Chromatography-Based Metabolomics as a Tool in Bioorganic Research of Honey
Abstract
:1. Introduction
Objective and Approach of This Review
2. Targeted, Suspect, and Untargeted Chromatography-Based Metabolomics
2.1. Gas Chromatography-Based Metabolomics
2.1.1. Exploring Metabolic Profile Diversity: Identification of Key Metabolites
2.1.2. Exploring Origin, Formation, and Accumulation of Biogenic Volatile Key Metabolites
2.2. Liquid Chromatography-Based Metabolomics
2.2.1. Exploring Metabolic Profile Diversity: Identification of Key Metabolites
2.2.2. Exploring Origin, Formation, and Accumulation of Biogenic Non-Volatile Key Metabolites
2.3. Pre-Analytical Sampling Design and Sample Manipulation
2.4. Data Analysis Workflow: Software and Data Elaboration
2.5. In Vivo and In Vitro Metabolomic Approaches Exploring Honey Compound Bioactive Effects
3. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Codex Alimentarius International Food Standards. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 4 November 2024).
- Yan, S.; Mu, G.; Yuan, Y.; Xu, H.; Song, H.; Xue, X. Exploring the Formation of Chemical Markers in Chaste Honey by Comparative Metabolomics: From Nectar to Mature Honey. J. Agric. Food Chem. 2024, 72, 10596–10604. [Google Scholar] [CrossRef] [PubMed]
- Kasiotis, K.M.; Baira, E.; Iosifidou, S.; Manea-Karga, E.; Tsipi, D.; Gounari, S.; Theologidis, I.; Barmpouni, T.; Danieli, P.P.; Lazzari, F.; et al. Fingerprinting Chemical Markers in the Mediterranean Orange Blossom Honey: UHPLC-HRMS Metabolomics Study Integrating Melissopalynological Analysis, GC-MS and HPLC-PDA-ESI/MS. Molecules 2023, 28, 3967. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, H.; Wu, F.; Zhu, M.; Zhang, Y.; Cheng, N.; Xue, X.; Wu, L.; Cao, W. Molecular Mechanism of Mature Honey Formation by GC-MS- And LC-MS-Based Metabolomics. J. Agric. Food Chem. 2021, 69, 3362–3370. [Google Scholar] [CrossRef]
- Montaser, M.; Sayed, A.M.; Bishr, M.M.; Zidan, E.W.; Zaki, M.A.; Hassan, H.M.; Mohammed, R.; Hifnawy, M.S. GC-MS Analysis of Honeybee Products Derived from Medicinal Plants. Beni Suef Univ. J. Basic Appl. Sci. 2023, 12, 63. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Z.; Zhong, S.; Zeng, Z. (−)-Gallocatechin Gallate: A Novel Chemical Marker to Distinguish Triadica Cochinchinensis Honey. Foods 2024, 13, 1879. [Google Scholar] [CrossRef] [PubMed]
- Sichilongo, K.; Padiso, T.; Turner, Q. AMDIS-Metab R Data Manipulation for the Geographical and Floral Differentiation of Selected Honeys from Zambia and Botswana Based on Volatile Chemical Compositions Using SPME–GC–MS. Eur. Food Res. Technol. 2020, 246, 1679–1690. [Google Scholar] [CrossRef]
- Yan, S.; Liu, Y.; Zhao, W.; Zhao, H.; Xiaofeng, X. Chemical Markers of a Rare Honey from the Traditional Spice Plant Amomum Tsao–Ko Crevost et Lemarié, via Integrated GC–MS and LC-MS Approaches. Food Res. Int. 2023, 172, 113234. [Google Scholar] [CrossRef]
- Zhao, T.; Zhao, L.; Wang, M.; Qi, S.; Xue, X.; Wu, L.; Li, Q. Identification of Characteristic Markers for Monofloral Honey of Astragalus membranaceus Var. mongholicus Hsiao: A Combined Untargeted and Targeted MS-Based Study. Food Chem. 2023, 404, 134312. [Google Scholar] [CrossRef]
- Wang, X.; Rogers, K.M.; Li, Y.; Yang, S.; Chen, L.; Zhou, J. Untargeted and Targeted Discrimination of Honey Collected by Apis cerana and Apis mellifera Based on Volatiles Using HS-GC-IMS and HS-SPME-GC-MS. J. Agric. Food Chem. 2019, 67, 12144–12152. [Google Scholar] [CrossRef]
- Montoro, P.; D’Urso, G.; Kowalczyk, A.; Tuberoso, C.I.G. LC-ESI/LTQ-Orbitrap-MS Based Metabolomics in Evaluation of Bitter Taste of Arbutus Unedo Honey. Molecules 2021, 26, 2765. [Google Scholar] [CrossRef]
- Yan, S.; Wang, X.; Wu, Y.; Wang, K.; Shan, J.; Xue, X. A Metabolomics Approach Revealed an Amadori Compound Distinguishes Artificially Heated and Naturally Matured Acacia Honey. Food Chem. 2022, 385, 132631. [Google Scholar] [CrossRef] [PubMed]
- Martinello, M.; Stella, R.; Baggio, A.; Biancotto, G.; Mutinelli, F. LC-HRMS-Based Non-Targeted Metabolomics for the Assessment of Honey Adulteration with Sugar Syrups: A Preliminary Study. Metabolites 2022, 12, 985. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Y.; Cheng, N.; Zhao, H.; Zhang, Y.; Liu, C.; He, L.; Ma, T.; Li, Y.; Cao, W. Identification of Volatile Markers during Early Zygosaccharomyces Rouxii Contamination in Mature and Immature Jujube Honey. Foods 2023, 12, 2730. [Google Scholar] [CrossRef] [PubMed]
- Mialon, N.; Roig, B.; Capodanno, E.; Cadiere, A. Untargeted Metabolomic Approaches in Food Authenticity: A Review That Showcases Biomarkers. Food Chem. 2023, 398, 133856. [Google Scholar] [CrossRef] [PubMed]
- Kasiotis, K.M.; Baira, E.; Iosifidou, S.; Bergele, K.; Manea-Karga, E.; Theologidis, I.; Barmpouni, T.; Tsipi, D.; Machera, K. Characterization of Ikaria Heather Honey by Untargeted Ultrahigh-Performance Liquid Chromatography-High Resolution Mass Spectrometry Metabolomics and Melissopalynological Analysis. Front. Chem. 2022, 10, 924881. [Google Scholar] [CrossRef]
- Danieli, P.P.; Lazzari, F. Honey Traceability and Authenticity. Review of Current Methods Most Used to Face This Problem. J. Apic. Sci. 2022, 66, 101–119. [Google Scholar] [CrossRef]
- Leoni, V.; Panseri, S.; Giupponi, L.; Pavlovic, R.; Gianoncelli, C.; Coatti, G.; Beretta, G.; Giorgi, A. Phytochemical Profiling of Red Raspberry (Rubus idaeus L.) Honey and Investigation of Compounds Related to Its Pollen Occurrence. J. Sci. Food Agric. 2024, 104, 5391–5406. [Google Scholar] [CrossRef]
- Vasić, V.; Đurđić, S.; Tosti, T.; Radoičić, A.; Lušić, D.; Milojković-Opsenica, D.; Tešić, Ž.; Trifković, J. Two Aspects of Honeydew Honey Authenticity: Application of Advance Analytical Methods and Chemometrics. Food Chem. 2020, 305, 125457. [Google Scholar] [CrossRef]
- Borges, C.V.; Nunes, A.; Costa, V.E.; Orsi, R.d.O.; Basilio, L.S.P.; Monteiro, G.C.; Maraschin, M.; Lima, G.P.P. Tryptophan and Biogenic Amines in the Differentiation and Quality of Honey. Int. J. Tryptophan Res. 2022, 15, 11786469221102098. [Google Scholar] [CrossRef]
- Karabagias, I.K. HS-SPME/GC-MS Metabolomic Analysis for the Identification of Exogenous Volatile Metabolites of Monofloral Honey and Quality Control Suggestions. Eur. Food Res. Technol. 2022, 248, 1815–1821. [Google Scholar] [CrossRef]
- Razali, M.T.A.; Zainal, Z.A.; Maulidiani, M.; Shaari, K.; Zamri, Z.; Idrus, M.Z.M.; Khatib, A.; Abas, F.; Ling, Y.S.; Rui, L.L.; et al. Classification of Raw Stingless Bee Honeys by Bee Species Origins Using the NMR- and LC-MS-Based Metabolomics Approach. Molecules 2018, 23, 2160. [Google Scholar] [CrossRef] [PubMed]
- Jerković, I.; Prđun, S.; Marijanović, Z.; Zekić, M.; Bubalo, D.; Svečnjak, L.; Tuberoso, C.I.G. Traceability of Satsuma Mandarin (Citrus unshiu Marc.) Honey through Nectar/Honey-Sac/Honey Pathways of the Headspace, Volatiles, and Semi-Volatiles: Chemical Markers. Molecules 2016, 21, 1302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Z.; Tian, J.; Zhang, Y.Z.; Li, S.S.; Zheng, H.Q.; Hu, F.L. Investigation of the Maturity Evaluation Indicator of Honey in Natural Ripening Process: The Case of Rape Honey. Foods 2021, 10, 2882. [Google Scholar] [CrossRef] [PubMed]
- Kafantaris, I.; Amoutzias, G.D.; Mossialos, D. Foodomics in Bee Product Research: A Systematic Literature Review. Eur. Food Res. Technol. 2021, 247, 309–331. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey Authenticity: Analytical Techniques, State of the Art and Challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, N.; Wang, Q.; Zhou, W.; Liu, C.; Liu, X.; Chen, S.; Fan, D.; Cao, W. Effects of Honey-Extracted Polyphenols on Serum Antioxidant Capacity and Metabolic Phenotype in Rats. Food Funct. 2019, 10, 2347–2358. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, Y.; Naumovski, N.; Zhao, W.; Yang, G.; Xue, X.; Wu, L.; Granato, D.; Peng, W.; Wang, K. Systems Biology Approaches for Understanding Metabolic Differences Using ‘Multi-Omics’ Profiling of Metabolites in Mice Fed with Honey and Mixed Sugars. Nutrients 2022, 14, 3445. [Google Scholar] [CrossRef]
- Shamsudin, S.; Selamat, J.; Sanny, M.; Jambari, N.N.; Salleh, N.A.; Aziz, M.F.A.; Khatib, A. Integrated Gas Chromatography–Mass Spectrometry and Liquid Chromatography-Quadruple Time of Flight-Mass Spectrometry-Based Untargeted Metabolomics Reveal Possible Metabolites Related to Antioxidant Activity in Stingless Bee Honey. Food Anal. Methods 2022, 15, 3209. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; García-Nicolás, M.; Zafra-Navarro, F.; Campillo, N.; Viñas, P. A Non-Targeted Metabolomic Strategy for Characterization of the Botanical Origin of Honey Samples Using Headspace Gas Chromatography—Ion Mobility Spectrometry. Anal. Methods 2022, 14, 5047–5055. [Google Scholar] [CrossRef]
- Koulis, G.A.; Tsagkaris, A.S.; Aalizadeh, R.; Dasenaki, M.E.; Panagopoulou, E.I.; Drivelos, S.; Halagarda, M.; Georgiou, C.A.; Proestos, C.; Thomaidis, N.S. Honey Phenolic Compound Profiling and Authenticity Assessment Using Hrms Targeted and Untargeted Metabolomics. Molecules 2021, 26, 2769. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Wang, W.; Zhao, W.; Tian, W.; Wang, X.; Wu, L.; Xue, X. Identification of the Maturity of Acacia Honey by an Endogenous Oligosaccharide: A Preliminary Study. Food Chem. 2023, 399, 134005. [Google Scholar] [CrossRef] [PubMed]
- Aharoni, A.; Goodacre, R.; Fernie, A.R. Plant and Microbial Sciences as Key Drivers in the Development of Metabolomics Research. Proc. Natl. Acad. Sci. USA 2023, 120, e2217383120. [Google Scholar] [CrossRef] [PubMed]
- El-Wahed, A.A.A.; Rashwan, E.H.; AlAjmi, M.F.; Khalifa, S.A.M.; Saeed, A.; Zhao, C.; Al Naggar, Y.; Guo, Z.; Musharraf, S.G.; Wang, K.; et al. Sidr Honeys Physical and Chemical Characterization, a Comprehensive Approach through LC-MS/MS, NMR, and GC-MS Analysis. Separations 2023, 10, 372. [Google Scholar] [CrossRef]
- Fuente-Ballesteros, A.; Priovolos, I.; Ares, A.M.; Samanidou, V.; Bernal, J. Green Sample Preparation Methods for the Analysis of Bioactive Compounds in Bee Products: A Review. Adv. Sample Prep. 2023, 6, 100060. [Google Scholar] [CrossRef]
- Sørensen, M.B.; Møller, J.K.; Strube, M.L.; Gotfredsen, C.H. Designing Optimal Experiments in Metabolomics. Metabolomics 2024, 20, 69. [Google Scholar] [CrossRef]
- Dimitrakopoulou, M.E.; Vantarakis, A. Does Traceability Lead to Food Authentication? A Systematic Review from A European Perspective. Food Rev. Int. 2023, 39, 537–559. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Nayik, G.A. Machine Learning Algorithms Applied to Semi-Quantitative Data of the Volatilome of Citrus and Other Nectar Honeys with the Use of HS-SPME/GC–MS Analysis, Lead to a New Index of Geographical Origin Authentication. Foods 2023, 12, 509. [Google Scholar] [CrossRef]
- Koulis, G.A.; Tsagkaris, A.S.; Katsianou, P.A.; Gialouris, P.L.P.; Martakos, I.; Stergiou, F.; Fiore, A.; Panagopoulou, E.I.; Karabournioti, S.; Baessmann, C.; et al. Thorough Investigation of the Phenolic Profile of Reputable Greek Honey Varieties: Varietal Discrimination and Floral Markers Identification Using Liquid Chromatography–High-Resolution Mass Spectrometry. Molecules 2022, 27, 4444. [Google Scholar] [CrossRef]
- Dallagnol, A.M.; Dallagnol, V.C.; Vignolo, G.M.; Lopes, N.P.; Brunetti, A.E. Flavonoids and Phenylethylamides Are Pivotal Factors Affecting the Antimicrobial Properties of Stingless Bee Honey. J. Agric. Food Chem. 2022, 70, 12596–12603. [Google Scholar] [CrossRef]
- Yusoff, Y.M.; Abbott, G.; Young, L.; Edrada-Ebel, R. Metabolomic Profiling of Malaysian and New Zealand Honey Using Concatenated NMR and HRMS Datasets. Metabolites 2022, 12, 85. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Nikolaou, C.; Karabagias, V.K. Volatile Fingerprints of Common and Rare Honeys Produced in Greece: In Search of PHVMs with Implementation of the Honey Code. Eur. Food Res. Technol. 2019, 245, 23–39. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Y.; Li, J.; Zheng, W.; Gong, B.; Jin, X.; Zhou, X.; Yang, H.; Yang, F.; Guo, J.; et al. Changes in Health-Promoting Metabolites Associated with High-Altitude Adaptation in Honey. Food Chem. 2024, 449, 139246. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Chen, L.; Zhou, J. Analytical Strategies for LC-MS-Based Untargeted and Targeted Metabolomics Approaches Reveal the Entomological Origins of Honey. J. Agric. Food Chem. 2022, 70, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Pérez, A.; Navarro-Herrera, A.M.; Garrido Frenich, A. Identifying Key Markers for Monofloral (Eucalyptus, Rosemary, and Orange Blossom) and Multifloral Honey Differentiation in the Spanish Market by UHPLC-Q-Orbitrap-High-Resolution Mass Spectrometry Fingerprinting and Chemometrics. Foods 2024, 13, 2755. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; He, J.; Chen, L.; Zhang, J.; Jin, Y.; Zhou, J.; Zhang, Y. A Green Triple-Locked Strategy Based on Volatile-Compound Imaging, Chemometrics, and Markers to Discriminate Winter Honey and Sapium Honey Using Headspace Gas Chromatography-Ion Mobility Spectrometry. Food Res. Int. 2019, 119, 960–967. [Google Scholar] [CrossRef]
- Nascimento, M.B.; Amorim, L.R.; Nonato, M.A.S.; Roselino, M.N.; Santana, L.R.R.; Ferreira, A.C.R.; Rodrigues, F.M.; Mesquita, P.R.R.; Soares, S.E. Optimization of HS-SPME/GC-MS Method for Determining Volatile Organic Compounds and Sensory Profile in Cocoa Honey from Different Cocoa Varieties (Theobroma cacao L.). Molecules 2024, 29, 3194. [Google Scholar] [CrossRef]
- Manickavasagam, G.; Saaid, M.; Lim, V. Exploring Stingless Bee Honey from Selected Regions of Peninsular Malaysia through Gas Chromatography–Mass Spectrometry–Based Untargeted Metabolomics. J. Food Sci. 2024, 89, 1058–1072. [Google Scholar] [CrossRef]
- Radovic, B.S.; Careri, M.; Mangia, a.; Musci, M.; Gerboles, M.; Anklam, E. Contribution of Dynamic Headspace GC–MS Analysis of Aroma Compounds to Authenticity Testing of Honey. Food Chem. 2001, 72, 511–520. [Google Scholar] [CrossRef]
- Kang, M.J.; Kim, K.R.; Kim, K.; Morrill, A.G.; Jung, C.; Sun, S.; Lee, D.H.; Suh, J.H.; Sung, J. Metabolomic Analysis Reveals Linkage between Chemical Composition and Sensory Quality of Different Floral Honey Samples. Food Res. Int. 2023, 173, 113454. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Liu, X.; Yang, C.; Wu, F.; Cheng, N.; El-Seedi, H.R.; Zhao, H.; Cao, W. Hydroxy Fatty Acids as Novel Markers for Authenticity Identification of the Honey Entomological Origin Based on the GC–MS Method. J. Agric. Food Chem. 2023, 71, 7163–7173. [Google Scholar] [CrossRef]
- Sharin, S.N.; Sani, M.S.A.; Jaafar, M.A.; Yuswan, M.H.; Kassim, N.K.; Manaf, Y.N.; Wasoh, H.; Zaki, N.N.M.; Hashim, A.M. Discrimination of Malaysian Stingless Bee Honey from Different Entomological Origins Based on Physicochemical Properties and Volatile Compound Profiles Using Chemometrics and Machine Learning. Food Chem. 2021, 346, 128654. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, S.; Zhang, H.; Zhao, G.; Li, X.; Wei, Y.; Cui, Z. Determination of Volatile Components in Buckwheat Honey and Correlation Analysis with Honey Maturity. Shipin Kexue/Food Sci. 2020, 41, 222–230. [Google Scholar] [CrossRef]
- Kuś, P.M.; Czabaj, S.; Jerković, I. Comparison of Volatile Profiles of Meads and Related Unifloral Honeys: Traceability Markers. Molecules 2022, 27, 4558. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Galiano, F.J.; Heinzen, H.; Gómez-Ramos, M.J.; Murcia-Morales, M.; Fernández-Alba, A.R. Identification of Novel Unique Mānuka Honey Markers Using High-Resolution Mass Spectrometry-Based Metabolomics. Talanta 2023, 260, 124647. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Ding, Q.; Zhang, Z.; Zhang, Y.; He, J.; Yang, Z.; Zhou, P.; Gong, X. Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China. Molecules 2023, 28, 3270. [Google Scholar] [CrossRef]
- Liu, T.; Qiao, N.; Ning, F.; Huang, X.; Luo, L. Identification and Characterization of Plant-Derived Biomarkers and Physicochemical Variations in the Maturation Process of Triadica Cochinchinensis Honey Based on UPLC-QTOF-MS Metabolomics Analysis. Food Chem. 2023, 408, 135197. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, C.; Xue, X.; Lu, H.; Wang, K.; Wu, L. Safflomin A: A Novel Chemical Marker for Carthamus tinctorius L. (Safflower) Monofloral Honey. Food Chem. 2022, 366, 130584. [Google Scholar] [CrossRef]
- Chuah, W.C.; Lee, H.H.; Ng, D.H.J.; Ho, A.L.; Sulaiman, M.R.; Chye, F.Y. Antioxidants Discovery for Differentiation of Monofloral Stingless Bee Honeys Using Ambient Mass Spectrometry and Metabolomics Approaches. Foods 2023, 12, 2404. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, J.; Wu, Y.; Yang, Y.; Pang, S.; He, L.; Bai, L.; Zhao, H.; Cao, W. 3α-Hydroxylup-20(29)-Ene-23,28-Dioic Acid as a Phytogenic Chemical Marker for Authenticating Schefflera octophylla (Lour.) Harms Monofloral Honey. J. Agric. Food Chem. 2024, 72, 14067–14077. [Google Scholar] [CrossRef]
- Yu, W.; Li, X.; Sun, Q.; Yi, S.; Zhang, G.; Chen, L.; Li, Z.; Li, J.; Luo, L. Metabolomics and Network Pharmacology Reveal the Mechanism of Castanopsis Honey against Streptococcus Pyogenes. Food Chem. 2024, 441, 138388. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Zhao, L.; Zhao, Y.; Li, Q.; Xue, X.; Wu, L.; Gomez Escalada, M.; Wang, K.; Peng, W. Comparison of the Chemical Composition and Biological Activity of Mature and Immature Honey: An HPLC/QTOF/MS-Based Metabolomic Approach. J. Agric. Food Chem. 2020, 68, 4062–4071. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xue, A.; Li, X.; Huang, X.; Ning, F.; Zhang, X.; Liu, T.; Chen, H.; Luo, L. Analysis of Chemical Composition of Nectars and Honeys from Citrus by Extractive Electrospray Ionization High Resolution Mass Spectrometry. LWT 2020, 131, 109748. [Google Scholar] [CrossRef]
- Idriss, I.; Ali, A.H.; Alam, A.; Fernandez-Cabezudo, M.; Ayyash, M.; al-Ramadi, B.K. Differential in Vitro Cytotoxic Effects and Metabolomic Insights into Raw and Powdered Manuka Honey through UPLC-Q-TOF-MS. Sci. Rep. 2024, 14, 17551. [Google Scholar] [CrossRef] [PubMed]
- Brendel, R.; Schwolow, S.; Gerhardt, N.; Schwab, J.; Rau, P.; Oest, M.; Rohn, S.; Weller, P. MIR Spectroscopy versus MALDI-ToF-MS for Authenticity Control of Honeys from Different Botanical Origins Based on Soft Independent Modelling by Class Analogy (SIMCA)—A Clash of Techniques? Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 263, 120225. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Wang, J.; Li, X.; Wang, W.; Huang, Z. Sugaring-out Assisted Liquid-Liquid Extraction Coupled with High Performance Liquid Chromatography-Electrochemical Detection for the Determination of 17 Phenolic Compounds in Honey. J. Chromatogr. A 2019, 1601, 104–114. [Google Scholar] [CrossRef]
- Tata, A.; Arrizabalaga-Larrañaga, A.; Massaro, A.; Stella, R.; Piro, R.; Alewijn, M.; Blokland, M. Empowering the Rapid Authentication of the Botanical Origin of Monofloral honey by Coated Blade Spray Mass Spectrometry (CBS-MS). Food Control 2024, 166, 110738. [Google Scholar] [CrossRef]
- Kaziur-Cegla, W.; Jochmann, M.A.; Molt, K.; Bruchmann, A.; Schmidt, T.C. In-Tube Dynamic Extraction for Analysis of Volatile Organic Compounds in Honey Samples. Food Chem. X 2022, 14, 100337. [Google Scholar] [CrossRef]
- Singh, Y.R.; Shah, D.B.; Kulkarni, M.; Patel, S.R.; Maheshwari, D.G.; Shah, J.S.; Shah, S. Current Trends in Chromatographic Prediction Using Artificial Intelligence and Machine Learning. Anal. Methods 2023, 15, 2785–2797. [Google Scholar] [CrossRef]
- Guo, B.; Huuki-Myers, L.A.; Grant-Peters, M.; Collado-Torres, L.; Hicks, S.C. EscheR: Unified Multi-Dimensional Visualizations with Gestalt Principles. Bioinform. Adv. 2023, 3, vbad179. [Google Scholar] [CrossRef]
- Gutierrez Najera, N.A.; Resendis-Antonio, O.; Nicolini, H. “Gestaltomics”: Systems Biology Schemes for the Study of Neuropsychiatric Diseases. Front. Physiol. 2017, 8, 286. [Google Scholar] [CrossRef] [PubMed]
- Kensert, A.; Collaerts, G.; Efthymiadis, K.; Van Broeck, P.; Desmet, G.; Cabooter, D. Deep Convolutional Autoencoder for the Simultaneous Removal of Baseline Noise and Baseline Drift in Chromatograms. J. Chromatogr. A 2021, 1646, 462093. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, Á.; Estanyol-Torres, N.; Brunius, C.; Landberg, R.; González-Domínguez, R. QComics: Recommendations and Guidelines for Robust, Easily Implementable and Reportable Quality Control of Metabolomics Data. Anal. Chem. 2024, 96, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Spicer, R.; Salek, R.M.; Moreno, P.; Cañueto, D.; Steinbeck, C. Navigating Freely-Available Software Tools for Metabolomics Analysis. Metabolomics 2017, 13, 106. [Google Scholar] [CrossRef]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M.; et al. Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef]
- Yin, J.; Ma, Y.; Liang, C.; Gao, J.; Wang, H.; Zhang, L. A Systematic Study of the Metabolites of Dietary Acacetin in Vivo and in Vitro Based on UHPLC-Q-TOF-MS/MS Analysis. J. Agric. Food Chem. 2019, 67, 5530–5543. [Google Scholar] [CrossRef]
- Teschke, R.; Vongdala, N.; Van Quan, N.; Quy, T.N.; Xuan, T.D. Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int. J. Mol. Sci. 2021, 22, 10419. [Google Scholar] [CrossRef]
- Xiong, A.; Yang, F.; Fang, L.; Yang, L.; He, Y.; Wan, Y.Y.-J.; Xu, Y.; Qi, M.; Wang, X.; Yu, K.; et al. Metabolomic and Genomic Evidence for Compromised Bile Acid Homeostasis by Senecionine, a Hepatotoxic Pyrrolizidine Alkaloid. Chem. Res. Toxicol. 2014, 27, 775–786. [Google Scholar] [CrossRef]
Key Metabolite | Chemical Structure | Honey Sample Description | Significance of Metabolite | Metabolomic Strategy | Reference |
---|---|---|---|---|---|
3,4,6,6-tetramethylbicyclo [3.2.1]oct-3-ene-2,8-dione | Arbutus (Arbutus unedo L., Ericaceae) honey (strawberry tree honey) from Greece |
|
| [43] | |
trans-beta-ionone-5,6-epoxide | Citrus sp (Murcott tangerine L. and Jaffa orange L.) honey from Egypt |
|
| [5] | |
sulfonylbis-metahane | polyfloral commercial honey from Botswana, southern African region |
|
| [7] | |
8-hydroxyoctanoic acid | Apis cerana cerana (A. cerana) and Apis mellifera ligustica (A. mellifera) honey |
|
| [52] | |
3,10-dihydroxydecanoic acid | |||||
1-nonanol | A. cerana honey |
|
| [10] | |
1-heptanol | |||||
phenethyl acetate | |||||
benzaldehyde | A. mellifera honey |
| |||
heptanal | |||||
phenylacetaldehyde | |||||
gluconic acid | stingless bee honey |
|
| [30] | |
pinitol | |||||
mannitol | |||||
myo-inositol | |||||
nicotinealdehyde | red raspberry (Rubus idaeus L.) |
|
| [18] |
Key Metabolite | Chemical Structure | Honey Sample Description | Significance of Metabolite | Metabolomic Strategy | Reference |
---|---|---|---|---|---|
calycosin | traditional Chinese herbal medicine Astragalus membranaceus var. mongholicus Hsiao |
|
| [9] | |
formononetin | |||||
N1, N5, N10-(E)-tricoumaryl spermidine | Triadica cochinchinensis honey (TCH) |
|
| [58] | |
safflomin A | medicinal plant Carthamus tinctorius L. |
|
| [59] | |
3α-Hydroxylup-20(29)-ene-23,28-dioic acid (HLEDA) | Schefflera octophylla (Lour.) Harms |
|
| [61] | |
methyl 3- aminobenzoate (M3AB) | “Anama” honey: monofloral honey produced from the nectar of the Erica manipuliflora plant, a heather bush of the Greek island of Ikaria |
|
| [16] | |
4- ethylbenzaldehyde |
| ||||
dehypoxanthine futalosine |
| ||||
ganolucidic acid B |
| ||||
domesticoside |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kranjac, M.; Kuś, P.M.; Prđun, S.; Odžak, R.; Tuberoso, C.I.G. Chromatography-Based Metabolomics as a Tool in Bioorganic Research of Honey. Metabolites 2024, 14, 606. https://doi.org/10.3390/metabo14110606
Kranjac M, Kuś PM, Prđun S, Odžak R, Tuberoso CIG. Chromatography-Based Metabolomics as a Tool in Bioorganic Research of Honey. Metabolites. 2024; 14(11):606. https://doi.org/10.3390/metabo14110606
Chicago/Turabian StyleKranjac, Marina, Piotr Marek Kuś, Saša Prđun, Renata Odžak, and Carlo Ignazio Giovanni Tuberoso. 2024. "Chromatography-Based Metabolomics as a Tool in Bioorganic Research of Honey" Metabolites 14, no. 11: 606. https://doi.org/10.3390/metabo14110606
APA StyleKranjac, M., Kuś, P. M., Prđun, S., Odžak, R., & Tuberoso, C. I. G. (2024). Chromatography-Based Metabolomics as a Tool in Bioorganic Research of Honey. Metabolites, 14(11), 606. https://doi.org/10.3390/metabo14110606