Systematic Review and Meta-Analysis of Sclerocarya birrea on Metabolic Disorders: Evidence from Preclinical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Elegibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of the Study
3.2.1. Effect of SB on Lipid Profile
3.2.2. Effect of SB on Blood Pressure and Endothelium-Dependent Vasodilation
3.2.3. Effect of SB on Oxidative Stress and Antioxidant Profile
3.3. Risk of Bias of the Study
3.4. Meta-Analysis
3.4.1. Acute Effects of SB on Blood Glucose Levels
3.4.2. Chronic Effects of SB on Blood Glucose Levels
3.5. Publication Bias
4. Discussion
4.1. Carbohydrate Metabolism and Potential Hypoglycemic Mechanisms
4.2. Lipid Metabolism: Potential Effects on Cholesterol and Triglycerides
4.3. Blood Pressure and Endothelial Function: Role of Nitric Oxide Synthase
4.4. Antioxidant and Anti-Inflammatory Properties
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas. Available online: https://diabetesatlas.org/ (accessed on 29 August 2024).
- World Health Organization. Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 29 August 2024).
- Phillips, C.M. Nutrigenetics and Metabolic Disease: Current Status and Implications for Personalised Nutrition. Nutrients 2013, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.K. Defining “Nutraceuticals”: Neither Nutritious nor Pharmaceutical. Br. J. Clin. Pharmacol. 2017, 83, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Das, L.; Bhaumik, E.; Raychaudhuri, U.; Chakraborty, R. Role of Nutraceuticals in Human Health. J. Food. Sci. Technol. 2012, 49, 173. [Google Scholar] [CrossRef]
- Fakudze, N.T.; Sarbadhikary, P.; George, B.P.; Abrahamse, H. Ethnomedicinal Uses, Phytochemistry, and Anticancer Potentials of African Medicinal Fruits: A Comprehensive Review. Pharmaceuticals 2023, 16, 1117. [Google Scholar] [CrossRef]
- Mashau, M.E.; Kgatla, T.E.; Makhado, M.V.; Mikasi, M.S.; Ramashia, S.E. Nutritional Composition, Polyphenolic Compounds and Biological Activities of Marula Fruit (Sclerocarya birrea) with Its Potential Food Applications: A Review. Int. J. Food Prop. 2022, 25, 1549–1575. [Google Scholar] [CrossRef]
- Dini, I.; Grumetto, L. Recent Advances in Natural Polyphenol Research. Molecules 2022, 27, 8777. [Google Scholar] [CrossRef]
- Enayati, A.; Ghojoghnejad, M.; Roufogalis, B.D.; Maollem, S.A.; Sahebkar, A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res. 2022, 2022, 4714914. [Google Scholar] [CrossRef]
- Tsofack Ngueguim, F.; Christian Esse, E.; Djomeni Dzeufiet, P.D.; Kamkumo Gounoue, R.; Claude Bilanda, D.; Kamtchouing, P.; Dimo, T.T. Oxidised Palm Oil and Sucrose Induced Hyperglycemia in Normal Rats: Effects of Sclerocarya birrea Stem Barks Aqueous Extract. BMC Complement. Altern. Med. 2016, 16, 47. [Google Scholar] [CrossRef]
- Quesille-Villalobos, A.M.; Torricoa, J.S.; Ranilla, L.G. Phenolic Compounds, Antioxidant Capacity, and In Vitro α-Amylase Inhibitory Potential of Tea Infusions (Camellia sinensis) Commercialized in Chile. CyTA J. Food 2013, 11, 60–67. [Google Scholar] [CrossRef]
- Kato-Schwartz, C.G.; Bracht, F.; Gonçalves, G.d.A.; Soares, A.A.; Vieira, T.F.; Brugnari, T.; Bracht, A.; Peralta, R.M. Inhibition of α-Amylases by Pentagalloyl Glucose: Kinetics, Molecular Dynamics and Consequences for Starch Absorption. J. Funct. Foods 2018, 44, 265–273. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Rufino, M.N.; Aleixo, G.F.P.; Trombine-Batista, I.E.; Giuffrida, R.; Keller, R.; Bremer-Neto, H. Systematic Review and Meta-Analysis of Preclinical Trials Demonstrate Robust Beneficial Effects of Prebiotics in Induced Inflammatory Bowel Disease. J. Nutr. Biochem. 2018, 62, 1–8. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Wu, H.; Zhu, P.; Mo, X.; Ma, X.; Ying, J. Intake of Polyunsaturated Fatty Acids and Risk of Preclinical and Clinical Type 1 Diabetes in Children—A Systematic Review and Meta-Analysis. Eur. J. Clin. Nutr. 2019, 73, 1–8. [Google Scholar] [CrossRef]
- Zeng, L.; Yu, G.; Wu, Y.; Hao, W.; Zeng, L. The Effectiveness and Safety of Probiotic Supplements for Psoriasis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Preclinical Trials. J. Immunol. Res. 2021, 2021, 7552546. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- WebPlotDigitizer—Copyright 2010–2024 Ankit Rohatgi. Available online: https://automeris.io/wpd/?v=5_1 (accessed on 29 August 2024).
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s Risk of Bias Tool for Animal Studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Tientcheu, J.P.D.; Ngueguim, F.T.; Gounoue, R.K.; Mbock, M.A.; Ngapout, R.; Kandeda, A.K.; Dimo, T. The Extract of Sclerocarya birrea, Nauclea latifolia, and Piper longum Mixture Ameliorates Diabetes-Associated Cognitive Dysfunction. Metab. Brain Dis. 2023, 38, 2773–2796. [Google Scholar] [CrossRef]
- Djientcheu Tientcheu, J.P.; Ngueguim Tsofack, F.; Gounoue, R.K.; Fifen, R.N.; Dzeufiet, P.D.D.; Dimo, T. The Aqueous Extract of Sclerocarya birrea, Nauclea latifolia, and Piper longum Mixture Protects Striatal Neurons and Movement-Associated Functionalities in a Rat Model of Diabetes-Induced Locomotion Dysfunction. Evid. Based Complement. Altern. Med. 2023, 1–11. [Google Scholar] [CrossRef]
- Ojewole, J.A.O. Vasorelaxant and Hypotensive Effects of Sclerocarya birrea (A Rich) Hochst (Anacardiaceae) Stem Bark Aqueous Extract in Rats. Cardiovasc J. S. Afr. 2006, 17, 117–123. [Google Scholar]
- Ojewole, J.A.O. Evaluation of the Analgesic, Anti-Inflammatory and Anti-Diabetic Properties of Sclerocarya birrea (A. Rich.) Hochst. Stem-Bark Aqueous Extract in Mice and Rats. Phytother. Res. 2004, 18, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Dimo, T.; Rakotonirina, S.V.; Tan, P.V.; Azay, J.; Dongo, E.; Kamtchouing, P.; Cros, G. Effect of Sclerocarya birrea (Anacardiaceae) Stem Bark Methylene Chloride/Methanol Extract on Streptozotocin-Diabetic Rats. J. Ethnopharmacol. 2007, 110, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Fotio, A.L.; Dimo, T.; Nguelefack, T.B.; Dzeufiet, P.D.D.; Ngo Lemba, E.; Temdie, R.J.; Ngueguim, F.; Olleros, M.L.; Vesin, D.; Dongo, E.; et al. Acute and Chronic Anti-Inflammatory Properties of the Stem Bark Aqueous and Methanol Extracts of Sclerocarya birrea (Anacardiaceae). Inflammopharmacology 2009, 17, 229–237. [Google Scholar] [CrossRef]
- Gondwe, M.; Kamadyaapa, D.R.; Tufts, M.; Chuturgoon, A.A.; Musabayane, C.T. Sclerocarya birrea [(A. Rich.) Hochst.] [Anacardiaceae] Stem-Bark Ethanolic Extract (SBE) Modulates Blood Glucose, Glomerular Filtration Rate (GFR) and Mean Arterial Blood Pressure (MAP) of STZ-Induced Diabetic Rats. Phytomedicine 2008, 15, 699–709. [Google Scholar] [CrossRef]
- Mabasa, L.; Kotze, A.; Shabalala, S.; Kimani, C.; Gabuza, K.; Johnson, R.; Sangweni, N.F.; Maharaj, V.; Muller, C.J.F. Sclerocarya birrea (Marula) Extract Inhibits Hepatic Steatosis in Db/Db Mice. Int. J. Environ. Res. Public Health 2022, 19, 3782. [Google Scholar] [CrossRef]
- Mawoza, T.; Ojewole, J.A.; Owira, P.M. Contractile Effect of Sclerocarya birrea (A Rich) Hochst (Anacardiaceae) (Marula) Leaf Aqueous Extract on Rat and Rabbit Isolated Vascular Smooth Muscles. Cardiovasc. J. Afr. 2012, 23, 12–17. [Google Scholar] [CrossRef]
- Mogale, M.A.; Lebelo, S.L.; Thovhogi, N.; de Freitas, A.N.; Shai, L.J. α-Amylase and α-Glucosidase Inhibitory Effects of Sclerocarya birrea [(A. Rich.) Hochst.] Subspecies Caffra (Sond) Kokwaro (Anacardiaceae) Stem-Bark Extracts. Afr. J. Biotechnol. 2011, 10, 15033–15039. [Google Scholar] [CrossRef]
- Makom Ndifossap, I.G.; Frigerio, F.; Casimir, M.; Ngueguim Tsofack, F.; Dongo, E.; Kamtchouing, P.; Dimo, T.T.; Maechler, P.; Ndifossap, I.G.M.; Frigerio, F.; et al. Sclerocarya birrea (Anacardiaceae) Stem-Bark Extract Corrects Glycaemia in Diabetic Rats and Acts on Beta-Cells by Enhancing Glucose-Stimulated Insulin Secretion. J. Endocrinol. 2010, 205, 79–86. [Google Scholar] [CrossRef]
- Ojewole, J.A.O. Hypoglycemic Effect of Sclerocarya birrea [(A. Rich.) Hochst.] [Anacardiaceae] Stem-Bark Aqueous Extract in Rats. Phytomedicine 2003, 10, 675–681. [Google Scholar] [CrossRef]
- Sewani-Rusike, C.R.; Ntongazana, O.; Engwa, G.A.; Musarurwa, H.T.; Nkeh-Chungag, B.N. Sclerocarya birrea Fruit Peel Ameliorates Diet-Induced Obesity and Selected Parameters of Metabolic Syndrome in Female Wistar Rats. Pharmacogn. Mag. 2021, 17, 482–491. [Google Scholar]
- Dama, A.; Shpati, K.; Daliu, P.; Dumur, S.; Gorica, E.; Santini, A. Targeting Metabolic Diseases: The Role of Nutraceuticals in Modulating Oxidative Stress and Inflammation. Nutrients 2024, 16, 507. [Google Scholar] [CrossRef] [PubMed]
- Ellis, L.R.; Zulfiqar, S.; Holmes, M.; Marshall, L.; Dye, L.; Boesch, C. A Systematic Review and Meta-Analysis of the Effects of Hibiscus sabdariffa on Blood Pressure and Cardiometabolic Markers. Nutr. Rev. 2022, 80, 1723–1737. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Su, F.; Wang, G.; Peng, Z.; Xu, Y.; Zhang, Y.; Xu, N.; Hou, K.; Hu, Z.; Chen, Y.; et al. Glucose-Lowering Effect of Berberine on Type 2 Diabetes: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 1015045. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Gao, C.; Wang, H.; Ren, Y.; Li, J.; Li, M.; Du, X.; Li, W.; Zhang, J. Effects of Dietary Polyphenol Curcumin Supplementation on Metabolic, Inflammatory, and Oxidative Stress Indices in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2023, 14, 1216708. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, Z.; Zheng, T.Z.; Bassig, B.A.; Mao, C.; Liu, X.; Zhu, Y.; Shi, K.; Ge, J.; Yang, Y.J.; et al. Green Tea Consumption and Risk of Cardiovascular and Ischemic Related Diseases: A Meta-Analysis. Int. J. Cardiol. 2016, 202, 967–974. [Google Scholar] [CrossRef]
- Sahebkar, A.; Beccuti, G.; Simental-Mendía, L.E.; Nobili, V.; Bo, S. Nigella sativa (Black Seed) Effects on Plasma Lipid Concentrations in Humans: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Pharmacol. Res. 2016, 106, 37–50. [Google Scholar] [CrossRef]
- Shekarchizadeh-Esfahani, P.; Arab, A.; Ghaedi, E.; Hadi, A.; Jalili, C. Effects of Cardamom Supplementation on Lipid Profile: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Phytother. Res. 2020, 34, 475–485. [Google Scholar] [CrossRef]
- Allen, R.W.; Schwartzman, E.; Baker, W.L.; Coleman, C.I.; Phung, O.J. Cinnamon Use in Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis. Ann. Fam. Med. 2013, 11, 452–459. [Google Scholar] [CrossRef]
- Goel, S.; Singh, R.; Singh, V.; Singh, H.; Kumari, P.; Chopra, H.; Sharma, R.; Nepovimova, E.; Valis, M.; Kuca, K.; et al. Metformin: Activation of 5′ AMP-Activated Protein Kinase and Its Emerging Potential beyond Anti-Hyperglycemic Action. Front. Genet. 2022, 13, 1022739. [Google Scholar] [CrossRef]
- Entezari, M.; Hashemi, D.; Taheriazam, A.; Zabolian, A.; Mohammadi, S.; Fakhri, F.; Hashemi, M.; Hushmandi, K.; Ashrafizadeh, M.; Zarrabi, A.; et al. AMPK Signaling in Diabetes Mellitus, Insulin Resistance and Diabetic Complications: A Pre-Clinical and Clinical Investigation. Biomed. Pharmacother. 2022, 146, 112563. [Google Scholar] [CrossRef]
- Cádiz-Gurrea, M.d.l.L.; Lozano-Sánchez, J.; Fernández-Ochoa, Á.; Segura-Carretero, A. Enhancing the Yield of Bioactive Compounds from Sclerocarya birrea Bark by Green Extraction Approaches. Molecules 2019, 24, 966. [Google Scholar] [CrossRef] [PubMed]
- Legeay, S.; Rodier, M.; Fillon, L.; Faure, S.; Clere, N. Epigallocatechin Gallate: A Review of Its Beneficial Properties to Prevent Metabolic Syndrome. Nutrients 2015, 7, 5443. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Chan, C.B. Epicatechin Potentiation of Glucose-Stimulated Insulin Secretion in INS-1 Cells Is Not Dependent on Its Antioxidant Activity. Acta Pharmacol. Sin. 2018, 39, 893. [Google Scholar] [CrossRef] [PubMed]
- Manco, M.; Panunzi, S.; Macfarlane, D.P.; Golay, A.; Melander, O.; Konrad, T.; Petrie, J.R.; Mingrone, G. One-Hour Plasma Glucose Identifies Insulin Resistance and β-Cell Dysfunction in Individuals with Normal Glucose Tolerance: Cross-Sectional Data from the Relationship between Insulin Sensitivity and Cardiovascular Risk (RISC) Study. Diabetes Care 2010, 33, 2090. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.A.; Tripathy, D.; Defronzo, R.A. Contributions of Beta-Cell Dysfunction and Insulin Resistance to the Pathogenesis of Impaired Glucose Tolerance and Impaired Fasting Glucose. Diabetes Care 2006, 29, 1130–1139. [Google Scholar] [CrossRef]
- Victoria-Montesinos, D. Ensayo Clínico Aleatorizado Para Determinar La Eficacia de Sclerocarya birrea En El Control Metabólico Glucídico de Sujetos Con Prediabetes. Ph.D. Thesis, Universidad Catolica De Murcia, Murcia, Spain, 2021. [Google Scholar]
- Zhou, M.; Konigsberg, W.H.; Hao, C.; Pan, Y.; Sun, J.; Wang, X. Bioactivity and Mechanisms of Flavonoids in Decreasing Insulin Resistance. J. Enzyme. Inhib. Med. Chem. 2023, 38, 2199168. [Google Scholar] [CrossRef]
- Kgopa, A.H.; Shai, L.J.; Mogale, M.A. Effects of Sclerocarya birrea Stem-Bark Extracts on Glucose Uptake, Insulin Synthesis and Expression of Selected Genes Involved in the Synthesis and Secretion of Insulin in Rat Insulinoma Pancreatic Beta Cells. Asian J. Chem. 2020, 32, 2195–2202. [Google Scholar] [CrossRef]
- Martín, M.Á.; Ramos, S. Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells 2021, 10, 1474. [Google Scholar] [CrossRef]
- Klec, C.; Ziomek, G.; Pichler, M.; Malli, R.; Graier, W.F. Calcium Signaling in SS-Cell Physiology and Pathology: A Revisit. Int. J. Mol. Sci. 2019, 20, 6110. [Google Scholar] [CrossRef]
- Borochov-Neori, H.; Judeinstein, S.; Greenberg, A.; Fuhrman, B.; Attias, J.; Volkova, N.; Hayek, T.; Aviram, M. Phenolic Antioxidants and Antiatherogenic Effects of Marula (Sclerocarrya birrea Subsp. caffra) Fruit Juice in Healthy Humans. J. Agric. Food Chem. 2008, 56, 9884–9891. [Google Scholar] [CrossRef]
- Victoria-Montesinos, D.; Sánchez-Macarro, M.; Gabaldón-Hernández, J.A.; Abellán-Ruiz, M.S.; Querol-Calderón, M.; Luque-Rubia, A.J.; Bernal-Morell, E.; Ávila-Gandía, V.; López-Román, F.J. Effect of Dietary Supplementation with a Natural Extract of Sclerocarya birrea on Glycemic Metabolism in Subjects with Prediabetes: A Randomized Double-Blind Placebo-Controlled Study. Nutrients 2021, 13, 1948. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Miglionico, R.; Carmosino, M.; Bisaccia, F.; Andrade, P.B.; Valentão, P.; Milella, L.; Armentano, M.F. A Comparative Study on Phytochemical Profiles and Biological Activities of Sclerocarya birrea (A.Rich.) Hochst Leaf and Bark Extracts. Int. J. Mol. Sci. 2018, 19, 186. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xin, Y.; Mo, Y.; Marozik, P.; He, T.; Guo, H. The Bioavailability and Biological Activities of Phytosterols as Modulators of Cholesterol Metabolism. Molecules 2022, 27, 523. [Google Scholar] [CrossRef] [PubMed]
- Bougarne, N.; Weyers, B.; Desmet, S.J.; Deckers, J.; Ray, D.W.; Staels, B.; De Bosscher, K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr. Rev. 2018, 39, 760–802. [Google Scholar] [CrossRef]
- Zandbergen, F.; Plutzky, J. PPARα in Atherosclerosis and Inflammation. Biochim. Biophys. Acta 2007, 1771, 972. [Google Scholar] [CrossRef]
- Magaia, T.L.J.; Skog, K. Composition of Amino Acids, Fatty Acids and Dietary Fibre Monomers in Kernels of Adansonia Digitata and Sclerocarya birrea. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 12441–12454. [Google Scholar] [CrossRef]
- Feingold, K.R. The Effect of Diet on Cardiovascular Disease and Lipid and Lipoprotein Levels. Endotext 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570127/ (accessed on 30 August 2024).
- Sucato, V.; Ortello, A.; Comparato, F.; Novo, G.; Galassi, A.R. Cholesterol-Lowering Strategies for Cardiovascular Disease Prevention: The Importance of Intensive Treatment and the Simplification of Medical Therapy. J. Clin. Med. 2024, 13, 1882. [Google Scholar] [CrossRef]
- Poli, A.; Marangoni, F.; Corsini, A.; Manzato, E.; Marrocco, W.; Martini, D.; Medea, G.; Visioli, F. Phytosterols, Cholesterol Control, and Cardiovascular Disease. Nutrients 2021, 13, 2810. [Google Scholar] [CrossRef]
- Zhao, Y.; Vanhoutte, P.M.; Leung, S.W.S. Vascular Nitric Oxide: Beyond ENOS. J. Pharmacol. Sci. 2015, 129, 83–94. [Google Scholar] [CrossRef]
- Matsubara, K.; Higaki, T.; Matsubara, Y.; Nawa, A. Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia. Int. J. Mol. Sci. 2015, 16, 4600. [Google Scholar] [CrossRef]
- Fengjuan, L.; Takahashi, Y.; Yamaki, K. Inhibitory Effect of Catechin-Related Compounds on Renin Activity. Biomed. Res. 2013, 34, 167–171. [Google Scholar] [CrossRef]
- Chakraborty, R.; Roy, S. Angiotensin-Converting Enzyme Inhibitors from Plants: A Review of Their Diversity, Modes of Action, Prospects, and Concerns in the Management of Diabetes-Centric Complications. J. Integr. Med. 2021, 19, 478–492. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, L.; Castillo, J.; Quiñones, M.; Garcia-Vallvé, S.; Arola, L.; Pujadas, G.; Muguerza, B. Inhibition of Angiotensin-Converting Enzyme Activity by Flavonoids: Structure-Activity Relationship Studies. PLoS ONE 2012, 7, 49493. [Google Scholar] [CrossRef] [PubMed]
- Armentano, M.F.; Bisaccia, F.; Miglionico, R.; Russo, D.; Nolfi, N.; Carmosino, M.; Andrade, P.B.; Valentão, P.; Diop, M.S.; Milella, L. Antioxidant and Proapoptotic Activities of Sclerocarya birrea [(A. Rich.) Hochst.] Methanolic Root Extract on the Hepatocellular Carcinoma Cell Line HepG2. BioMed Res. Int. 2015, 2015, 561589. [Google Scholar] [CrossRef]
- Krawczyk, M.; Burzynska-Pedziwiatr, I.; Wozniak, L.A.; Bukowiecka-Matusiak, M. Impact of Polyphenols on Inflammatory and Oxidative Stress Factors in Diabetes Mellitus: Nutritional Antioxidants and Their Application in Improving Antidiabetic Therapy. Biomolecules 2023, 13, 1402. [Google Scholar] [CrossRef]
- Iqbal, I.; Wilairatana, P.; Saqib, F.; Nasir, B.; Wahid, M.; Latif, M.F.; Iqbal, A.; Naz, R.; Mubarak, M.S. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023, 28, 6403. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef]
- Lekhuleni, I.L.; Shabalala, A.; Maluleke, M.K. Quality Aspects of Marula (Sclerocarya birrea) Fruit, Nutritional Composition, and the Formation of Value-Added Products for Human Nutrition: A Review. Discov. Food 2024, 4, 35. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism Pathways of Arachidonic Acids: Mechanisms and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef]
- Morvaridzadeh, M.; Sepidarkish, M.; Farsi, F.; Akbari, A.; Mostafai, R.; Omidi, A.; Potter, E.; Heshmati, J. Effect of Cashew Nut on Lipid Profile: A Systematic Review and Meta-Analysis. Complement. Med. Res. 2020, 27, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.E.; Sepehry, A.A.; Wangsgaard, J.D.; Koenig, J.E. The Effect of S-Adenosylmethionine on Cognitive Performance in Mice: An Animal Model Meta-Analysis. PLoS ONE 2014, 9, e107756. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Serban, M.C.; Ursoniu, S.; Banach, M. Effect of Curcuminoids on Oxidative Stress: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Funct. Foods. 2015, 18, 898–909. [Google Scholar] [CrossRef]
Authors (Year) | Species/Strain | Sex | DM Inducing Agent | Duration of Intervention | Type of Intervention | Dose (Route) | Outcome | Additional Parameters | Organ/System Affected | Control/Comparison Group | Conclusions |
---|---|---|---|---|---|---|---|---|---|---|---|
Dimo et al. (2007) [25] | Male Wistar rats | Male | STZ | Acute and chronic (up to 21 days) | Stem bark methylene chloride/methanol extract of SB | 150 mg/kg and 300 mg/kg, oral administration | Significant reduction in blood glucose, increased plasma insulin levels, prevention of body weight loss, improved glucose tolerance | Reduced plasma cholesterol, triglyceride, and urea levels at 300 mg/kg dose, a significant decrease in food and fluid intake, improved oral glucose tolerance test | Blood glucose regulation, insulin secretion, body weight, plasma cholesterol, triglycerides, urea levels | Diabetic rats treated with distilled water; diabetic rats treated with metformin (500 mg/kg) | SB extract improves glucose homeostasis in STZ-induced diabetic rats, possibly by stimulating insulin secretion and reducing glucose absorption |
Fotio et al. (2009) [26] | Wistar rats | Male and Female | None | Acute and chronic (up to 21 days) | Stem bark aqueous and methanol extracts of SB | 150 mg/kg and 300 mg/kg, oral administration | Significant inhibition of paw edema, reduction in nitrite levels, increase in GSH levels, decrease in MDA levels | Evaluated on carrageenan-, histamine-, serotonin-induced acute inflammation; formalin- and CFA-induced chronic inflammation | Inflammation (paw edema), oxidative stress | Rats treated with distilled water, rats treated with indomethacin, diclofenac, dexamethasone | SB extracts exhibit significant anti-inflammatory activity by inhibiting histamine and prostaglandin pathways and exhibiting antioxidant properties |
Gondwe et al. (2008) [27] | Wistar rats | Male | STZ | Acute and chronic (up to 5 weeks) | Stem bark ethanolic extract of SB | 60, 120, 240 mg/kg, orally | Dose-dependent reduction in blood glucose; decreased plasma urea and creatinine levels; increased GFR; reduced MAP | Studied acute and chronic effects; evaluated effects on renal function, mean arterial blood pressure, and insulin levels | Blood glucose, renal function, MAP | Rats treated with deionized water, insulin, metformin, glibenclamide, propranolol | SB shows potential hypoglycemic, renoprotective, and hypotensive effects, suggesting its use as a complementary remedy in diabetes management |
Mabasa et al. (2022) [28] | db/db mice | NR | Genetic mutation (Leprdb/db) | 4 weeks | MLE | 600 mg/kg, orally | MLE reduced body weight and liver weight, decreased hepatic steatosis, downregulated Fasn, and upregulated Pparα and Cpt1. No significant effect on blood glucose. | Study included histological assessment, gene expression analysis (qRT-PCR), and protein expression analysis (Western blot). | Liver, hepatic steatosis | Obese control, metformin-treated group | MLE inhibits hepatic steatosis via activation of β-oxidation and reduction in lipogenesis, potentially influencing DNA methylation processes |
Mawoza et al. (2012) [29] | Wistar rats, New Zealand white rabbits | Male and female | None | Acute | SB leaf aqueous extract | 50–400 mg/mL | SB extract caused significant, concentration-dependent contractile effects on rabbit aortic rings and rat portal veins. Verapamil reduced these effects, indicating the involvement of calcium channels. | Investigated contractile effects with endothelium-intact/-denuded tissues, and involvement of COX and nitric oxide pathways using L-NAME and indomethacin. | Vascular smooth muscles (aortic rings, portal veins) | Endothelium-intact vs. endothelium-denuded aortic rings; presence vs. absence of inhibitors (verapamil, L-NAME, indomethacin) | SB extract may have spasmogenic effects, potentially increasing blood pressure. Contrary to its traditional use for hypertension, SB extract might induce or exacerbate hypertension |
Mogale et al. (2011) [30] | Albino Wistar rats | Male | Alloxan monohydrate | Acute | SB stem bark extracts | 300 mg/kg (oral) | SB hexane extract significantly inhibited α-glucosidase activity in vitro, comparable to acarbose, and suppressed postprandial hyperglycemia in vivo following sucrose load. It did not affect PPHG after starch or glucose load. | α-Amylase and α-glucosidase inhibition; tested with starch and sucrose tolerance tests. | Digestive system (intestinal enzymes) | Acarbose as a comparison for α-amylase and α-glucosidase inhibition. Normal and diabetic rats treated with water. | SB hexane extract may effectively inhibit α-glucosidase and suppress PPHG with fewer side effects compared to acarbose |
Ndifossap et al. (2010) [31] | Wistar rats | Male | STZ, preceded by nicotinamide | Acute and chronic (up to 2 weeks) | SB stem-bark extract | 150 mg/kg and 300 mg/kg (oral) | SB extract corrected hyperglycemia and restored plasma insulin levels. Enhanced glucose-stimulated insulin secretion in INS-1E cells and isolated rat islets after 24 h exposure. | Glucose tolerance test; insulin secretion assays; ATP generation; gene expression analysis. | Pancreatic β-cells | Non-diabetic and diabetic control groups; Glibenclamide-treated group | SB extract enhanced glucose metabolism and insulin secretion, suggesting potential for managing diabetes by acting on pancreatic β-cells |
Ngueguim et al. (2016) [11] | Wistar rats | Male | oxidized palm oil (10%) and sucrose (10%) | Acute and chronic (16 weeks + 3 weeks intervention) | SB stem-bark aqueous extract | 150 mg/kg and 300 mg/kg (oral) | Reduced hyperglycemia, improved glucose tolerance and insulin sensitivity, reduced body weight and abdominal fat, decreased oxidative stress and blood pressure | OGTT, insulin tolerance test, lipid profile, ALT and AST levels, SOD and catalase activity, nitrites, MDA levels | Liver, kidney, heart, aorta, and pancreas | Standard diet group, SOPO + S diet group, glibenclamide group | SB extract demonstrated hypoglycemic, antihyperlipidemic, antihypertensive, and antioxidant properties, supporting its traditional use in managing diabetes |
Ojewole (2003) [32] | Wistar rats | Male | STZ | Acute treatment | SB stem-bark aqueous extract | 100–800 mg/kg (oral) | Dose-dependent hypoglycemic effect, with significant reductions in blood glucose levels observed | Blood glucose measurements at different time intervals | Pancreas, blood glucose levels | Normal control rats, chlorpropamide (250 mg/kg) | SB extract exhibits hypoglycemic effects, supporting its traditional use in managing type 2 diabetes mellitus in African communities |
Sewani-Rusike et al. (2021) [33] | Wistar rats | Female | HED | Acute and chronic (4 weeks after 15 weeks HED) | SB fruit peel extract | 100 mg/kg BW and 200 mg/kg BW (oral) | Reduced body weight, visceral fat, total cholesterol, insulin, and HOMA-IR; improved glucose tolerance and reduced hepatic steatosis. Blood pressure, triglycerides, and LDL cholesterol levels remained high. | Fasting glucose, OGTT, blood pressure, visceral fat, liver lipids | Liver, adipose tissue | Normal diet control, HED control | SB fruit peel extract ameliorates diet-induced obesity and metabolic syndrome by reducing visceral fat, improving insulin resistance, inflammation, and NAFLD; stabilizing leptin: adiponectin balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Victoria-Montesinos, D.; Ballester, P.; Barcina-Pérez, P.; García-Muñoz, A.M. Systematic Review and Meta-Analysis of Sclerocarya birrea on Metabolic Disorders: Evidence from Preclinical Studies. Metabolites 2024, 14, 615. https://doi.org/10.3390/metabo14110615
Victoria-Montesinos D, Ballester P, Barcina-Pérez P, García-Muñoz AM. Systematic Review and Meta-Analysis of Sclerocarya birrea on Metabolic Disorders: Evidence from Preclinical Studies. Metabolites. 2024; 14(11):615. https://doi.org/10.3390/metabo14110615
Chicago/Turabian StyleVictoria-Montesinos, Desirée, Pura Ballester, Pablo Barcina-Pérez, and Ana María García-Muñoz. 2024. "Systematic Review and Meta-Analysis of Sclerocarya birrea on Metabolic Disorders: Evidence from Preclinical Studies" Metabolites 14, no. 11: 615. https://doi.org/10.3390/metabo14110615
APA StyleVictoria-Montesinos, D., Ballester, P., Barcina-Pérez, P., & García-Muñoz, A. M. (2024). Systematic Review and Meta-Analysis of Sclerocarya birrea on Metabolic Disorders: Evidence from Preclinical Studies. Metabolites, 14(11), 615. https://doi.org/10.3390/metabo14110615