Fermented Rice Bran Mitigated the Syndromes of Type 2 Diabetes in KK-Ay Mice Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Fermented Rice Bran Preparation
2.3. Animal Experiment
2.4. Serum and Liver Biochemical Analysis
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Oral Glucose Tolerance Test (OGTT)
2.7. Quantitative Reverse Transcriptase-Mediated Polymerase Chain Reaction (qRT-PCR)
2.8. Capillary Electrophoresis Mass Spectrometry (CE-MS)
2.9. Statistical Analysis
3. Results
3.1. FRB Supplementation Alleviates Diabetic Parameters
3.2. Lipid Profile of KK-Ay Mice Was Improved Due to FRB Supplementation
3.3. Metabolomics Analysis of RB and FRB
3.4. Bioactive Compounds in FRB
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Bellary, S.; Kyrou, I.; Brown, J.E.; Bailey, C.J. Type 2 diabetes mellitus in older adults: Clinical considerations and management. Nat. Rev. Endocrinol. 2021, 17, 534–548. [Google Scholar] [CrossRef] [PubMed]
- McCoy, R.G.; Van Houten, H.K.; Karaca-Mandic, P.; Ross, J.S.; Montori, V.M.; Shah, N.D. Second-line therapy for type 2 diabetes management: The treatment/benefit paradox of cardiovascular and kidney comorbidities. Diabetes Care 2021, 44, 2302–2311. [Google Scholar] [CrossRef] [PubMed]
- Cherney, D.Z.I.; Repetto, E.; Wheeler, D.C.; Arnold, S.V.; Maclachlan, S.; Hunt, P.R.; Chen, H.; Vora, J.; Kosiborod, M. Impact of cardio-renal-metabolic comorbidities on cardiovascular outcomes and mortality in type 2 diabetes mellitus. Am. J. Nephrol. 2020, 51, 74–82. [Google Scholar] [CrossRef]
- Kaptoge, S.; Seshasai, S.R.K.; Sun, L.; Walker, M.; Bolton, T.; Spackman, S.; Ataklte, F.; Willeit, P.; Bell, S.; Burgess, S.; et al. Life expectancy associated with different ages at diagnosis of type 2 diabetes in high-income countries: 23 million person-years of observation. Lancet Diabetes Endocrinol. 2023, 11, 731–742. [Google Scholar] [CrossRef]
- Nishioka, Y.; Kubo, S.; Okada, S.; Myojin, T.; Higashino, T.; Imai, K.; Sugiyama, T.; Noda, T.; Ishii, H.; Takahashi, Y.; et al. The age of death in japanese patients with type 2 and type 1 diabetes: A descriptive epidemiological study. J. Diabetes Investig. 2022, 13, 1316–1320. [Google Scholar] [CrossRef]
- Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals 2021, 14, 806. [Google Scholar] [CrossRef]
- Plaz Torres, M.C.; Jaffe, A.; Perry, R.; Marabotto, E.; Strazzabosco, M.; Giannini, E.G. Diabetes medications and risk of HCC. Hepatology 2022, 76, 1880–1897. [Google Scholar] [CrossRef]
- Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother. 2020, 131, 110708. [Google Scholar] [CrossRef]
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 Diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef]
- Taylor, S.I.; Yazdi, Z.S.; Beitelshees, A.L. Pharmacological treatment of hyperglycemia in type 2 diabetes. J. Clin. Investig. 2021, 131, e142243. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem Kalhoro, M.; Hussain Kalhoro, D.; Adebowale, T.O.; Usman Mazhar, M.; Rehman, Z.U.; et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res. 2020, 152, 104629. [Google Scholar] [CrossRef] [PubMed]
- Shahwan, M.; Alhumaydhi, F.; Ashraf, G.M.; Hasan, P.M.Z.; Shamsi, A. Role of polyphenols in combating type 2 diabetes and insulin resistance. Int. J. Biol. Macromol. 2022, 206, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Cabello-Olmo, M.; Oneca, M.; Torre, P.; Sainz, N.; Moreno-Aliaga, M.J.; Guruceaga, E.; Díaz, J.V.; Encio, I.J.; Barajas, M.; Araña, M. A Fermented food product containing lactic acid bacteria protects ZDF rats from the development of type 2 diabetes. Nutrients 2019, 11, 2530. [Google Scholar] [CrossRef] [PubMed]
- Kitagaki, H. Medical application of substances derived from non-pathogenic fungi Aspergillus oryzae and A. luchuensis-containing koji. J. Fungi 2021, 7, 243. [Google Scholar] [CrossRef]
- Perez-Ternero, C.; Alvarez de Sotomayor, M.; Herrera, M.D. Contribution of ferulic acid, γ-oryzanol and tocotrienols to the cardiometabolic protective effects of rice bran. J. Funct. Foods 2017, 32, 58–71. [Google Scholar] [CrossRef]
- Nanri, A.; Mizoue, T.; Kurotani, K.; Goto, A.; Oba, S.; Noda, M.; Sawada, N.; Tsugane, S. Low-carbohydrate diet and type 2 diabetes risk in Japanese men and women: The Japan Public Health Center-based prospective study. PLoS ONE 2015, 10, e0118377. [Google Scholar] [CrossRef]
- Kadooka, C.; Onitsuka, S.; Uzawa, M.; Tashiro, S.; Kajiwara, Y.; Takashita, H.; Okutsu, K.; Yoshizaki, Y.; Takamine, K.; Goto, M.; et al. Marker recycling system using the SC gene in the white koji mold, Aspergillus luchuensis mut. kawachii. J. Gen. Appl. Microbiol. 2016, 62, 160–163. [Google Scholar] [CrossRef]
- Seo, S.; Jung, D.; Wang, X.; Seo, D.J.; Lee, M.H.; Lee, B.H.; Choi, C. Combined effect of lactic acid bacteria and citric acid on Escherichia coli O157: H7 and Salmonella Typhimurium. Food Sci. Biotechnol. 2013, 22, 1171–1174. [Google Scholar] [CrossRef]
- Alauddin, M.; Shirakawa, H.; Koseki, T.; Kijima, N.; Ardiansyah; Budijanto, S.; Islam, J.; Goto, T.; Komai, M. Fermented rice bran supplementation mitigates metabolic syndrome in stroke-prone spontaneously hypertensive rats. BMC Complement. Altern. Med. 2016, 16, 442. [Google Scholar] [CrossRef]
- Rusbana, T.B.; Agista, A.Z.; Saputra, W.D.; Ohsaki, Y.; Watanabe, K.; Ardiansyah; Budijanto, S.; Koseki, T.; Aso, H.; Shirakawa, H. Supplementation with fermented rice bran attenuates muscle atrophy in a diabetic rat model. Nutrients 2020, 12, 2409. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, Y.; Kitamoto, K. Traditional and latest researches on Aspergillus oryzae and related koji molds. J. Fungi 2021, 7, 1075. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M. Breeding of mice strains for diabetes mellitus. Exp. Anim. 1969, 18, 147–157. [Google Scholar] [CrossRef]
- Oikawa, A.; Otsuka, T.; Nakabayashi, R.; Jikumaru, Y.; Isuzugawa, K.; Murayama, H.; Saito, K.; Shiratake, K. Metabolic profiling of developing pear fruits reveals dynamic variation in primary and secondary metabolites, including plant hormones. PLoS ONE 2015, 10, e0131408. [Google Scholar] [CrossRef] [PubMed]
- Digenio, A.; Dunbar, R.L.; Alexander, V.J.; Hompesch, M.; Morrow, L.; Lee, R.G.; Graham, M.J.; Hughes, S.G.; Yu, R.; Singleton, W.; et al. Antisense-mediated lowering of plasma apolipoprotein C-III by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care 2016, 39, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, L.; Du, R.; Yan, J.; Liu, N.; Yuan, W.; Jiang, Y.; Xu, S.; Ye, F.; Yuan, G.; et al. CML/RAGE signal induces calcification cascade in diabetes. Diabetol. Metab. Syndr. 2016, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Sun, H.; Sun, Z. Advanced glycation end products (AGEs) increase renal lipid accumulation: A pathogenic factor of diabetic nephropathy (DN). Lipids Health Dis. 2017, 16, 126. [Google Scholar] [CrossRef] [PubMed]
- Chehade, J.M.; Gladysz, M.; Mooradian, A.D. Dyslipidemia in type 2 diabetes: Prevalence, pathophysiology, and management. Drugs 2013, 73, 327–339. [Google Scholar] [CrossRef]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Inaba, Y.; Kimura, K.; Matsumoto, M.; Kaneko, S.; Kasuga, M.; Inoue, H. Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat. Commun. 2018, 9, 30. [Google Scholar] [CrossRef]
- Purwana, I.; Zheng, J.; Li, X.; Deurloo, M.; Son, D.O.; Zhang, Z.; Liang, C.; Shen, E.; Tadkase, A.; Feng, Z.P.; et al. GABA promotes human β-cell proliferation and modulates glucose homeostasis. Diabetes 2014, 63, 4197–4205. [Google Scholar] [CrossRef] [PubMed]
- Sohrabipour, S.; Sharifi, M.R.; Talebi, A.; Soltani, N. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet. Eur. J. Pharmacol. 2018, 826, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, T.; Kanzaki, N.; Hirakawa, Y.; Yoshinari, M.; Higashioka, M.; Honda, T.; Shibata, M.; Sakata, S.; Yoshida, D.; Teramoto, T.; et al. Serum ethylamine levels as an indicator of L-theanine consumption and the risk of type 2 diabetes in a general Japanese population: The Hisayama study. Diabetes Care 2019, 42, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zeng, L.; Liu, A.; Peng, Y.; Yuan, D.; Zhang, S.; Li, Y.; Chen, J.; Xiao, W.; Gong, Z. L-theanine regulates glucose, lipid, and protein metabolism: Via insulin and AMP-activated protein kinase signaling pathways. Food Funct. 2020, 11, 1798–1809. [Google Scholar] [CrossRef]
- Zeng, L.; Lin, L.; Peng, Y.; Yuan, D.; Zhang, S.; Gong, Z.; Xiao, W. L-theanine attenuates liver aging by inhibiting advanced glycation end products in D-galactose-induced rats and reversing an imbalance of oxidative stress and inflammation. Exp. Gerontol. 2020, 131, 110823. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, W.; Chen, G.; Zhu, W.; Ding, W.; Ge, Z.; Tan, Y.; Ma, T.; Cui, G. L-carnitine treatment of insulin resistance: A systematic review and meta-analysis. Adv. Clin. Exp. Med. 2017, 26, 333–338. [Google Scholar] [CrossRef]
- Karalis, D.T.; Karalis, T.; Karalis, S.; Kleisiari, A.S. L-carnitine as a diet supplement in patients with type II diabetes. Cureus 2020, 12, e7982. [Google Scholar] [CrossRef]
- Bruls, Y.M.; de Ligt, M.; Lindeboom, L.; Phielix, E.; Havekes, B.; Schaart, G.; Kornips, E.; Wildberger, J.E.; Hesselink, M.K.; Muoio, D.; et al. Carnitine supplementation improves metabolic flexibility and skeletal muscle acetylcarnitine formation in volunteers with impaired glucose tolerance: A randomised controlled trial. EBioMedicine 2019, 49, 318–330. [Google Scholar] [CrossRef]
- Fathizadeh, H.; Milajerdi, A.; Reiner, Ž.; Kolahdooz, F.; Asemi, Z. The effects of L-carnitine supplementation on glycemic control: A systematic review and meta-analysis of randomized controlled trials. EXCLI J. 2019, 18, 631–643. [Google Scholar] [CrossRef]
- Gheysari, R.; Nikbaf-Shandiz, M.; Hosseini, A.M.; Rasaei, N.; Hosseini, S.; Bahari, H.; Asbaghi, O.; Rastgoo, S.; Goudarzi, K.; Shiraseb, F.; et al. The effects of L-carnitine supplementation on cardiovascular risk factors in participants with impaired glucose tolerance and diabetes: A systematic review and dose–response meta-analysis. Diabetol. Metab. Syndr. 2024, 16, 185. [Google Scholar] [CrossRef]
- Araque, I.; Reguant, C.; Rozès, N.; Bordons, A. Influence of wine-like conditions on arginine utilization by lactic acid bacteria. Int. Microbiol. 2011, 14, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Lee, J.H. Characterization of arginine catabolism by lactic acid bacteria isolated from kimchi. Molecules 2018, 23, 3049. [Google Scholar] [CrossRef] [PubMed]
- Arena, M.E.; Manca De Nadra, M.C. Influence of ethanol and low ph on arginine and citrulline metabolism in lactic acid bacteria from wine. Res. Microbiol. 2005, 156, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Li, X.; Lu, J.; Xie, G. Citrulline production by lactic acid bacteria in Chinese rice wine. J. Inst. Brew. 2018, 124, 85–90. [Google Scholar] [CrossRef]
- Shatanawi, A.; Momani, M.S.; Al-Aqtash, R.; Hamdan, M.H.; Gharaibeh, M.N. L-citrulline supplementation increases plasma nitric oxide levels and reduces arginase activity in patients with type 2 diabetes. Front. Pharmacol. 2020, 11, 584669. [Google Scholar] [CrossRef]
- Król, M.; Kepinska, M. Human nitric oxide synthase—Its functions, polymorphisms, and inhibitors in the context of inflammation, diabetes and cardiovascular diseases. Int. J. Mol. Sci. 2021, 22, 56. [Google Scholar] [CrossRef]
- Azizi, S.; Ebrahimi-Mameghani, M.; Mobasseri, M.; Karamzad, N.; Mahdavi, R. Oxidative stress and nitrate/nitrite (NOx) status following citrulline supplementation in type 2 diabetes: A randomised, double-blind, placebo-controlled trial. J. Hum. Nutr. Diet. 2021, 34, 64–72. [Google Scholar] [CrossRef]
- Azizi, S.; Mahdavi, R.; Mobasseri, M.; Aliasgharzadeh, S.; Abbaszadeh, F.; Ebrahimi-Mameghani, M. The impact of L-citrulline supplementation on glucose homeostasis, lipid profile, and some inflammatory factors in overweight and obese patients with type 2 diabetes: A double-blind randomized placebo-controlled trial. Phytother. Res. 2021, 35, 3157–3166. [Google Scholar] [CrossRef]
- Moreno-Arribas, V.; Torlois, S.; Joyeux, A.; Bertrand, A.; Lonvaud-Funel, A. Isolation, properties and behaviour of tyramine-producing lactic acid bacteria from wine. J. Appl. Microbiol. 2000, 88, 584–593. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, K.S. Tyramine production among lactic acid bacteria and other species isolated from kimchi. LWT-Food Sci. Technol. 2014, 56, 406–413. [Google Scholar] [CrossRef]
- Cripps, M.J.; Bagnati, M.; Jones, T.A.; Ogunkolade, B.W.; Sayers, S.R.; Caton, P.W.; Hanna, K.; Billacura, M.P.; Fair, K.; Nelson, C.; et al. Identification of a subset of trace amine-associated receptors and ligands as potential modulators of insulin secretion. Biochem. Pharmacol. 2020, 171, 113685. [Google Scholar] [CrossRef] [PubMed]
- Islam, J.; Koseki, T.; Watanabe, K.; Ardiansyah; Budijanto, S.; Oikawa, A.; Alauddin, M.; Goto, T.; Aso, H.; Komai, M.; et al. Dietary supplementation of fermented rice bran effectively alleviates dextran sodium sulfate-induced colitis in mice. Nutrients 2017, 9, 747. [Google Scholar] [CrossRef] [PubMed]
- Agista, A.Z.; Tanuseputero, S.A.; Koseki, T.; Budijanto, S.; Sultana, H.; Ohsaki, Y.; Yeh, C.; Yang, S.; Komai, M.; Shirakawa, H. Tryptamine, a microbial metabolite in fermented rice bran suppressed lipopolysaccharide-induced inflammation in a murine macrophage model. Int. J. Mol. Sci. 2022, 23, 11209. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, Z.; Liu, H.; Li, L.; Zheng, X.; Tian, X.; Sun, B.; Wang, X. Supplementation of wheat flour products with wheat bran dietary fiber: Purpose, mechanisms, and challenges. Trends Food Sci. Technol. 2022, 123, 281–289. [Google Scholar] [CrossRef]
Ingredients | CON | RB | FRB |
---|---|---|---|
tert-Butylhydroquinone | 0.0014 | 0.0014 | 0.0014 |
L-Cystine | 0.26 | 0.26 | 0.26 |
Choline bitartrate | 0.22 | 0.22 | 0.22 |
Vitamin mixture | 0.88 | 0.88 | 0.88 |
Mineral mixture | 4.31 | 3.06 | 3.06 |
Soybean oil | 7.38 | 6.13 | 6.13 |
Cellulose | 7.13 | 4.38 | 4.38 |
Sucrose | 8.75 | 8.75 | 8.75 |
Casein | 19.4 | 17.5 | 17.5 |
Corn starch | 49.6 | 46.3 | 46.3 |
Distilled water | 2.1 | − | − |
RB | − | 12.5 | − |
FRB | − | − | 12.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agista, A.Z.; Kato, A.; Goto, T.; Koseki, T.; Oikawa, A.; Ohsaki, Y.; Yamaki, M.; Yeh, C.-L.; Yang, S.-C.; Ardiansyah; et al. Fermented Rice Bran Mitigated the Syndromes of Type 2 Diabetes in KK-Ay Mice Model. Metabolites 2024, 14, 614. https://doi.org/10.3390/metabo14110614
Agista AZ, Kato A, Goto T, Koseki T, Oikawa A, Ohsaki Y, Yamaki M, Yeh C-L, Yang S-C, Ardiansyah, et al. Fermented Rice Bran Mitigated the Syndromes of Type 2 Diabetes in KK-Ay Mice Model. Metabolites. 2024; 14(11):614. https://doi.org/10.3390/metabo14110614
Chicago/Turabian StyleAgista, Afifah Zahra, Ami Kato, Tomoko Goto, Takuya Koseki, Akira Oikawa, Yusuke Ohsaki, Michiko Yamaki, Chiu-Li Yeh, Suh-Ching Yang, Ardiansyah, and et al. 2024. "Fermented Rice Bran Mitigated the Syndromes of Type 2 Diabetes in KK-Ay Mice Model" Metabolites 14, no. 11: 614. https://doi.org/10.3390/metabo14110614
APA StyleAgista, A. Z., Kato, A., Goto, T., Koseki, T., Oikawa, A., Ohsaki, Y., Yamaki, M., Yeh, C. -L., Yang, S. -C., Ardiansyah, Budijanto, S., Komai, M., & Shirakawa, H. (2024). Fermented Rice Bran Mitigated the Syndromes of Type 2 Diabetes in KK-Ay Mice Model. Metabolites, 14(11), 614. https://doi.org/10.3390/metabo14110614