Disorders of Copper Metabolism in Children—A Problem too Rarely Recognized
Abstract
:1. Introduction
2. Wilson’s Disease (Hepatolenticular Degeneration, OMIM #27790)
2.1. Symptoms of Wilson’s Disease
2.2. Diagnostics of Wilson’s Disease
- Concentration levels of ceruloplasmin in blood plasma are reduced in 80–95% of patients; however, it needs to be pointed out that lower concentration levels of ceruloplasmin may be the result of every advanced stage of liver disease impairing the synthesis of protein. Lower concentration levels of ceruloplasmin are also observed in malnutrition, enteropathies with protein loss, Menkes disease, nephrotic syndrome and inherited aceruloplasminemia. However, normal ceruloplasmin concentration levels do not eliminate Wilson’s disease.
- Urinary copper excretion is increased and only concerns non-ceruloplasmin-bound copper. This test is greatly significant in patients with suspected Wilson’s disease and should be conducted routinely. In diagnostically doubtful cases, penicillamine-induced (single dose of 500 mg) renal copper excretion may be used.
- Plasma copper concentration in those patients is usually lower, which is due to the reduced concentration level of ceruloplasmin.
- The histopathological examination of the liver specimen shows signs of steatosis, fibrosis with inflammation, and/or cirrhosis. Additionally, rhodamine stain can be used to detect copper deposits in the liver. A hepatic copper concentration greater than 250 ug/g dry weight in the absence of cholestasis is diagnostic of Wilson’s disease.
- A molecular test is done to confirm the diagnosis. A negative result, however, does not exclude Wilson’s disease, as new mutations within the ATP7B protein coding gene have been detected. Also, the condition may be related to microdeletions.
2.3. Differential Diagnostics
2.4. Treatment of Wilson’s Disease
- Preparations facilitating renal copper excretion which have been bound in the bloodstream via the chelating mechanism—penicillamine, trientine, and tetrathiomolybdate.
3. Menkes Disease (Kinky Hair Disease, Trichopoliodystrophy, Steely Disease—OMIM#309400)
3.1. Symptoms of Menkes Disease
- Focal clonic seizures. Status epilepticus occurring at mean 3 months of age;
- Intermediate-infantile spasms;
3.2. The Diagnostics of Menkes Disease
- The clinical picture.
- Results of the laboratory tests—the reduction in the concentration levels of copper and ceruloplasmin in blood serum. Serum levels of copper and ceruloplasmin should be measured after the third week, as they can be low in normal children during this time window.
- Molecular tests—the definite diagnosis of Menkes disease requires the detection of mutations in the ATP7A gene; however, a negative result does not eliminate Menkes disease.
3.3. Treatment of Menkes Disease
4. Aceruloplasminemia
5. Copper Deficiency
6. Conclusions
- It is necessary for general practitioners, neurologists, and gastroenterologists to pay attention to diseases connected with copper metabolism because they are recognized too late and too rarely, especially in the paediatric population;
- Patients with serum levels of ceruloplasmins below 120 mg/L and children with urinary copper excretion above 40 ug should undergo genetic testing for Wilson’s disease;
- Only early detection of Menkes and Wilson’s disease will enable a prompt introduction of treatment and reduce the probability of delayed complications.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kodama, H.; Fujisawa, C.; Bhadhprasit, W. Inherited copper transport disorders: Biochemical mechanisms, diagnosis and treatment. Curr. Drug Metab. 2012, 13, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Kaler, S.; Holmes, C. Catecholamine metabolites affected by the copper-dependent enzyme dopaminę-beta-hydroxylase provide sensitive biomarkers for early diagnosis of Menkes Disease and Viral-mediated ATP7A gene therapy. Adv. Pharmacol. 2013, 68, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.; Nevitt, S.; Tuohy, O.; Cook, P. Biomarkers for diagnosis of Wilson’s disease. Cochrane Libr. Database Syst. Rev. 2019, 11, CDO012267. [Google Scholar] [CrossRef]
- Wierzbicka, D.; Gromadzka, G. Ceruloplasmin, hephaestin and zyklopen:the three muliticopper oxidases important for human iron metabolism. Adv. Hyg. Exp. Med. 2014, 68, 912–924. [Google Scholar]
- Pinto e Vairo, F.; Chwal, B.; Perini, S.; Ferreira, M.A.P.; Lopes, A.C.d.F.; Saute, J.A.M. A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Mol. Genet. Metab. 2019, 126, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, I.; Socha, P. Cholestaza u dzieci. In Choroba Wilsona 184-188; Media-Press Sp.z.o.o Warszawa: Warszawa, Poland, 2022. [Google Scholar]
- Socha, P.; Jonczyk, W.; Dhawan, A.; Baumann, U.; D’antiga, L.; Tanner, S.; Iorio, R.; Vajro, P.; Houwen, R.; Fischler, B.; et al. Wilson’s disease in children. A position paper by the Hepatology Committee of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.; Schilsky, M. Current and emergining issues in Wilson’s disease. N. Engl. J. Med. 2023, 389, 922–938. [Google Scholar] [CrossRef]
- Nagral, A.; Sarma, M.; Matthai, J.; Kukkle, P.L.; Devarbhavi, H.; Sinha, S.; Alam, S.; Bavdekar, A.; Dhiman, R.K.; Eapen, C.E.; et al. Wilson’s disease: Clinical Practise Guidelines of the Indian National Association for study of liver, the Indian Society of Pediatric Gastroenterology, Hepatology and Nutrition, and the Movement Disorders Society of India. J. Clin. Exp. Hepatol. 2019, 9, 74–98. [Google Scholar] [CrossRef]
- Couchonnal, E.; Lion-Francois, L.; Guilland, O.; Habes, D.; Debray, D.; Lamireau, T.; Broué, P.; Fabre, A.; Vanlemmens, C.; Sobesky, R.; et al. Pediatric Wilson’s disease: Phenotypic, genetic characterization and outcome of 182 children in France. J. Pediatr. Gastroenterol. Nutr. 2021, 73, e80–e86. [Google Scholar] [CrossRef]
- Ferrenci, P. Regional distribution of mutations of mutations of the ATP7B gene in patients with Wilson disease: Impact on genetic testing. Hum. Genet. 2006, 120, 151–159. [Google Scholar] [CrossRef]
- Naorniakowska, M.; Dądalski, M.; Kamińska, D.; Janczyk, W.; Lebensztejn, D.; Fyderek, K.; Wysocki, J.; Socha, P. Clinical presentation of Wilson disease among polish children. Dev. Period Med. 2016, 20, 216–221. [Google Scholar] [PubMed]
- Poujois, A.; Woimant, F. Wilson’s disease: A 2017 update. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Proost, R.; Cassiman, D.; Levtchenko, E.; Morava-Kozicz, E.; Neirynck, J.; Witters, P. Fulminant Wilson disease in children: Recovery after plasma exchange without transplantation. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 720–725. [Google Scholar] [CrossRef]
- Kerkar, N.; Rana, A. Wilson disease in children. Clin. Liver Dis. 2022, 26, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.; van Mourik, I.; Wassmer, E.; Kelly, D. Wilson disease in children and adolescents. Arch. Dis. Child. 2020, 105, 499–505. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, R.; Yang, G. Role for biochemical assays and Kayser-fleischer rings in diagnosis of Wilson’s disease. Clin. Gastroenterol. Hepatol. 2021, 19, 590–596. [Google Scholar] [CrossRef]
- Salman, H.; Amin, M.; Syed, J.; Sarfraz, Z.; Sarfraz, A.; Sarfraz, M.; Bajaña, M.J.F.; Felix, M.; Cherrez-Ojeda, I. Biochemical testing for the diagnosis of Wilson’s disease: A systematic review. J. Clin. Lab. Anal. 2022, 36, e24191. [Google Scholar] [CrossRef]
- Kasztelan-Szczerbinska, B.; Cichoz-Lach, H. Wilson’s disease: Anupadate on the diagnostic workup and management. J. Clin. Med. 2021, 10, 5097. [Google Scholar] [CrossRef]
- Ferenci, P.; Caca, K.; Loudianos, G.; Mieli-Vergani, G.; Tanner, S.; Sternlieb, I.; Schilsky, M.; Cox, D.; Berr, F. Diagnosis and phenotypic classification of Wilson disease. Liver Int. 2003, 23, 139–142. [Google Scholar] [CrossRef]
- Dhawan, A. Evaluation of the scoring system for diagnosis of Wilson’s disease in children. Liver Int. 2005, 25, 680–681. [Google Scholar] [CrossRef]
- Taylor, R.; Chen, Y.; Dhawan, A. Triethylene tetramine dihydrochloride (trientine) in children with Wilson disease: Experience at King’s College Hospital and revuew of the literaturę. Eur. J. Pediatr. 2009, 168, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Shribman, S.; Majrot, T.; Sharif, A.; Vimalesvaran, S.; Ala, A.; Alexander, G.; Dhawan, A.; Dooley, J.; Gillett, G.T.; Kelly, D.; et al. Investigation and management of Wilson’s disease: A practical guide from the British Association for the study of the liver. Lancet Gastroenterol. Hepatol. 2022, 7, 560–575. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Yang, R.; Wang, X. Management perspective of Wilson’s disease: Early diagnosis and indyvidualized therapy. Curr. Neuropharmacol. 2021, 19, 465–485. [Google Scholar] [CrossRef] [PubMed]
- Avan, A.; Członkowska, A.; Gaskin, S.; Granzotto, A.; Sensi, S.L.; Hoogenraad, T.U. The role of zinc in the treatment of Wilson’s disease. Int. J. Mol. Sci. 2022, 23, 9616. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Bai, L.; Hou, W.; Hu, Z.; Chen, X.; Zhao, J.; Liang, C.; Zhang, W.; Duan, Z.; Zheng, S. Comparison of the effectiveness and safety of D-penicillamine and zinc salt treatment for symptomatic Wilson disease: A systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 847436. [Google Scholar] [CrossRef] [PubMed]
- Eda, K.; Mizuochi, T.; Iwarna, I.; Inui, A.; Etani, Y.; Araki, M.; Hara, S.; Kumagai, H.; Hagiwara, S.; Murayama, K.; et al. Zinc monotherapy for young children with presymptomatic Wilson disease: A multicenter study in Japan. J. Gastroenterol. Hepatol. 2018, 33, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Wiernicka, A.; Jańczyk, W.; Dądalski, M.; Avsar, Y.; Schmidt, H.; Socha, P. Gastrointestinal side effects in children with Wilson’s disease treated with zinc sulphate. World J. Gastroenterol. 2013, 19, 4356–4362. [Google Scholar] [CrossRef]
- Chanpong, A.; Dhawan, A. Long-term urinary copper excretion on chelation therapy in children with Wilson disease. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 210–215. [Google Scholar] [CrossRef]
- Litwin, T.; Bembenek, J.; Antos, A.; Przybyłkowski, A.; Skowrońska, M.; Kurkowska-Jastrzębska, I.; Członkowska, A. Liver transplantation as a treatment for Wilson’s disease with neurological presentation:a systematic literaturę review. Acta Neurol. Belg. 2022, 122, 505–518. [Google Scholar] [CrossRef]
- Teufel-Schafer, U.; Forster, C.; Schaefer, N. Low copper diet- a therapeutic option for Wilson disease? Children 2022, 9, 1132. [Google Scholar] [CrossRef]
- Litwin, T.; Dzieżyc, K.; Członkowska, A. Wilson disease- treatment perspectives. Ann. Transl. Med. 2019, 7 (Suppl. S2), 568. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, A.; Taylor, R.; Cheeseman, P.; De Silva, P.; Katsiyiannakis, L.; Mieli-Vergani, G. Wilson’s disease in children: 37-year experience and revised King’s score for liver transplantation. Liver Transpl. 2005, 11, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Agertt, F.; Crippa, A.; Lorenzoni, P. Menkes’ disease. Arq. Neuropsiquiatr. 2007, 65, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Tonnesen, T.; Petterson, A.; Kruse, A.; Gerdes, A.M.; Horn, N. Multipoint linkage analysis in Menkes disease. Am. J. Hum. Genet. 1992, 50, 1012–1017. [Google Scholar] [PubMed]
- Menkes, J. Menkes disease and Wilson disease: Two sides of the same copper coin. Eur. J. Paediatr. Neurol. 1999, 3, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, L.; Soma, S.; Yuan, S.; Silva, A.; Zulkifli, M.; Snavely, T.C.; Greene, H.F.; Nunez, E.; Lynch, B.; De Ville, C.; et al. Elesclomol alleviates Menkes patology and mortality by escorting Cu to cuproenzymes in mice. Science 2020, 368, 620–625. [Google Scholar] [CrossRef] [PubMed]
- De Bie, P.; Muller, P.; Wijmenga, C.; Klomp, L.W.J. Molecular pathogenesis of Wilson and Menkes disease: Correlation of mutations with molecular defects and disease phenotypes. J. Med. Genet. 2007, 44, 673–688. [Google Scholar] [CrossRef]
- Hodgkinson, V.; Zhu, S.; Wang, Y.; Ladomersky, E.; Nickelson, K.; Weisman, G.A.; Lee, J.; Gitlin, J.D.; Petris, M.J. Autonomous requiements of the Menkes disease protein in the nervous system. Am. J. Physiol. Cell Physiol. 2015, 309, 660–668. [Google Scholar] [CrossRef]
- Horn, N.; Tennesen, T.; Turner, Z. Menkes disease: An X-linked neurological disorder of copper metabolism. Brain Pathol. 1992, 2, 351–362. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Yang, H.; Duffy, M.; Robinson, E.; Conrad-Antoville, A.; Lu, Y.-W.; Capps, T.; Braiterman, L.; Wolfgang, M.; Murphy, M.P.; et al. The activity of Menkes disease protein ATP7A is essential for redox balance in mitochondria. J. Biol. Chem. 2016, 291, 16644–16658. [Google Scholar] [CrossRef]
- Moller, L.; Mogensen, M.; Horn, N. Molecular diagnosis of Menkes disease: Genotype- phenotype correlation. Biochimie 2009, 91, 1273–1277. [Google Scholar] [CrossRef] [PubMed]
- Ziatic, S.; Comstra, H.; Gokhale, A.; Petris, M.J.; Faundez, V. Molecular basis of neurodegeneration and neurodevelopmental defects in Menkes Disease. Neurobiol. Dis. 2015, 81, 154–161. [Google Scholar] [CrossRef]
- Galve, J.; Vicente, A.; Gonzalez-Ensenat, A.; Pérez-Dueñas, B.; Cusí, V.; Møller, L.B.; Julià, M.; Domínguez, A.; Ferrando, J. Neonatal erythroderma as a first manifestation of Menkes disease. Pediatrics 2012, 130, e239–e242. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Levin, S.; Rupar, A.; Prasad, C. Menkes disease and infantile epilepsy. Brain Dev. 2011, 33, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Turner, Z.; Maller, L. Menkes disease. Eur. J. Hum. Gen. 2010, 18, 511–518. [Google Scholar]
- Kaler, S.; Holnes, C.; Goldstein, D.; Tang, J.; Godwin, S.C.; Donsante, A.; Liew, C.J.; Sato, S.; Patronas, N. Neonatal diagnosis and treatment of Menkes Disease. N. Engl. J. Med. 2008, 358, 605–616. [Google Scholar] [CrossRef]
- Hicks, J.; Donsante, A.; Pierson, T.; Gillespie, M.J.; Chou, D.E.; Kaler, S.G. Increased frequency of congenital heart defects in Menkes disease. Clin. Dysmorphol. 2012, 21, 59–63. [Google Scholar] [CrossRef]
- Smpokou, P.; Samanta, M.; Berry, G.; Hecht, L.; Engle, E.C.; Lichter-Konecki, U. Menkes disease in affected females: The clinical disease spectrum. Am. J. Med. Genet. 2015, 167, 417–420. [Google Scholar] [CrossRef]
- Schilsky, M. Wilson disease. Diagnosis, treatment and follow-up. Clin. Liver Dis. 2017, 21, 755–767. [Google Scholar] [CrossRef]
Copper Requiring Enzymes | Enzyme Function |
---|---|
Cytochrome c oxidase | Transports electrons from c cytochrome to oxygen in the chain of electron transport |
Amine oxidase | Metabolism of neurotransmitters-noradrenaline, dopamine, serotonine Metabolism of amines–histamine, putrescine |
dopamineβ-hydroxylase | Hydroxylates dopamine to noradrenaline |
Peptidylglycine monooxygenase | Peptin hormone maturation—amidation of alpha-terminal carboxylic acid group of glycine |
Ferroxidase (ceruloplasmine, hephaestin) | Oxidises iron activity |
Lysyl oxidase | Forms cross-linkages in collagen and elastin |
Tyrosinase | Synthesises melanin |
Superoxide dismutase | Converts hydrogen superoxide to hydrogen peroxide |
Monophenol monooxygenase | Melanin synthesis conversion of tyrosine to DOPA |
Methionine synthase | Transfer of methyl group from methyltetrahydrofolate to homocysteine to generate methionine |
Adenosylhomocysteine hydrolase | Regeneration of homocysteine from adenosylhomocysteine in the methylation cycle |
Test | Normal Values |
---|---|
Plasma copper level | 10–20 umol/L |
Concentration of ceruloplasmin in serum | 16–60 mg/dL |
Urinary copper excretion | <100 mg/24 h |
Liver copper level | 20–50 ug/g dry weight |
Organ | Clinical Symptoms |
---|---|
Central Nervous System Neurological and/or psychiatric symptoms 35% patients | Intention tremor Dystonia Ataxia Disorders of posture, balance, and gait Speech disorders Facial tics, dystonic tongue movements Facial amimia Learning difficulties, attention, and concentration disorders Dysphagia Behavioural changes—irritability, aggression, and loss of sexual inhibitions (20%) Dementia Migraines Insomnia Depression Myopathy |
Liver 40% patients | Hypertransaminasemia Fatty liver Acute hepatitis Hepatomegaly Cholestasis Acute liver failure (5%) Chronic hepatitis Cirrhosis. Portal hypertension. Liver failure. |
Eyes | Kayser–Fleischer ring (green or golden rings encircling the cornea of the eye—a sign of copper deposition in the Descemet’s membrane)—rare in paediatric patients. Sunflower cataract |
Red blood cells | Coombs-negative haemolytic anaemia |
Kidneys | Defect of the proximal tubule-type 2 tubular acidosis—Fanconi syndrome Nephrocalcinosis |
Osteoarticular system | Arthritis-damage to the cartilage Rickets Osteoporosis/Osteopenia |
Cardiovascular system | Cardiomyopathy Circulatory insufficiency Cardiac arrhythmia |
Endocrine system | Infertility Irregular periods Recurrent miscarriages Damage to the adrenal glands with skin hyperpigmentation Damage to the parathyroid glands with hypocalcaemia Hypothyroidism Gigantism |
Other | Weakness, fatigue, loss of appetite Abdominal pain Pancreatitis Loss of body weight Nose bleed Anaemia |
Criterium | Score |
---|---|
Serum ceruloplasmin concentration levels | |
>20 mg/L—normal | 0 |
0.1–0.2 g/L | 1 |
<0.1 g/L | 2 |
24 h urinary copper excretion | |
<100 mg/24 h—normal | 0 |
1–2× the upper limit of normal | 1 |
>2× the upper limit of normal | 2 |
Normal but >5× after penicillamine | 2 |
Copper levels in the liver tissue | |
<50 u/g dry weight | −1 |
<5× the upper limit of normal (50–250 u/g dry weight) | 1 |
>5× the upper limit of normal (>250 u/g dry weight) | 2 |
Rhodamine stain (when the copper content in the liver tissue has not been marked) | |
None | 0 |
Present | 1 |
Mutations | |
Two mutations | 4 |
One molecular variant | 1 |
No mutations | 0 |
The Kayser–Fleischer ring | |
Present | 2 |
Absent | 0 |
Neurological symptoms | |
Advanced | 2 |
Mild | 1 |
None | 0 |
Coombs-negative anaemia | |
Present | 1 |
Absent | 0 |
Medication | Mechanism of Action | Dose | Side Effects |
---|---|---|---|
D-penicillamine | Chelating action Cu water-soluble complex which increased urinary excretion Induction of melatonin Anti-inflammatory | Initial dose—150–300 mg/day. Gradual, weekly increase of the dose up to 20 mg/kg/day in 2 or 3 separate doses. Maintenance dose 10–20 mg/kg/day max., 750–1000 mg/day. A break between taking medication and meals is necessary. Important to remember the supplementation with pyridoxine. Treatment results appear after about 6 months. | Drug-induced lupus (joint pains, skin lesions and fewer) Proteinuria—damage to the glomeruli Myasthenia Swelling Joint pain Nausea Deterioration of neurological symptoms Bone marrow suppression–aplastic anaemia Hepatotoxicity |
Zinc acetate/zinc sulphate | Reduces the absorption of copper—bioavailability. Induces the copper-binding metallothionein. Recommended for the following forms of the disease: neurological, asymptomatic or hepatic (slight increase in transaminases) | <6 years old 50 mg/day in 2 doses 6–16 years and the body weight of <50 kg 75 mg/day in 3 doses >16 years and the body weight of >50 kg 150 mg/day in 3 separate doses Minimum 1 h before meals and 2 h after meals. | Abdominal pain Nausea Gastritis/duodenitis Pancreatitis |
Trientine | Chelating action | Initial dose 225 mg/day in 2–4 separate doses Maintenance treatment 12 years and under 225–750 mg/day in 2–4 doses 13 years and older 750–1250 mg/day Minimum 1 h before meals and 2 h after meals | Gastritis Rare aplastic anaemia and sideroblastic anaemia |
Bis-choline tetrathiomolybdate | Increases biliary copper excretion Chelating action | 20 mg 3× with meals | In observation Bone marrow depression Liver toxicity |
Score | Bilirubin (umol/L) | INR | AST (IU/L) | Leucocytosis | The Concentration of Albumins |
---|---|---|---|---|---|
0 | 0–100 | 0–1.29 | 0–100 | 0–6.7 | >45 |
1 | 101–150 | 1.3–1.6 | 101–150 | 6.8–8.3 | 34–44 |
2 | 151–200 | 1.7–1.9 | 151–200 | 8.4–10.3 | 25–33 |
3 | 201–300 | 2.0–2.4 | 201–300 | 10.4–15.3 | 21–24 |
4 | >300 | >2.4 | >300 | >15.3 | 0–20 |
Affected Enzyme | Clinical Manifestations |
---|---|
Tyrosinase | Depigmentation of hair, pallor of skin. |
Lysyl oxidase | Defect of elastine and collagen, split internal elastic layer of arteries. Vascular complication, bladder diverticula, osseous abnormalities. |
Cytochrome-c-oxidase | Hypothermia, abnormal myelination. Myopathy, ataxia, seizures. |
Ascorbate oxidase | Demineralization of bones. |
Superoxide dismutase | Cytotoxic effects. Myelin degeneration. Spasticity, seizures. |
Dopamineβ-hydroxylase | Abnormalities of catecholamines. Hypothalamic imbalances. Hypothermia, anorexia, somnolence, dehydration, respiratory failure, blood pressure decreased. Extrapyramidal symptoms. Ataxia. |
Peptidylglycine—amidating monooxygenase | Reduced activity of melanocyte-stimulating hormone, corticotropin-releasing hormone, thyrotropin-releasing hormone, calcitonin, vasopressin. |
Part of Nervous System | Abnormalities |
---|---|
Cerebral cortex | Severe loss of nerve cells accompanied by gliosis |
Cerebral white matter | Gross deficiency of myelin and gliosis |
Basal ganglia and thalamus | Mild loss of nerve cells. Sight hyperplasia of mitochondria. |
Cerebellum | Severe atrophy of cortex with extensis gliosis. Decreased number of Purkinje cells—changes in size. Marked hyperplasia and hypertrophy of mitochondria with abnormal structure. |
Brain stem | Myelination usually well presented |
Spinal cord | Mild loss of nerve cells and slight gliosis |
Peripheral nerves | Occasional degenerative changes |
Eye | Retinal hypoplasia, atrophy of nerve fibres |
Parameter | Menkes Disease | Wilson’s Disease |
---|---|---|
Gene locus | Xq13.3 | 13q14.3 |
Inheritance | Sex-linked | Autosomal recessive |
Impaired activity of copper-transporting ATP-ase | ATP7A | ATP7B |
Defect | Intestinal copper absorption, deficiency of copper-containing enzymes | Biliary copper excretion, incorporation of copper into ceruloplasmin |
Expression | All tissues except liver | Liver, to lesser extent kidneys, placenta Central nervous system |
Age onset | Birth | Late childhood, adolescence |
Symptomatic organs | Brain, hair, skin, genitourinary, gastrointestinal tracts, bone, eye | Liver, brain, cornea, RBC |
Copper content in the body | Low | High |
Concentration of free copper in plasma | Low | High |
Concentration of copper in urine | Low | High |
Ceruloplasmin | Decreased | Decreased |
Treatment | Histidine–Copper injections supplementation Cupric chloride subcutaneously—non-effective | Zinc D—penicillamine Trientine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Więcek, S.; Paprocka, J. Disorders of Copper Metabolism in Children—A Problem too Rarely Recognized. Metabolites 2024, 14, 38. https://doi.org/10.3390/metabo14010038
Więcek S, Paprocka J. Disorders of Copper Metabolism in Children—A Problem too Rarely Recognized. Metabolites. 2024; 14(1):38. https://doi.org/10.3390/metabo14010038
Chicago/Turabian StyleWięcek, Sabina, and Justyna Paprocka. 2024. "Disorders of Copper Metabolism in Children—A Problem too Rarely Recognized" Metabolites 14, no. 1: 38. https://doi.org/10.3390/metabo14010038
APA StyleWięcek, S., & Paprocka, J. (2024). Disorders of Copper Metabolism in Children—A Problem too Rarely Recognized. Metabolites, 14(1), 38. https://doi.org/10.3390/metabo14010038