022, 120, 4110–4121. [Google Scholar] [CrossRef]
- Nikitashina, V.; Stettin, D.; Pohnert, G. Metabolic adaptation of diatoms to hypersalinity. Phytochemistry 2022, 201, 113267. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Wang, W.-X. Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution. Environ. Pollut. 2016, 216, 156–165. [Google Scholar] [CrossRef]
- Ma, L.; Lu, J.; Yao, T.; Ye, L.; Wang, J. Gender-Specific Metabolic Responses of Crassostrea hongkongensis to Infection with Vibrio harveyi and Lipopolysaccharide. Antioxidants 2021, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Frizzo, R.; Bortoletto, E.; Riello, T.; Leanza, L.; Schievano, E.; Venier, P.; Mammi, S. NMR Metabolite Profiles of the Bivalve Mollusc Mytilus galloprovincialis Before and After Immune Stimulation With Vibrio splendidus. Front. Mol. Biosci. 2021, 8, 686770. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Wang, Q.; Wua, H.; Tan, Q.; Wang, W.-X. A metabolomic investigation of the effects of metal pollution in oysters Crassostrea hongkongensis. Mar. Pollut. Bull. 2015, 90, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Gallazzini, M.; Burg, M.B. What’s New About Osmotic Regulation of Glycerophosphocholine. Physiology 2009, 24, 204–266. [Google Scholar] [CrossRef] [Green Version]
- Burg, M.B.; Ferraris, J.D. Intracellular Organic Osmolytes: Function and Regulation. J. Biol. Chem. 2008, 283, 7309–7313. [Google Scholar] [CrossRef] [Green Version]
- Fuhrman, M.; Delisle, L.; Petton, B.; Corporeau, C.; Pernet, F. Metabolism of the Pacific oyster, Crassostrea gigas, is influenced by salinity and modulates survival to the Ostreid herpes virus OsHV-1. Biol. Open 2018, 7, bio028134. [Google Scholar] [CrossRef] [Green Version]
- Ivanina, A.V.; Sokolova, I.M. Interactive effects of pH and metals on mitochondrial functions of intertidal bivalves Crassostrea virginica and Mercenaria mercenaria. Aquat. Toxicol. 2013, 144–145, 303–309. [Google Scholar] [CrossRef]
- Handy, D.E.; Loscalzo, J. Redox Regulation of Mitochondrial Function. Antioxid. Redox Signal. 2012, 16, 1323–1367. [Google Scholar] [CrossRef] [Green Version]
- Gülçin, I. Antioxidant and antiradical activities of l-carnitine. Life Sci. 2006, 78, 803–811. [Google Scholar] [CrossRef]
- Späth, J.; Fick, J.; McCallum, E.; Cerveny, D.; Nording, M.L.; Brodin, T. Wastewater effluent affects behaviour and metabolomic endpoints in damselfly larvae. Sci. Rep. 2022, 12, 6830. [Google Scholar] [CrossRef]
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 2016, 1863, 2422–2435. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Scheidegger, A.; Laczko, E.; Hollender, J. Metabolomic Profiling and Toxicokinetics Modeling to Assess the Effects of the Pharmaceutical Diclofenac in the Aquatic Invertebrate Hyalella azteca. Environ. Sci. Technol. 2021, 55, 7920–7929. [Google Scholar] [CrossRef] [PubMed]
- Hamani, V.; Ory, P.; Bodet, P.-E.; Murillo, L.; Graber, M. Untargeted Metabolomics Reveals a Complex Impact on Different Metabolic Pathways in Scallop Mimachlamys varia (Linnaeus, 1758) after Short-Term Exposure to Copper at Environmental Dose. Metabolites 2021, 11, 862. [Google Scholar] [CrossRef] [PubMed]
- Léonard, J.A.; Cope, W.G.; Barnhart, M.C.; Bringolf, R.B. Metabolomic, behavioral, and reproductive effects of the aromatase inhibitor fadrozole hydrochloride on the unionid mussel Lampsilis fasciola. Gen. Comp. Endocrinol. 2014, 206, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Ferdinandusse, S.; Denis, S.; van Roermund, C.W.T.; Wanders, R.J.A.; Dacremont, G. Identification of the peroxisomal β-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J. Lipid Res. 2004, 45, 1104–1111. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Meyer, K.A.; Jackson, T.M.; Schock, T.B.; Johnson, W.E.; Bearden, D.W. Application of NMR-based metabolomics for environmental assessment in the Great Lakes using zebra mussel (Dreissena polymorpha). Metabolomics 2015, 11, 1302–1315. [Google Scholar] [CrossRef] [Green Version]
- Cappello, T.; Maisano, M.; Mauceri, A.; Fasulo, S. 1 H NMR-based metabolomics investigation on the effects of petrochemical contamination in posterior adductor muscles of caged mussel Mytilus galloprovincialis. Ecotoxicol. Environ. Saf. 2017, 142, 417–422. [Google Scholar] [CrossRef]
- Dumas, T.; Bonnefille, B.; Gomez, E.; Boccard, J.; Ariza Castro, N.; Fenet, H.; Courant, F. Metabolomics approach reveals disruption of metabolic pathways in the marine bivalve Mytilus galloprovincialis exposed to a WWTP effluent extract. Sci. Total Environ. 2020, 712, 136551. [Google Scholar] [CrossRef]
- De Sotto, R.B.; Medriano, C.D.; Cho, Y.; Kim, H.; Chung, I.-Y.; Seok, K.-S.; Hong, S.W.; Park, Y.; Kim, S. Sub-lethal pharmaceutical hazard tracking in adult zebrafish using untargeted LC–MS environmental metabolomics. J. Hazard. Mater. 2017, 339, 63–72. [Google Scholar] [CrossRef]
- Canesi, L.; Miglioli, A.; Balbi, T.; Fabbri, E. Physiological Roles of Serotonin in Bivalves: Possible Interference by Environmental Chemicals Resulting in Neuroendocrine Disruption. Front. Endocrinol. 2022, 13, 792589. [Google Scholar] [CrossRef]
- Monmai, C.; Go, S.H.; Shin, I.S.; You, S.G.; Lee, H.; Kang, S.B.; Park, W.J. Immune-Enhancement and Anti-Inflammatory Activities of Fatty Acids Extracted from Halocynthia aurantium Tunic in RAW264.7 Cells. Mar. Drugs 2018, 16, 309. [Google Scholar] [CrossRef] [Green Version]
Equilibrium Solid Phase | Amorphous Al(OH)3 | Amorphous Al(OH)3 | Gibbsite | Gibbsite | ε-Zn(OH)2 | ε-Zn(OH)2 |
---|---|---|---|---|---|---|
pH | 8.0 | 8.2 | 8.0 | 8.2 | 8.0 | 8.2 |
Dissolved species conc. | 5153 | 8410 | 17 | 26 | 21582 | 9614 |
Main dissolved species | Al(OH)4− | Al(OH)4− | Al(OH)4− | Al(OH)4− | Zn2+ | Zn2+ |
R.A. | 99.4% | 99.6% | 99.45% | 99.65% | 34.3% | 30.7% |
Other dissolved species and R.A. | Al(OH)30 (0.5%) Al(OH)2+ (0.04%) | Al(OH)30 (0.33%) Al(OH)2+ (0.015%) | Al(OH)30 (0.5%) Al(OH)2+ (0.035%) | Al(OH)30 (0.33%) Al(OH)2+ (0.015%) | ZnCl+ (16.9%) ZnOHCl0 (14.0%) Zn(SO4)22− (8.1%) | ZnOHCl0 (19.9%) ZnCl+ (15.1%) Zn(SO4)22− (7.3%) |
µg/Sampler | Control (n = 4) | Al-Zn-In-Anode (n = 4) | Zn-Anode (n = 4) |
---|---|---|---|
Al | <d.l | 148 ± 22 | <d.l |
In | <d.l | <d.l | <d.l |
Zn | <d.l | <d.l | 360 ± 125 |
µg/g Dry Weight (Digestive Gland) | Control (n = 32) | Al-Zn-In-Anode (n = 32) | Zn-Anode (n = 32) |
---|---|---|---|
Al | 39.9 ± 12.1 | 29 ± 12.9 | 28 ± 11.5 |
In | <d.l | <d.l | <d.l |
Zn | 1590 ± 459 | 1348 ± 164 | 1718 ± 271 |
Group | Metabolite | Mode | Retention Time (min) | Formula | Adduct | Monoisotopic Mass (Da) | Observed Mass (m/z) | Theoretical Mass (m/z) | Mass Error (ppm) | Score | Zn2+ Effect | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Amino acids and derivatives | Proline | Pos/ Neg | 1.36/1.35 | C5H9NO2 | [M+H]+/[M−H]− | 115.0633 | 116.0712/114.0553 | 116.0706/114.0561 | 5.4/7.0 | 1 | 0.8/0.7 | |
Betaine | Pos | 1.26 | C5H11NO2 | [M+K]+ | 117.0795 | 156.0424 | 156.0432 | 5.6 | 1 | 0.7 | ||
Phenylalanine | Neg | 6.52 | C9H11NO2 | [M−H]− | 165.0795 | 164.0709 | 164.0722 | 8.1 | 1 | 0.8 | ||
Xanthurenic acid/Xanthurinate | Pos/ Neg | 7.42/7.34 | C10H7NO4 | [M+H]+/Isotope of [M−CO2−H]− at 160.0396 | 205.0375 | 206.0454/160.0396 | 206.0448/160.0404 | 3.2/5.2 | 2a | 1.3/2.0 | ||
Oxybetaine | Pos | 1.29 | C6H14NO3+ | [M]+ | 148.0974 | 148.0971 | 148.0974 | 2.1 | 2a | 0.7 | ||
Proline betaine (stachydrine) | Pos | 1.21 | C7H14NO2+ | [M]+ | 144.1019 | 144.1025 | 144.1019 | 3.9 | 2a | 0.7 | ||
Turicine | Pos | 8.67 | C7H13NO3 | [M+H]+ | 159.0895 | 160.0968 | 160.0968 | 0.0 | 2a | 0.8 | ||
Nucleotides and nucleosides | Adenine | Pos/ Neg | 6.79/6.74 | C5H5N5 | [M+H]+/[M−H]− | 135.0545 | 136.0621/134.0463 | 136.0618/134.0472 | 2.5/6.5 | 2a | 0.7/0.6 | |
Adenosine | Pos/ Neg | 6.79/6.74 | C10H13N5O4 | [M+H]+/[M−H]− | 267.0968 | 268.1046/266.0886 | 268.1040/266.0895 | 2.3/3.2 | 2a | 0.8/0.6 | ||
Guanosine | Neg | 6.52 | C10H13N5O5 | [M−H]− | 283.0917 | 282.0839 | 282.0844 | 1.7 | 2a | 1.2 | ||
Carnitine and derivatives | Carnitine | Pos | 1.18 | C7H16NO3+ | [M]+ | 162.1125 | 162.1130 | 162.1125 | 3.3 | 2a | 0.8 | |
3-dehydrocarnitine | Pos | 1.33 | C7H16NO2+ | [M]+ | 146.1176 | 146.1179 | 146.1176 | 2.3 | 2a | 0.8 | ||
Others | Glycerophosphocholine | Pos | 1.21 | C8H20NO6P | [M+H]+ | 257.1028 | 258.1105 | 258.1101 | 1.7 | 2a | 1.4 | |
Trigonelline (gynesine) | Pos | 1.54 | C7H7NO2 | Isotope P+2 of [M+H]+ | 137.0477 | 138.0558 | 138.0550 | 6.1 | 2a | 1.4 | ||
Dodecanedioic acid | Neg | 11.23 | C12H22O4 | [M-2H+Na]− | 230.1518 | 251.1273 | 251.1265 | 3.2 | 2a | 0.4 | ||
Eicosanoid | Neg | 10.85 | C20H32O5 | [M−H]− | 352.2250 | 351.2172 | 351.2177 | 1.5 | 3 | 1.3 |
Group | Metabolite | Mode | Retention Time (min) | Formula | Adduct | Monoisotopic Mass (Da) | Observed Mass (m/z) | Theoretical Mass (m/z) | Mass Error (ppm) | Score | Al-Zn-In Effect | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Amino acids and derivatives | Phenylalanine | Neg | 6.52 | C9H11NO2 | [M−H]− | 165.0795 | 164.0709 | 164.0722 | 0.8 | 1 | 0.8 | |
Others | Eicosanoid | Neg | 10.85 | C20H32O5 | Isotope at 351.2166/[M−H]− | 352.2250 | 351.2166 | 351.2177 | 3.1 | 3 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imbert-Auvray, N.; Fichet, D.; Bodet, P.-E.; Ory, P.; Sabot, R.; Refait, P.; Graber, M. Metabolomics-Based Investigation on the Metabolic Changes in Crassostrea gigas Experimentally Exposed to Galvanic Anodes. Metabolites 2023, 13, 869. https://doi.org/10.3390/metabo13070869
Imbert-Auvray N, Fichet D, Bodet P-E, Ory P, Sabot R, Refait P, Graber M. Metabolomics-Based Investigation on the Metabolic Changes in Crassostrea gigas Experimentally Exposed to Galvanic Anodes. Metabolites. 2023; 13(7):869. https://doi.org/10.3390/metabo13070869
Chicago/Turabian StyleImbert-Auvray, Nathalie, Denis Fichet, Pierre-Edouard Bodet, Pascaline Ory, René Sabot, Philippe Refait, and Marianne Graber. 2023. "Metabolomics-Based Investigation on the Metabolic Changes in Crassostrea gigas Experimentally Exposed to Galvanic Anodes" Metabolites 13, no. 7: 869. https://doi.org/10.3390/metabo13070869
APA StyleImbert-Auvray, N., Fichet, D., Bodet, P. -E., Ory, P., Sabot, R., Refait, P., & Graber, M. (2023). Metabolomics-Based Investigation on the Metabolic Changes in Crassostrea gigas Experimentally Exposed to Galvanic Anodes. Metabolites, 13(7), 869. https://doi.org/10.3390/metabo13070869