Zic-HILIC MS/MS Method for NADomics Provides Novel Insights into Redox Homeostasis in Escherichia coli BL21 Under Microaerobic and Anaerobic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical-Grade Chemicals
2.2. Microorganisms and Cultivation Conditions
2.3. Sampling for HPLC and LC-MS/MS Analysis
2.4. Quantification of Extracellular Products and Substrates
2.5. Extraction of Intracellular Metabolites
2.6. Instrumentation Conditions
2.7. Preparation of Calibration Standards
2.8. Method Validation and Stability Studies
2.9. Data Processing, Statistical Analysis, and Visualization
3. Results and Discussion
3.1. HILIC-MS/MS Method Development
3.2. Extraction of Pyridine Nucleotides
3.3. Validation of LC-MS/MS Method
3.3.1. Linearity
3.3.2. Sensitivity
3.3.3. Precision and Accuracy
3.3.4. Stability
3.4. Application of the Method to Study the Effect of Oxygen Limitation on the NAD+ Biosynthesis Pathway
3.4.1. Growth and Cultivation Kinetics During Oxygen Limitation and Anaerobiosis in E. coli
3.4.2. Effect of Oxygen Limitation on Intracellular Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantó, C.; Menzies, K.J.; Auwerx, J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015, 22, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Amjad, S.; Nisar, S.; Bhat, A.A.; Shah, A.R.; Frenneaux, M.P.; Fakhro, K.; Haris, M.; Reddy, R.; Patay, Z.; Baur, J.; et al. Role of NAD(+) in regulating cellular and metabolic signaling pathways. Mol. Metab. 2021, 49, 101195. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.-Q.; Lin, J.-F.; Tian, T.; Xie, D.; Xu, R.-H. NADPH homeostasis in cancer: Functions, mechanisms and therapeutic implications. Signal Transduct. Target. Ther. 2020, 5, 231. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, F.; Lanzillotta, C.; Perluigi, M. Redox imbalance and metabolic defects in the context of Alzheimer disease. FEBS Lett. 2024, 598, 2047–2066. [Google Scholar] [CrossRef]
- Gholson, R.K.; Tritz, G.J.; Matney, T.S.; Andreoli, A.J. Mode of nicotinamide adenine dinucleotide utilization by Escherichia coli. J. Bacteriol. 1969, 99, 895–896. [Google Scholar] [CrossRef]
- Begley, T.P.; Kinsland, C.; Mehl, R.A.; Osterman, A.; Dorrestein, P. The biosynthesis of nicotinamide adenine dinucleotides in bacteria. In Vitamins & Hormones; Academic Press: Cambridge, MA, USA, 2001; Volume 61, pp. 103–119. [Google Scholar]
- Raffaelli, N.; Lorenzi, T.; Mariani, P.L.; Emanuelli, M.; Amici, A.; Ruggieri, S.; Magni, G. The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity. J. Bacteriol. 1999, 181, 5509–5511. [Google Scholar] [CrossRef]
- Badawy, A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef]
- Pissios, P. Nicotinamide N-Methyltransferase: More Than a Vitamin B3 Clearance Enzyme. Trends Endocrinol. Metab. 2017, 28, 340–353. [Google Scholar] [CrossRef]
- Sugiyama, K.; Iijima, K.; Yoshino, M.; Dohra, H.; Tokimoto, Y.; Nishikawa, K.; Idogaki, H.; Yoshida, N. Nicotinamide mononucleotide production by fructophilic lactic acid bacteria. Sci. Rep. 2021, 11, 7662. [Google Scholar] [CrossRef]
- Liu, L.; Su, X.; Quinn, W.J., 3rd; Hui, S.; Krukenberg, K.; Frederick, D.W.; Redpath, P.; Zhan, L.; Chellappa, K.; White, E.; et al. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab. 2018, 27, 1067–1080. [Google Scholar] [CrossRef]
- Trammell, S.A.; Brenner, C. Targeted, LCMS-based Metabolomics for Quantitative Measurement of NAD(+) Metabolites. Comput. Struct. Biotechnol. J. 2013, 4, e201301012. [Google Scholar] [CrossRef] [PubMed]
- Braidy, N.; Villalva, M.D.; Grant, R. NADomics: Measuring NAD(+) and Related Metabolites Using Liquid Chromatography Mass Spectrometry. Life 2021, 11, 512. [Google Scholar] [CrossRef]
- Seifar, R.M.; Ras, C.; Deshmukh, A.T.; Bekers, K.M.; Suarez-Mendez, C.A.; da Cruz, A.L.; van Gulik, W.M.; Heijnen, J.J. Quantitative analysis of intracellular coenzymes in Saccharomyces cerevisiae using ion pair reversed phase ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2013, 1311, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wang, L.; Chen, L.; Hui, S.; Rabinowitz, J.D. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors. Antioxid. Redox Signal 2018, 28, 167–179. [Google Scholar] [CrossRef]
- Hiefner, J.; Rische, J.; Bunders, M.J.; Worthmann, A. A liquid chromatography-tandem mass spectrometry based method for the quantification of adenosine nucleotides and NAD precursors and products in various biological samples. Front. Immunol. 2023, 14, 1250762. [Google Scholar] [CrossRef]
- Giner, M.P.; Christen, S.; Bartova, S.; Makarov, M.V.; Migaud, M.E.; Canto, C.; Moco, S. A Method to Monitor the NAD(+) Metabolome-From Mechanistic to Clinical Applications. Int. J. Mol. Sci. 2021, 22, 10598. [Google Scholar] [CrossRef] [PubMed]
- Safo, L.; Abdelrazig, S.; Grosse-Honebrink, A.; Millat, T.; Henstra, A.M.; Norman, R.; Thomas, N.R.; Winzer, K.; Minton, N.P.; Kim, D.-H.; et al. Quantitative Bioreactor Monitoring of Intracellular Bacterial Metabolites in Clostridium autoethanogenum Using Liquid Chromatography–Isotope Dilution Mass Spectrometry. ACS Omega 2021, 6, 13518–13526. [Google Scholar] [CrossRef]
- Røst, L.M.; Shafaei, A.; Fuchino, K.; Bruheim, P. Zwitterionic HILIC tandem mass spectrometry with isotope dilution for rapid, sensitive and robust quantification of pyridine nucleotides in biological extracts. J. Chromatogr. B 2020, 1144, 122078. [Google Scholar] [CrossRef]
- Yang, S.; Sadilek, M.; Lidstrom, M.E. Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global (13)C-labeled internal standards improve performance for quantitative metabolomics in bacteria. J. Chromatogr. A 2010, 1217, 7401–7410. [Google Scholar] [CrossRef]
- Bustamante, S.; Jayasena, T.; Richani, D.; Gilchrist, R.B.; Wu, L.E.; Sinclair, D.A.; Sachdev, P.S.; Braidy, N. Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. Metabolomics 2017, 14, 15. [Google Scholar] [CrossRef]
- Thorfinnsdottir, L.B.; Garcia-Calvo, L.; Bo, G.H.; Bruheim, P.; Rost, L.M. Optimized Fast Filtration-Based Sampling and Extraction Enables Precise and Absolute Quantification of the Escherichia coli Central Carbon Metabolome. Metabolites 2023, 13, 150. [Google Scholar] [CrossRef]
- Søgaard, C.K.; Blindheim, A.; Rost, L.M.; Petrovic, V.; Nepal, A.; Bachke, S.; Liabakk, N.B.; Gederaas, O.A.; Viset, T.; Arum, C.J.; et al. “Two hits—One stone”; increased efficacy of cisplatin-based therapies by targeting PCNA’s role in both DNA repair and cellular signaling. Oncotarget 2018, 9, 32448–32465. [Google Scholar] [CrossRef]
- Karlsen, E.; Gylseth, M.; Schulz, C.; Almaas, E. A study of a diauxic growth experiment using an expanded dynamic flux balance framework. PLoS ONE 2023, 18, e0280077. [Google Scholar] [CrossRef] [PubMed]
- Fan, T. Structure-based profiling of metabolites and isotopomers by NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2008, 52, 69–117. [Google Scholar] [CrossRef]
- Brown, G.D.; Bauer, J.; Osborn, H.M.I.; Kuemmerle, R. A Solution NMR Approach To Determine the Chemical Structures of Carbohydrates Using the Hydroxyl Groups as Starting Points. ACS Omega 2018, 3, 17957–17975. [Google Scholar] [CrossRef]
- Giraudeau, P.; Silvestre, V.; Akoka, S. Optimizing water suppression for quantitative NMR-based metabolomics: A tutorial review. Metabolomics 2015, 11, 1041–1055. [Google Scholar] [CrossRef]
- ICH Harmonised Guideline. Validation of Analytical Procedures Q2(R2); ICH: Geneva, Switzerland, 2023; pp. 13–14. [Google Scholar]
- Hunter, J. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Doran, P.M. Chapter 12—Homogeneous Reactions. In Bioprocess Engineering Principles, 2nd ed.; Doran, P.M., Ed.; Academic Press: London, UK, 2013; pp. 599–703. [Google Scholar]
- Dean, R.B.; Dixon, W.J. Simplified Statistics for Small Numbers of Observations. Anal. Chem. 1951, 23, 636–638. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H.F.R.; Henry, L.; Muller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation, R package version 1.1.4; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Demarest, T.G.; Truong, G.T.D.; Lovett, J.; Mohanty, J.G.; Mattison, J.A.; Mattson, M.P.; Ferrucci, L.; Bohr, V.A.; Moaddel, R. Assessment of NAD(+)metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle. Anal. Biochem. 2019, 572, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mohd Kamal, K.; Mahamad Maifiah, M.H.; Abdul Rahim, N.; Hashim, Y.Z.H.; Abdullah Sani, M.S.; Azizan, K.A. Bacterial Metabolomics: Sample Preparation Methods. Biochem. Res. Int. 2022, 2022, 9186536. [Google Scholar] [CrossRef] [PubMed]
- Pinu, F.R.; Villas-Boas, S.G.; Aggio, R. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols. Metabolites 2017, 7, 53. [Google Scholar] [CrossRef]
- Dolphin, D.H.; Poulson, R.; Avramović, O. Pyridine nucleotide Coenzymes: Chemical, Biological, and Medical Aspects. Vol. 2, Pt. A.; John Wiley and Sons Inc.: New York, NY, USA, 1987. [Google Scholar]
- Colowick, S.P.; Kaplan, N.O.; Ciotti, M.M. The reaction of pyridine nucleotide with cyanide and its analytical use. J. Biol. Chem. 1951, 191, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Ruta, J.; Rudaz, S.; McCalley, D.V.; Veuthey, J.-L.; Guillarme, D. A systematic investigation of the effect of sample diluent on peak shape in hydrophilic interaction liquid chromatography. J. Chromatogr. A 2010, 1217, 8230–8240. [Google Scholar] [CrossRef] [PubMed]
- Kohler, I.; Verhoeven, M.; Haselberg, R.; Gargano, A.F.G. Hydrophilic interaction chromatography—Mass spectrometry for metabolomics and proteomics: State-of-the-art and current trends. Microchem. J. 2022, 175, 106986. [Google Scholar] [CrossRef]
- Taylor, M.R.; Kawakami, J.; McCalley, D.V. Managing sample introduction problems in hydrophilic interaction liquid chromatography. J. Chromatogr. A 2023, 1700, 464006. [Google Scholar] [CrossRef]
- Ishima, T.; Kimura, N.; Kobayashi, M.; Nagai, R.; Osaka, H.; Aizawa, K. A Simple, Fast, Sensitive LC-MS/MS Method to Quantify NAD(H) in Biological Samples: Plasma NAD(H) Measurement to Monitor Brain Pathophysiology. Int. J. Mol. Sci. 2024, 25, 2325. [Google Scholar] [CrossRef]
- Evard, H.; Kruve, A.; Leito, I. Tutorial on estimating the limit of detection using LC-MS analysis, part II: Practical aspects. Anal. Chim. Acta 2016, 942, 40–49. [Google Scholar] [CrossRef]
- Link, H.; Buescher, J.M.; Sauer, U. Chapter 5—Targeted and quantitative metabolomics in bacteria. In Methods in Microbiology; Harwood, C., Wipat, A., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 39, pp. 127–150. [Google Scholar]
- Jaén, K.E.; Sigala, J.-C.; Olivares-Hernández, R.; Niehaus, K.; Lara, A.R. Heterogeneous oxygen availability affects the titer and topology but not the fidelity of plasmid DNA produced by Escherichia coli. BMC Biotechnol. 2017, 17, 60. [Google Scholar] [CrossRef]
- Bernal, V.; Castaño-Cerezo, S.; Cánovas, M. Acetate metabolism regulation in Escherichia coli: Carbon overflow, pathogenicity, and beyond. Appl. Microbiol. Biotechnol. 2016, 100, 8985–9001. [Google Scholar] [CrossRef]
- García-Calvo, L.; Rane, D.V.; Everson, N.; Humlebrekk, S.T.; Mathiassen, L.F.; Mæhlum, A.H.M.; Malmo, J.; Bruheim, P. Central carbon metabolite profiling reveals vector-associated differences in the recombinant protein production host Escherichia coli BL21. Front. Chem. Eng. 2023, 5, 1142226. [Google Scholar] [CrossRef]
- Clark, D.P. The fermentation pathways of Escherichia coli. FEMS Microbiol. Rev. 1989, 5, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Lara, A.R.; Leal, L.; Flores, N.; Gosset, G.; Bolívar, F.; Ramírez, O.T. Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol. Bioeng. 2006, 93, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Basurto, E.A.; Gosset, G.; Bolívar, F.; Ramírez, O.T. Culture of Escherichia coli under dissolved oxygen gradients simulated in a two-compartment scale-down system: Metabolic response and production of recombinant protein. Biotechnol. Bioeng. 2005, 89, 453–463. [Google Scholar] [CrossRef]
- Xu, B.; Jahic, M.; Blomsten, G.; Enfors, S.O. Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl. Microbiol. Biotechnol. 1999, 51, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Wehrs, M.; Tanjore, D.; Eng, T.; Lievense, J.; Pray, T.R.; Mukhopadhyay, A. Engineering Robust Production Microbes for Large-Scale Cultivation. Trends Microbiol. 2019, 27, 524–537. [Google Scholar] [CrossRef]
- Hadley, W. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Tang, Y.; Horikoshi, M.; Li, W. ggfortify: Unified Interface to Visualize Statistical Result of Popular R Packages. R J. 2016, 8, 474–485. [Google Scholar] [CrossRef]
- Kassambara, A.M.F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses, R package version 1.0.7; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Tan, A.; Doig, C.L. NAD(+) Degrading Enzymes, Evidence for Roles During Infection. Front. Mol. Biosci. 2021, 8, 697359. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, R.S.; Handy, D.E.; Loscalzo, J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid. Redox Signal 2018, 28, 251–272. [Google Scholar] [CrossRef]
- Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD(+) metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 2020, 5, 227. [Google Scholar] [CrossRef]
- Godoy, M.S.; Nikel, P.I.; Cabrera Gomez, J.G.; Pettinari, M.J. The CreC Regulator of Escherichia coli, a New Target for Metabolic Manipulations. Appl. Environ. Microbiol. 2016, 82, 244–254. [Google Scholar] [CrossRef]
- Grose, J.H.; Joss, L.; Velick, S.F.; Roth, J.R. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc. Natl. Acad. Sci. USA 2006, 103, 7601–7606. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jeong, H.; Hwang, S.; Lee, M.-S.; Lee, Y.-J.; Lee, D.-W.; Lee, S.J. Short-term differential adaptation to anaerobic stress via genomic mutations by Escherichia coli strains K-12 and B lacking alcohol dehydrogenase. Front. Microbiol. 2014, 5, 476. [Google Scholar] [CrossRef]
- Bettenbrock, K.; Bai, H.; Ederer, M.; Green, J.; Hellingwerf, K.J.; Holcombe, M.; Kunz, S.; Rolfe, M.D.; Sanguinetti, G.; Sawodny, O.; et al. Chapter Two—Towards a Systems Level Understanding of the Oxygen Response of Escherichia coli. In Advances in Microbial Physiology; Poole, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 64, pp. 65–114. [Google Scholar]
- García, A.; Ferrer, P.; Albiol, J.; Castillo, T.; Segura, D.; Peña, C. Metabolic flux analysis and the NAD(P)H/NAD(P)+ ratios in chemostat cultures of Azotobacter vinelandii. Microbial Cell Factories 2018, 17, 10. [Google Scholar] [CrossRef]
- Duncan, J.D.; Devillers, H.; Camarasa, C.; Setati, M.E.; Divol, B. Oxygen alters redox cofactor dynamics and induces metabolic shifts in Saccharomyces cerevisiae during alcoholic fermentation. Food Microbiol. 2024, 124, 104624. [Google Scholar] [CrossRef]
- Moat, A.G.F.; John, W.; Spector, M.P. Microbial Physiology; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Imsande, J.; Pardee, A. Regulation of Pyridine Nucleotide Biosynthesis in Escherichia coli. J. Biol. Chem. 1962, 237, 1305–1308. [Google Scholar] [CrossRef]
- Foster, J.W.; Park, Y.K.; Penfound, T.; Fenger, T.; Spector, M.P. Regulation of NAD metabolism in Salmonella typhimurium: Molecular sequence analysis of the bifunctional nadR regulator and the nadA-pnuC operon. J. Bacteriol. 1990, 172, 4187–4196. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, A.J.; Okita, T.W.; Bloom, R.; Grover, T.A. The pyridine nucleotide cycle: Presence of a nicotinamide mononucleotide-specific glycohydrolase in Escherichia coli. Biochem. Biophys. Res. Commun. 1972, 49, 264–269. [Google Scholar] [CrossRef]
- Osterman, A. Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor. EcoSal Plus 2009, 3. [Google Scholar] [CrossRef]
Compound Name | 12C Transition | Transition for Isotope Dilution (13C) **** | ||||
---|---|---|---|---|---|---|
Retention Time (min) *** | Parent Ion (m/z) | Transition for Quantification (m/z) | Cone Voltage (V) | Collision Energy (eV) | ||
NAM | 1.0 ± 0.0 | 123.0 | 79.7 | 38.0 | 18.0 | 129.1 > 84.8 |
96.0 * | 14.0 | |||||
NCA | 1.6 ± 0.2 | 124.0 | 80.2 | 38.0 | 18.0 | NAM 13C |
53.0 * | 22.0 | |||||
1-mNAM | 2.5 ± 0.2 | 137.0 | 78.0 | 24.0 | 22.0 | NR 13C |
108.1 * | 16.0 | |||||
NR | 2.9 ± 0.1 | 255.9 | 123.7 | 14.0 | 8.0 | 266.9 > 129.7 |
80.2 * | 36.0 | |||||
FAD ** | 3.2± 0.5 | 786.1 | 348.0 | 20.0 | 22.0 | 813.2 > 358 |
439.1 * | 28.0 | |||||
NADH ** | 3.7± 0.4 | 666.1 | 649.0 | 20.0 | 17.0 | 687.1 > 670 |
514.1 * | 26.0 | |||||
ADPR | 3.8 ± 0.3 | 560.1 | 136.1 | 26.0 | 32.0 | NADH 13C |
348.1 * | 16.0 | |||||
NAD+ ** | 4.2 ± 0.3 | 664.1 | 428.0 | 20.0 | 26.0 | 685.1 > 438 |
524.0 * | 18.0 | |||||
NAAD | 4.5 ± 0.1 | 665.2 | 136.1 | 42.0 | 36.0 | NAD 13C |
428.1 * | 24.0 | |||||
NMN | 4.9 ± 0.2 | 335.0 | 123.1 | 22.0 | 14.0 | NAMN 13C |
97.0 * | 26.0 | |||||
NAMN | 5.1 ± 0.2 | 336.0 | 124.1 | 22.0 | 12.0 | 347.0 > 130.1 |
97.0 * | 22.0 | |||||
NADPH ** | 5.1 ± 0.2 | 746.1 | 729.0 | 20.0 | 17.0 | 767.1 > 750 |
302.0 * | 32.0 | |||||
NADP+ ** | 5.5 ± 0.2 | 744.1 | 604.0 | 20.0 | 20.0 | 765.1 > 619 |
508.0 * | 30.0 |
Compound | Linearity (R2) | Sensitivity in Solvent * | ||
---|---|---|---|---|
R2 (in Solvent) * | R2 (in Matrix) ** | LOD (nM) | LOQ (nM) | |
NAM | 1.00 | 0.99 | 26.73 | 80.98 |
NCA | 1.00 | 0.99 | 11.77 | 35.68 |
1-mNAM | 1.00 | 0.99 | 4.02 | 12.19 |
NR | 1.00 | 1.00 | 5.64 | 17.11 |
FAD | 1.00 | 0.99 | 6.74 | 20.43 |
NADH | 0.99 | 0.99 | 57.14 | 173.15 |
ADPR | 0.98 | 0.99 | 1.52 | 4.61 |
NAD+ | 1.00 | 0.98 | 3.96 | 11.99 |
NMN | 1.00 | 1.00 | 3.79 | 11.48 |
NAMN | 1.00 | 1.00 | 5.38 | 16.32 |
NADPH | 0.99 | 0.99 | 29.47 | 89.29 |
NADP+ | 1.00 | 0.99 | 16.67 | 50.51 |
Scheme 0. | T0–T1 | T1–T2 | T2–T3 | T3–T4 | T4–T5 |
---|---|---|---|---|---|
(i) Specific growth rate, µ(h−1) * | 0.61 ± 0.01 | 0.37 ± 0.01 | 0.14 ± 0.02 | 0.11 ± 0.01 | 0.10 ± 0.04 |
(ii) Glucose uptake rate (g g−1CDW h−1) | 1.87 ** | 2.04 | 2.05 | 2.08 | 1.63 |
(iii) Specific Production Rate (qp, gg−1CDWh−1) | |||||
Extracellular metabolites | T0–T1 *** | T1–T2 | T2–T3 | T3–T4 | T4–T5 |
Acetic acid | 0.01 | 0.30 | 0.19 | 0.24 | 0.25 |
Formic acid | 0.01 | 0.29 | 0.32 | 0.63 | 0.35 |
Lactic acid | 0.01 | 0.15 | 0.55 | 0.55 | 0.31 |
Succinic acid | 0.01 | 0.00 | 0.05 | 0.08 | 0.06 |
Ethanol | 0.00 | 0.11 | 0.19 | 0.25 | 0.18 |
(iv) Yield (gg−1 glucose) | |||||
Extracellular metabolites | T0–T1 | T1–T2 | T2–T3 | T3–T4 | T4–T5 |
Acetic acid | 0.06 | 0.15 | 0.09 | 0.12 | 0.15 |
Formic acid | 0.06 | 0.14 | 0.16 | 0.30 | 0.22 |
Lactic acid | 0.03 | 0.08 | 0.27 | 0.26 | 0.19 |
Succinic acid | 0.06 | 0.00 | 0.03 | 0.04 | 0.04 |
Ethanol | 0.00 | 0.06 | 0.09 | 0.12 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rane, D.V.; García-Calvo, L.; Kristiansen, K.A.; Bruheim, P. Zic-HILIC MS/MS Method for NADomics Provides Novel Insights into Redox Homeostasis in Escherichia coli BL21 Under Microaerobic and Anaerobic Conditions. Metabolites 2024, 14, 607. https://doi.org/10.3390/metabo14110607
Rane DV, García-Calvo L, Kristiansen KA, Bruheim P. Zic-HILIC MS/MS Method for NADomics Provides Novel Insights into Redox Homeostasis in Escherichia coli BL21 Under Microaerobic and Anaerobic Conditions. Metabolites. 2024; 14(11):607. https://doi.org/10.3390/metabo14110607
Chicago/Turabian StyleRane, Divyata Vilas, Laura García-Calvo, Kåre Andre Kristiansen, and Per Bruheim. 2024. "Zic-HILIC MS/MS Method for NADomics Provides Novel Insights into Redox Homeostasis in Escherichia coli BL21 Under Microaerobic and Anaerobic Conditions" Metabolites 14, no. 11: 607. https://doi.org/10.3390/metabo14110607
APA StyleRane, D. V., García-Calvo, L., Kristiansen, K. A., & Bruheim, P. (2024). Zic-HILIC MS/MS Method for NADomics Provides Novel Insights into Redox Homeostasis in Escherichia coli BL21 Under Microaerobic and Anaerobic Conditions. Metabolites, 14(11), 607. https://doi.org/10.3390/metabo14110607