Effect of Pre-Hospital Intravenous Fluids on Initial Metabolic Acid-Base Status in Trauma Patients: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection
2.3. Outcomes
2.4. Statistics
3. Results
3.1. Results by Type of Pre-Hospital Fluid
3.1.1. Mode of Transport and Pre-Hospital Interventions
3.1.2. Initial Condition on Arrival in the ED
3.1.3. Evolution and In-Hospital Interventions
3.1.4. Mortality
3.2. Results by Type of Metabolic Acidosis
3.2.1. Pre-Hospital Fluid Resuscitation
3.2.2. Initial Condition on Arrival in the ED
3.2.3. Evolution and in-Hospital Interventions
3.2.4. Mortality
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sauaia, A.; Moore, F.A.; Moore, E.E.; Moser, K.S.; Brennan, R.; Read, R.A.; Pons, P.T. Epidemiology of Trauma Deaths: A Reassessment. J. Trauma 1995, 24, 185–193. [Google Scholar]
- Hampton, D.A.; Fabricant, L.J.; Differding, J.; Diggs, B.; Underwood, S.; De La Cruz, D.; Holcomb, J.B.; Brasel, K.J.; Cohen, M.J.; Fox, E.E.; et al. Prehospital intravenous fluid is associated with increased survival in trauma patients. J. Trauma Acute Care Surg. 2013, 75 (Suppl. S1), S9–S15. [Google Scholar]
- Funk, G.C.; Doberer, D.; Heinze, G.; Madl, C.; Holzinger, U.; Schneeweiss, B. Changes of serum chloride and metabolic acid-base state in critical illness. Anaesthesia 2004, 59, 1111–1115. [Google Scholar]
- Barker, M.E. 0.9% Saline Induced Hyperchloremic Acidosis. J. Trauma Nurs. 2015, 22, 111–116. [Google Scholar]
- Martini, W.Z.; Cortez, D.S.; Dubick, M.A. Comparisons of normal saline and lactated Ringer’s resuscitation on hemodynamics, metabolic responses, and coagulation in pigs after severe hemorrhagic shock. Scand. J. Trauma Resusc. Emerg. Med. 2013, 21, 86. [Google Scholar]
- Waters, J.H.; Miller, L.R.; Clack, S.; Kim, J.V. Cause of metabolic acidosis in prolonged surgery. Crit. Care Med. 1999, 27, 2142–2146. [Google Scholar]
- Chowdhury, A.H.; Cox, E.F.; Francis, S.T.; Lobo, D.N. A Randomized, Controlled, Double-Blind Crossover Study on the Effects of 2-L Infusions of 0.9% Saline and Plasma-Lyte® 148 on Renal Blood Flow Velocity and Renal Cortical Tissue Perfusion in Healthy Volunteers. Ann. Surg. 2012, 256, 18–24. [Google Scholar]
- Yunos, N.M.; Bellomo, R.; Taylor, D.M.; Judkins, S.; Kerr, F.; Sutcliffe, H.; Hegarty, C.; Bailey, M. Renal effects of an emergency department chloride-restrictive intravenous fluid strategy in patients admitted to hospital for more than 48 hours. Emerg. Med. Australas. 2017, 29, 643–649. [Google Scholar]
- Burdett, E.; Roche, A.M.; Mythen, M.G. Hyperchloremic Acidosis: Pathophysiology and Clinical Impact. Transfus. Altern. Transfus. Med. 2003, 5, 424–430. [Google Scholar]
- Pfortmueller, C.A.; Uehlinger, D.; von Haehling, S.; Schefold, J.C. Serum chloride levels in critical illness—The hidden story. Intensive Care Med. Exp. 2018, 6, 10. [Google Scholar]
- Lee, J.Y.; Hong, T.H.; Lee, K.W.; Jung, M.J.; Lee, J.G.; Lee, S.H. Hyperchloremia is associated with 30-day mortality in major trauma patients: A retrospective observational study. Scand. J. Trauma Resusc. Emerg. Med. 2016, 24, 117. [Google Scholar]
- McCluskey, S.A.; Karkouti, K.; Wijeysundera, D.; Minkovich, L.; Tait, G.; Beattie, W.S. Hyperchloremia After Noncardiac Surgery Is Independently Associated with Increased Morbidity and Mortality: A Propensity-Matched Cohort Study. Anesth. Analg. 2013, 117, 412–421. [Google Scholar]
- Barhight, M.F.; Brinton, J.; Stidham, T.; Soranno, D.E.; Faubel, S.; Griffin, B.R.; Goebel, J.; Mourani, P.M.; Gist, K.M. Increase in chloride from baseline is independently associated with mortality in critically ill children. Intensive Care Med. 2018, 44, 2183–2191. [Google Scholar]
- Thongprayoon, C.; Cheungpasitporn, W.; Hansrivijit, P.; Thirunavukkarasu, S.; Chewcharat, A.; Medaura, J.; Mao, M.A.; Kashani, K. Association of serum chloride level alterations with in-hospital mortality. Postgrad. Med. J. 2020, 96, 731–736. [Google Scholar]
- Thongprayoon, C.; Cheungpasitporn, W.; Petnak, T.; Mao, M.A.; Chewcharat, A.; Qureshi, F.; Medaura, J.; Bathini, T.; Vallabhajosyula, S.; Kashani, K.B. Hospital-Acquired Serum Chloride Derangements and Associated In-Hospital Mortality. Medicines 2020, 7, 38. [Google Scholar]
- Kaplan, L.J.; Cheung, N.H.-T.; Maerz, L.; Lui, F.; Schuster, K.; Luckianow, G.; Davis, K. A Physicochemical Approach to Acid-Base Balance in Critically Ill Trauma Patients Minimizes Errors and Reduces Inappropriate Plasma Volume Expansion. J. Trauma 2009, 66, 1045–1051. [Google Scholar]
- Story, D.A. Stewart Acid-Base: A Simplified Bedside Approach. Anesth. Analg. 2016, 123, 511–515. [Google Scholar]
- Naumann, D.N.; Hancox, J.M.; Raitt, J.; Smith, I.M.; Crombie, N.; Doughty, H.; Perkins, G.D.; Midwinter, M.J.; The RESCUER Collaborators. What fluids are given during air ambulance treatment of patients with trauma in the UK, and what might this mean for the future? Results from the RESCUER observational cohort study. BMJ Open 2018, 8, e019627. [Google Scholar]
- Committee on Trauma. ATLS Advanced Trauma Life Support, 10th ed.; American College of Surgeons: Chicago, IL, USA, 2018. [Google Scholar]
- Rossaint, R.; Afshari, A.; Bouillon, B.; Cerny, V.; Cimpoesu, D.; Curry, N.; Duranteau, J.; Filipescu, D.; Grottke, O.; Grønlykke, L.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Sixth edition. Crit. Care 2023, 27, 80. [Google Scholar]
- Young, J.B.; Utter, G.H.; Schermer, C.R.; Galante, J.M.; Phan, H.H.; Yang, Y.; Anderson, B.A.; Scherer, L.A. Saline Versus Plasma-Lyte A in Initial Resuscitation of Trauma Patients: A Randomized Trial. Ann. Surg. 2014, 259, 255–262. [Google Scholar]
- Self, W.H.; Semler, M.W.; Wanderer, J.P.; Wang, L.; Byrne, D.W.; Collins, S.P.; Slovis, C.M.; Lindsell, C.J.; Ehrenfeld, J.M.; Siew, E.D.; et al. Balanced Crystalloids versus Saline in Noncritically Ill Adults. N. Engl. J. Med. 2018, 378, 819–828. [Google Scholar]
- Semler, M.W.; Self, W.H.; Wanderer, J.P.; Ehrenfeld, J.M.; Wang, L.; Byrne, D.W.; Stollings, J.L.; Kumar, A.B.; Hughes, C.G.; Hernandez, A.; et al. Balanced Crystalloids versus Saline in Critically Ill Adults. N. Engl. J. Med. 2018, 378, 829–839. [Google Scholar]
- Finfer, S.; Micallef, S.; Hammond, N.; Navarra, L.; Bellomo, R.; Billot, L.; Delaney, A.; Gallagher, M.; Gattas, D.; Li, Q.; et al. Balanced Multielectrolyte Solution versus Saline in Critically Ill Adults. N. Engl. J. Med. 2022, 386, 815–826. [Google Scholar]
- Zampieri, F.G.; Machado, F.R.; Biondi, R.S.; Freitas, F.G.R.; Veiga, V.C.; Figueiredo, R.C.; Lovato, W.J.; Amêndola, C.P.; Serpa-Neto, A.; Paranhos, J.L.R.; et al. Effect of Intravenous Fluid Treatment With a Balanced Solution vs 0.9% Saline Solution on Mortality in Critically Ill Patients: The BaSICS Randomized Clinical Trial. JAMA 2021, 326, 818. [Google Scholar]
- Dong, W.H.; Yan, W.Q.; Song, X.; Zhou, W.Q.; Chen, Z. Fluid resuscitation with balanced crystalloids versus normal saline in critically ill patients: A systematic review and meta-analysis. Scand. J. Trauma Resusc. Emerg. Med. 2022, 30, 28. [Google Scholar]
- Coppler, P.J.; Padmanabhan, R.; Martin-Gill, C.; Callaway, C.W.; Yealy, D.M.; Seymour, C.W. Accuracy of Prehospital Intravenous Fluid Volume Measurement by Emergency Medical Services. Prehosp. Emerg. Care 2016, 20, 125–131. [Google Scholar]
All n = 1018 (100%) | NS n = 778 (76%) | Balanced n = 81 (8%) | None n = 159 (16%) | p | |
---|---|---|---|---|---|
Age (y) mean (SD) | 44.4 (20.4) | 44.3 (20.8) | 44.6 (16.6) | 45 (20.5) | 0.88 |
Sex (m/f) n (%) | 0.06 | ||||
| 248 (24) | 177 (23) | 21 (26) | 50 (31) | |
| 770 (76) | 601 (77) | 60 (74) | 109 (69) | |
Mechanism, n (%) | 0.05 | ||||
| 526 (52) | 413 (53) | 47 (58) | 66 (42) | |
| 371 (36) | 274 (35) | 28 (35) | 69 (43) | |
| 103 (10) | 80 (10) | 5 (6) | 18 (11) | |
| 18 (2) | 11 (1) | 1 (1) | 6 (4) | |
Mode of transportation, n (%) | <0.001 | ||||
| 120 (12) | 83 (11) | 2 (2) | 35 (22) | |
| 358 (35) | 306 (39) | 3 (4) | 49 (31) | |
| 540 (53) | 389 (50) | 76 (94) | 75 (47) | |
Pre-hospital intubation, n (%) | 184 (18) | 139 (18) | 22 (27) | 23 (14) | 0.041 |
Pre-hospital fluid volume (mL), mean (SD) | 459 (431) | 520 (387) | 763 (607) | 0 | <0.001 |
GCS in ED, mean (%) | 12 (4.9) | 12 (4.8) | 11 (5.2) | 12 (4.5) | 0.01 |
Systolic blood pressure in ED, mean (%) | 135 (26) | 135 (26) | 133 (28) | 137 (25) | 0.97 |
Heart rate in ED, mean (%) | 91 (21) | 90 (22) | 92 (23) | 91 (21) | 0.51 |
Vasopressor use in ED, n (%) | 219 (22) | 166 (21) | 25 (31) | 28 (18) | 0.06 |
ISS, mean (SD) | 16 (12) | 16 (12) | 19 (14) | 14 (11) | 0.41 |
Arterial blood gas (versus venous), n (%) | 782 (77) | 614 (79) | 59 (73) | 109 (69) | 0.01 |
pH, mean (SD) | 7.34 (0.11) | 7.34 (0.12) | 7.31 (0.11) | 7.35 (0.10) | 0.16 |
ED Lactate, mean (SD) | 2.78 (2.67) | 2.74 (2.61) | 2.75 (1.98) | 3.12 (3.23) | 0.03 |
ED Lactate, median (IQR) | 2.1 (1.9) | 2 (1.8) | 2.3 (1.7) | 2.3 (2) | |
ED BE, mean (SD) | −3.6 (4.5) | −3.6 (4.6) | −4.2 (4.6) | −3.4 (4.2) | 0.21 |
ED chloride, mean (SD) | 107 (5) | 107 (5) | 107 (4) | NA | 0.87 |
Peak chloride, mean (SD) | 111 (7) | 111 (7) | 111 (6) | NA | 0.90 |
ED Sodium, mean (SD) | 142 (4) | 142 (4) | 141 (4) | NA | <0.001 |
ED Strong ion difference, mean (SD) | 33 (5) | 34 (5) | 33 (5) | NA | 0.21 |
ED Creatinine above N, n (%) | 194 (25) | 180 (26) | 14 (18) | 0 (0) | 0.25 |
Peak creatinine, mean (SD) | 97 (43) | 97 (42) | 95 (45) | NA | 0.81 |
AKI during hospital stay, n (%) | 41 (5) | 34 (5) | 7 (10) | 0 (0) | 0.07 |
Time period, n (%) | <0.001 | ||||
| 577 (57) | 472 (61) | 31 (38) | 74 (47) | |
| 441 (43) | 306 (39) | 50 (62) | 85 (53) | |
Acid-Base status in ED, n (%) | 0.30 | ||||
| 559 (55) | 425 (55) | 48 (59) | 86 (55) | |
| 255 (25) | 197 (25) | 23 (28) | 35 (22) | |
| 204 (20) | 156 (20) | 10 (12) | 38 (24) | |
Intrahospital fluid volumes | |||||
| 658 (661) | 668 (650) | 717 (612) | 579 (723) | 0.09 |
| 500 (750) | 500 (700) | 500 (700) | 500 (250) | |
| 2336 (1780) | 2419 (1717) | 2015 (1124) | 2145 (256) | 0.90 |
| 2000 (2000) | 2000 (2000) | 2000 (1200) | 1500 (1500) | |
| 2397 (3245) | 2381 (3451) | 2799 (2666) | 2206 (2399) | 0.13 |
| 2000 (3550) | 2000 (3575) | 2500 (4000) | 1655 (3150) | |
| 2221 (3084) | 2234 (3193) | 2897 (2883) | 1813 (2546) | 0.08 |
| 1000 (2700) | 2000 (3575) | 2000 (3700) | 500 (2250) | |
Total PRBC 24 h, mean (SD) | 0.59 (2.13) | 0.53 (1.85) | 1.35 (4.08) | 0.50 (1.91) | 0.005 |
Total PRBC 24 h, median (IQR) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Went to OR, n (%) | 313 (31) | 236 (30) | 39 (48) | 38 (24) | 0.001 |
Went to ICU, n (%) | 359 (35) | 272 (35) | 35 (43) | 52 (33) | 0.26 |
Invasive ventilation, n (%) | 314 (31) | 240 (31) | 30 (37) | 44 (28) | 0.33 |
Duration inv. Vent. (d), mean (SD) | 4.9 (6.2) | 4.7 (5.8) | 5.6 (6.7) | 5.2 (7.9) | 0.87 |
Duration inv. Vent. (d), median (IQR) | 2 (7) | 2 (7) | 3.5 (7) | 2 (7.5) | |
Time to normal BE (>−2) (h), mean (SD) | 24.5 (77.1) | 24.8 (28.1) | 22.2 (24.1) | NA | 0.53 |
Time to normal BE, median (IQR) | 12 (17.7) | 11.9 (19) | 14.7 (15.4) | NA | |
Time to clearance Lac (<2.44), mean (SD) | 12 (22.3) | 10.7 (19.5) | 20.4 (35.3) | NA | 0.37 |
Time to clearance Lac, median (IQR) (h) | 5 (8.9) | 5.2 (8.6) | 4.4 (11.8) | NA | |
ED LOS (min), mean (SD) | 112 (177) | 105 (162) | 131 (212) | 139 (224) | <0.001 |
ED LOS (min), median (IQR) | 55 (47) | 55 (43) | 63 (63) | 57 (80) | |
ICU LOS (d), mean (SD) | 2.4 (5.8) | 2.3 (5.3) | 3.5 (8.6) | 2.2 (5.9) | 0.006 |
ICU LOS (d), median (IQR) | 0 (1.5) | 0 (1.5) | 0 (3.1) | 0 (1.4) | |
Hospital LOS (d), mean (SD) | 11.4 (14.5) | 11.1 (13.5) | 13.4 (17.2) | 11.9 (17.4) | 0.15 |
Hospital LOS (d), median (IQR) | 5.9 (15) | 5.8 (15.5) | 7 (15.5) | 5.5 (14) | |
Mortality (48 h), n (%) | 70 (7) | 55 (7) | 7 (9) | 8 (5) | 0.53 |
Mortality (30 days), n (%) | 113 (11) | 87 (11) | 10 (12) | 16 (10) | 0.86 |
All (n = 170) | Hyper-Cl (n = 82) | Lactic (n = 88) | p | |
---|---|---|---|---|
Age (y), mean (SD) | 44.3 (19.5) | 43.7 (18.4) | 44.9 (20.5) | 0.71 |
Sex, n (%) | 0.03 | 0.03 | ||
| 53 (31) | 32 (39) | 21 (24) | |
| 117 (69) | 50 (61) | 67 (76) | |
Mechanism, n (%) | 0.12 | 0.12 | ||
| 90 (53) | 46 (56) | 44 (50) | |
| 58 (34) | 25 (30) | 33 (38) | |
| 18 (11) | 11 (13) | 7 (8) | |
| 4 (2) | 0 | 4 (5) | |
Pre-hospital intubation, n (%) | 30 (18) | 13 (16) | 17 (19) | 0.55 |
Pre-hospital fluid volume (mL), mean (SD) | 478 (334) | 502 (356) | 455 (312) | 0.35 |
Pre-hospital fluid type, n (%) | 0.68 | 0.68 | ||
| 145 (85) | 69 (84) | 76 (86) | |
| 25 (15) | 13 (16) | 12 (14) | |
GCS in ED, mean (SD) | 12 (5) | 12 (5) | 11 (5) | 0.08 |
Systolic blood pressure in ED, mean (SD) | 132 (25) | 132 (25) | 131 (28) | 0.75 |
Heart rate in ED, mean (SD) | 95 (21) | 92 (21) | 99 (22) | 0.02 |
Vasopressor use in ED, n (%) | 43 (25) | 16 (20) | 27 (31) | 0.09 |
ISS, mean (SD) | 19 (12) | 18 (12) | 20 (13) | 0.30 |
pH, mean (SD) | 7.28 (0.14) | 7.31 (0.09) | 7.25 (0.02) | 0.003 |
Lactate, mean (SD) | 3.53 (3.15) | 2.18 (1.17) | 4.79 (3.83) | <0.001 |
ED BE, mean (SD) | −6.7 (4.8) | −5.9 (3.7) | −7.4 (5.6) | 0.04 |
ED chloride, mean (SD) | 107 (5) | 110 (5) | 105 (3) | <0.001 |
Peak chloride, mean (SD) | 111 (8) | 113 (8) | 110 (7) | 0.001 |
ED sodium, mean (SD) | 140 (4) | 140 (4) | 140 (3) | 0.16 |
ED strong ion difference, mean (SD) | 33 (5) | 30 (4) | 36 (3) | <0.001 |
ED creatinine above N, n (%) | 53 (35) | 20 (27) | 33 (42) | 0.05 |
Peak creatinine, mean (SD) | 102 (45) | 99 (51) | 106 (39) | 0.33 |
AKI during hospital stay, n (%) | 13 (9) | 8 (11) | 5 (7) | 0.33 |
Intrahospital fluid volume | ||||
| 616 (519) | 546 (425) | 681 (589) | 0.09 |
| 500 (500) | 500 (350) | 500 (600) | |
| 2244 (1530) | 2220 (1232) | 2269 (1813) | 0.87 |
| 2000 (2000) | 2000 (1500) | 2000 (2000) | |
| 3101 (2325) | 3746 (2907) | 2635 (1683) | 0.04 |
| 2730 (2700) | 3500 (3600) | 2500 (1790) | |
| 3034 (3032) | 3099 (3512) | 2974 (2522) | 0.79 |
| 2350 (3800) | 1850 (3500) | 2900 (3835) | |
Total PRBC 24 h, mean (SD) | 0.6 (1.6) | 0.6 (1.5) | 0.7 (1.7) | 0.70 |
Total PRBC 24 h, median (IQR) | 0 (0) | 0 (0) | 0 (0) | |
Went to OR, n (%) | 81 (48) | 42 (51) | 39 (44) | 0.37 |
Went to ICU, n (%) | 74 (44) | 31 (38) | 43 (49) | 0.15 |
Invasive ventilation, n (%) | 63 (37) | 29 (35) | 34 (39) | 0.66 |
Duration invasive ventilation, mean (SD) | 4 (4.7) | 3.7 (4) | 4.3 (5.2) | 0.59 |
Duration invasive ventilation, median (IQR) | 2 (7) | 2 (4) | 2 (7) | |
Time to normal BE (>−2), mean (SD) | 24.3 (29) | 25.7 (32.9) | 23.1 (25.4) | 0.67 |
Time to normal BE (>−2), median (IQR) | 16.8 (27.2)) | 16.4 (27.6) | 16.8 (26.8) | |
Time to clearance Lac (<2.44), mean (SD) | 10.9 (20.3) | 6.1 (5.4) | 12.6 (23) | 0.30 |
Time to clearance Lac (h), median (IQR) | 3.9 (8.9) | 4.2 (8.3) | 3.9 (9.1) | |
ED LOS (min), mean (SD) | 176 (224) | 135 (207) | 214 (232) | 0.02 |
ED LOS (min), median (IQR) | 85 (157) | 72 (73) | 100 (260) | |
ICU LOS (d), mean (SD) | 2.4 (4.6) | 1.9 (3.6) | 2.8 (5.4) | 0.22 |
ICU LOS (d), median (IQR) | 0 (2.7) | 0 (2.5) | 0 (2.9) | |
Hospital LOS, mean (SD) | 14 (15.4) | 11.5 (12.2) | 16.2 (17.6) | 0.046 |
Hospital LOS, median (IQR) | 8.6 (16) | 7 (15.3) | 9.6 (18) | |
Mortality (48 h), n (%) | 5 (3) | 3 (4) | 2 (2) | 0.59 |
Mortality (30 days), n (%) | 12 (7) | 6 (7) | 6 (7) | 0.90 |
Normal pH (7.35–7.45) Acidosis (n = 209) | Mild (pH 7.20–7.34) Acidosis (n = 273) | Severe (pH < 7.20) Acidosis (n = 77) | p | |
---|---|---|---|---|
Pre-hospital fluid type, n (%) | ||||
| 156 (74.6) | 208 (76.2) | 61 (79.2) | 0.72 |
| 11 (5.3) | 29 (10.6) | 8 (10.4) | 0.10 |
| 42 (20) | 36 (13.2) | 8 (10.4) | 0.02 |
AKI during hospital stay, n (%) | 7 (3.3) | 19 (7) | 5 (6.5) | 0.27 |
Mortality (48 h), n (%) | 2 (1) | 22 (8) | 26 (33.8) | <0.001 |
Mortality (30 days), n (%) | 7 (3.3) | 36 (13.2) | 35 (45.5) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bossel, D.; Bourgeat, M.; Pantet, O.; Zingg, T. Effect of Pre-Hospital Intravenous Fluids on Initial Metabolic Acid-Base Status in Trauma Patients: A Retrospective Cohort Study. Metabolites 2023, 13, 937. https://doi.org/10.3390/metabo13080937
Bossel D, Bourgeat M, Pantet O, Zingg T. Effect of Pre-Hospital Intravenous Fluids on Initial Metabolic Acid-Base Status in Trauma Patients: A Retrospective Cohort Study. Metabolites. 2023; 13(8):937. https://doi.org/10.3390/metabo13080937
Chicago/Turabian StyleBossel, Damien, Mylène Bourgeat, Olivier Pantet, and Tobias Zingg. 2023. "Effect of Pre-Hospital Intravenous Fluids on Initial Metabolic Acid-Base Status in Trauma Patients: A Retrospective Cohort Study" Metabolites 13, no. 8: 937. https://doi.org/10.3390/metabo13080937
APA StyleBossel, D., Bourgeat, M., Pantet, O., & Zingg, T. (2023). Effect of Pre-Hospital Intravenous Fluids on Initial Metabolic Acid-Base Status in Trauma Patients: A Retrospective Cohort Study. Metabolites, 13(8), 937. https://doi.org/10.3390/metabo13080937