The Roles of Vitamin D Levels, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), and Inflammatory Markers in Predicting Mortality in Intensive Care Patients: A New Biomarker Link?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Laboratory Parameters
2.3. Measurements of Gla-Rich Protein (GRP) and Dephosphorylated Uncarboxylated Matrix Gla Protein (dp-ucMGP)
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soares Pinheiro, F.G.M.; Santana Santos, E.; Barreto, I.D.C.; Weiss, C.; Vaez, A.C.; Oliveira, J.C.; Melo, M.S.; Silva, F.A. Mortality Predictors and Associated Factors in Patients in the Intensive Care Unit: A Cross-Sectional Study. Crit. Care Res. Pract. 2020, 2020, 1483827. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Hao, C.; Tang, S. From sepsis to acute respiratory distress syndrome (ARDS): Emerging preventive strategies based on molecular and genetic researches. Biosci. Rep. 2020, 40, BSR20200830. [Google Scholar] [CrossRef] [PubMed]
- Cusack, R.; Bos, L.D.; Povoa, P.; Martin-Loeches, I. Endothelial dysfunction triggers acute respiratory distress syndrome in patients with sepsis: A narrative review. Front. Med. 2023, 10, 1203827. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.A.; Gomes, A.M.C.; Fernandes, S.M. Monitoring of the Forgotten Immune System during Critical Illness-A Narrative Review. Medicina 2022, 59, 61. [Google Scholar] [CrossRef]
- Mihai, A.; Caruntu, A.; Opris-Belinski, D.; Jurcut, C.; Dima, A.; Caruntu, C.; Ionescu, R. The Predictive Role of Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR), Monocytes-to-Lymphocyte Ratio (MLR) and Gammaglobulins for the Development of Cutaneous Vasculitis Lesions in Primary Sjogren’s Syndrome. J. Clin. Med. 2022, 11, 5525. [Google Scholar] [CrossRef]
- Sefil, F.; Ulutas, K.T.; Dokuyucu, R.; Sumbul, A.T.; Yengil, E.; Yagiz, A.E.; Yula, E.; Ustun, I.; Gokce, C. Investigation of neutrophil lymphocyte ratio and blood glucose regulation in patients with type 2 diabetes mellitus. J. Int. Med. Res. 2014, 42, 581–588. [Google Scholar] [CrossRef]
- Ng, W.W.; Lam, S.M.; Yan, W.W.; Shum, H.P. NLR, MLR, PLR and RDW to predict outcome and differentiate between viral and bacterial pneumonia in the intensive care unit. Sci. Rep. 2022, 12, 15974. [Google Scholar] [CrossRef]
- Yoldas, H.; Karagoz, I.; Ogun, M.N.; Velioglu, Y.; Yildiz, I.; Bilgi, M.; Demirhan, A. Novel Mortality Markers for Critically Ill Patients. J. Intensive Care Med. 2020, 35, 383–385. [Google Scholar] [CrossRef]
- Zhai, G.; Wang, J.; Liu, Y.; Zhou, Y. Platelet-lymphocyte ratio as a new predictor of in-hospital mortality in cardiac intensive care unit patients. Sci. Rep. 2021, 11, 23578. [Google Scholar] [CrossRef]
- Botos, I.D.; Pantis, C.; Bodolea, C.; Nemes, A.; Crisan, D.; Avram, L.; Negrau, M.O.; Hiriscau, I.E.; Craciun, R.; Puia, C.I. The Dynamics of the Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Predict Progression to Septic Shock and Death in Patients with Prolonged Intensive Care Unit Stay. Medicina 2022, 59, 32. [Google Scholar] [CrossRef]
- Huang, N.; Chen, J.; Wei, Y.; Liu, Y.; Yuan, K.; Chen, J.; He, M.; Liu, N. Multi-marker approach using C-reactive protein, procalcitonin, neutrophil CD64 index for the prognosis of sepsis in intensive care unit: A retrospective cohort study. BMC Infect. Dis. 2022, 22, 662. [Google Scholar] [CrossRef] [PubMed]
- August, B.A.; Kale-Pradhan, P.B.; Giuliano, C.; Johnson, L.B. Biomarkers in the intensive care setting: A focus on using procalcitonin and C-reactive protein to optimize antimicrobial duration of therapy. Pharmacotherapy 2023, 43, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Bilgin, M.; Akkaya, E.; Dokuyucu, R. Inflammatory and Metabolic Predictors of Mortality in Pulmonary Thromboembolism: A Focus on the Triglyceride–Glucose Index and Pan-Immune Inflammation Value. J. Clin. Med. 2024, 13, 6008. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.B.; Xu, Y.H.; He, Y.; Lin, X.H.; Suo, Z.; Shu, H.; Zhang, H. Association between admission pan-immune-inflammation value and short-term mortality in septic patients: A retrospective cohort study. Sci. Rep. 2024, 14, 15205. [Google Scholar] [CrossRef]
- Bilgin, M.; Akkaya, E.; Dokuyucu, R. The Role of Triglyceride/HDL Ratio, Triglyceride–Glucose Index, and Pan-Immune-Inflammation Value in the Differential Diagnosis of Acute Coronary Syndrome and Predicting Mortality. J. Clin. Med. 2024, 13, 4832. [Google Scholar] [CrossRef]
- Yeh, C.C.; Kao, H.K.; Huang, Y.; Tsai, T.Y.; Young, C.K.; Hung, S.Y.; Lu, C.Y.; Chang, K.P. Discovering the Clinical and Prognostic Role of Pan-Immune-Inflammation Values on Oral Cavity Squamous Cell Carcinoma. Cancers 2023, 15, 322. [Google Scholar] [CrossRef]
- Kurtulus, B.; Atilgan, N.; Yilmaz, M.; Dokuyucu, R. Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis. J. Clin. Med. 2024, 13, 5159. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Association of the Inactive Circulating Matrix Gla Protein with Vitamin K Intake, Calcification, Mortality, and Cardiovascular Disease: A Review. Int. J. Mol. Sci. 2019, 20, 628. [Google Scholar] [CrossRef]
- Mulder, M.M.G.; Schellens, J.; Sels, J.-W.E.M.; van Rosmalen, F.; Hulshof, A.-M.; de Vries, F.; Segers, R.; Mihl, C.; van Mook, W.N.K.A.; Bast, A.; et al. Higher levels of circulating desphospho-uncarboxylated matrix Gla protein over time are associated with worse survival: The prospective Maastricht Intensive Care COVID cohort. J. Intensive Care 2023, 11, 63. [Google Scholar] [CrossRef]
- Karateke, F.; Karateke, A.; Topdagi, B.; Atilgan, M.; Dokuyucu, R. The Role of Mannitol and Vitamin D in Ovarian Ischemia/Reperfusion Injury in Rats with Acute Abdominal. Curr. Issues Mol. Biol. 2024, 46, 8903–8913. [Google Scholar] [CrossRef]
- Herrera-Quintana, L.; Gamarra-Morales, Y.; Vazquez-Lorente, H.; Molina-Lopez, J.; Castano-Perez, J.; Machado-Casas, J.F.; Coca-Zuniga, R.; Perez-Villares, J.M.; Planells, E. Bad Prognosis in Critical Ill Patients with COVID-19 during Short-Term ICU Stay regarding Vitamin D Levels. Nutrients 2021, 13, 1988. [Google Scholar] [CrossRef] [PubMed]
- Orchard, L.; Baldry, M.; Nasim-Mohi, M.; Monck, C.; Saeed, K.; Grocott, M.P.W.; Ahilanandan, D. Vitamin-D levels and intensive care unit outcomes of a cohort of critically ill COVID-19 patients. Clin. Chem. Lab. Med. 2021, 59, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Moisa, E.; Corneci, D.; Negoita, S.; Filimon, C.R.; Serbu, A.; Negutu, M.I.; Grintescu, I.M. Dynamic Changes of the Neutrophil-to-Lymphocyte Ratio, Systemic Inflammation Index, and Derived Neutrophil-to-Lymphocyte Ratio Independently Predict Invasive Mechanical Ventilation Need and Death in Critically Ill COVID-19 Patients. Biomedicines 2021, 9, 1656. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, Y.; Liu, Q. Study on the levels of main inflammatory factors in septic shock and their clinical significance. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019, 31, 680–683. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Le Borgne, P.; Lefevbre, F.; Cipolat, L.; Remillon, A.; Dib, C.; Hoffmann, M.; Gardeur, I.; Sabah, J.; Kepka, S.; et al. Platelet-to-Lymphocyte Ratio (PLR) Is Not a Predicting Marker of Severity but of Mortality in COVID-19 Patients Admitted to the Emergency Department: A Retrospective Multicenter Study. J. Clin. Med. 2022, 11, 4903. [Google Scholar] [CrossRef]
- Moosmann, J.; Krusemark, A.; Dittrich, S.; Ammer, T.; Rauh, M.; Woelfle, J.; Metzler, M.; Zierk, J. Age- and sex-specific pediatric reference intervals for neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and platelet-to-lymphocyte ratio. Int. J. Lab. Hematol. 2022, 44, 296–301. [Google Scholar] [CrossRef]
- Turan, Y.B. The prognostic importance of the pan-immune-inflammation value in patients with septic shock. BMC Infect. Dis. 2024, 24, 69. [Google Scholar] [CrossRef]
- Huang, Y.W.; Zhang, Y.; Li, Z.P.; Yin, X.S. Association between a four-parameter inflammatory index and all-cause mortality in critical ill patients with non-traumatic subarachnoid hemorrhage: A retrospective analysis of the MIMIC-IV database (2012–2019). Front. Immunol. 2023, 14, 1235266. [Google Scholar] [CrossRef]
- Gambichler, T.; Schuleit, N.; Susok, L.; Becker, J.C.; Scheel, C.H.; Torres-Reyes, C.; Overheu, O.; Reinacher-Schick, A.; Schmidt, W. Prognostic Performance of Inflammatory Biomarkers Based on Complete Blood Counts in COVID-19 Patients. Viruses 2023, 15, 1920. [Google Scholar] [CrossRef]
- Hafez, M.A.A.; Shoeib, S.A.; El Khouly, A.M.; Nada, A.M.B.; Wahb, R.K.E. Pan-Immune-Inflammation Value to Predict Early Mortality in Adults with Severe COVID 19: An Observational Retrospective Study. Egypt. J. Hosp. Med. 2023, 92, 6171–6176. [Google Scholar]
- Dahlberg, S.; Schott, U.; Eriksson, E.A.; Tahirsylaj, Y.; Schurgers, L.; Kander, T. Intravenous Vitamin K1 for the Correction of Prolonged Prothrombin Times in Non-Bleeding Critically Ill Patients: A Prospective Observational Study. Nutrients 2021, 13, 2580. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.P.; Dirajlal-Fargo, S.; Durieux, J.C.; Tribout, H.; Labbato, D.; McComsey, G.A. Vitamin K & D Deficiencies Are Independently Associated With COVID-19 Disease Severity. Open Forum Infect. Dis. 2021, 8, ofab408. [Google Scholar] [CrossRef] [PubMed]
- Demirci, R.; Sevinc, C. The Relationship Between Carotid Intima Media Thickness, Inflammation and GLA Rich Protein Levels in Chronic Kidney Disease. Int. J. Gen. Med. 2021, 14, 5119–5126. [Google Scholar] [CrossRef]
- Cambray, S.; Bermudez-Lopez, M.; Garcia-Carrasco, A.; Valdivielso, J.M.; NEFRONA Investigators. Matrix Gla protein polymorphism rs1800802 is associated with atheroma plaque progression and with cardiovascular events in a chronic kidney disease cohort. Clin. Kidney J. 2024, 17, sfad257. [Google Scholar] [CrossRef]
- Potjewijd, J.; Tobal, R.; Boomars, K.A.; van Empel, V.; de Vries, F.; Damoiseaux, J.; Schurgers, L.J.; van Paassen, P. Plasma Dephosphorylated-Uncarboxylated Matrix Gla-Protein in Systemic Sclerosis Patients: Biomarker Potential for Vascular Calcification and Inflammation. Diagnostics 2023, 13, 3526. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Tu, W.P. Vitamin K supplementation and vascular calcification: A systematic review and meta-analysis of randomized controlled trials. Front. Nutr. 2023, 10, 1115069. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Roumeliotis, A.; Stamou, A.; Leivaditis, K.; Kantartzi, K.; Panagoutsos, S.; Liakopoulos, V. The Association of dp-ucMGP with Cardiovascular Morbidity and Decreased Renal Function in Diabetic Chronic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 6035. [Google Scholar] [CrossRef]
- Willeit, K.; Santer, P.; Tschiderer, L.; Pechlaner, R.; Vermeer, C.; Willeit, J.; Kiechl, S. Association of desphospho-uncarboxylated matrix gla protein with incident cardiovascular disease and all-cause mortality: Results from the prospective Bruneck Study. Atherosclerosis 2022, 353, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Shirvani, A.; Reddy, N.; Vodopivec, D.M.; Apovian, C.M.; Holick, M.F. Association of Vitamin D Status With Hospital Morbidity and Mortality in Adult Hospitalized Patients With COVID-19. Endocr. Pract. 2021, 27, 271–278. [Google Scholar] [CrossRef]
- Cervero, M.; López-Wolf, D.; Casado, G.; Novella-Mena, M.; Ryan-Murua, P.; Taboada-Martínez, M.L.; Rodríguez-Mora, S.; Vigón, L.; Coiras, M.; Torres, M. Beneficial Effect of Short-Term Supplementation of High Dose of Vitamin D3 in Hospitalized Patients With COVID-19: A Multicenter, Single-Blinded, Prospective Randomized Pilot Clinical Trial. Front. Pharmacol. 2022, 13, 863587. [Google Scholar] [CrossRef]
- Harikrishna, J.; Mohan, A.; Kalyana Chakravarthi, D.P.; Chaudhury, A.; Kumar, B.; Sarma, K.V.S. Serum procalcitonin as a biomarker of bloodstream infection & focal bacterial infection in febrile patients. Indian J. Med. Res. 2020, 151, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Gosav, E.M.; Tanase, D.M.; Buliga-Finis, O.N.; Rezuș, I.-I.; Morariu, P.C.; Floria, M.; Rezus, C. The Prognostic Role of the Neutrophil-to-Lymphocytes Ratio in the Most Frequent Cardiovascular Diseases: An Update. Life 2024, 14, 985. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wei, B.; Wang, J. Study of C-reactive protein, procalcitonin, and immunocyte ratios in 194 patients with sepsis. BMC Emerg. Med. 2021, 21, 81. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Fung, E.; Wong, C.-K.; Ling, L.; Lui, G.; Lai, C.K.C.; Ng, R.W.Y.; Sze, R.K.H.; Ho, W.C.S.; Hui, D.S.C.; et al. Early Metabolomic and Immunologic Biomarkers as Prognostic Indicators for COVID-19. Metabolites 2024, 14, 380. [Google Scholar] [CrossRef]
- Patel, K.V.; Ferrucci, L.; Ershler, W.B.; Longo, D.L.; Guralnik, J.M. Red blood cell distribution width and the risk of death in middle-aged and older adults. Arch. Intern. Med. 2009, 169, 515–523. [Google Scholar] [CrossRef]
- Zhong, L.; Zhong, Y.; Chen, W.; Liang, F.; Liao, Y.; Zhou, Y. Association between haemoglobin-to-red blood cell distribution width ratio at admission and all-cause mortality in adult patients with sepsis in an intensive care unit: A secondary analysis of the MIMIC-IV database. BMJ Open 2024, 14, e081340. [Google Scholar] [CrossRef]
Patients (N = 160) Mean ± SD | Normal Range for Healthy Individual | |
---|---|---|
Age (years) | 60.5 ± 15.8 | |
Gender Male Female | 92 (58%) 68 (42%) | |
Cardiovascular disease, n (%) | 72 (45%) | |
Respiratory system disease, n (%) | 58 (36%) | |
Chronic kidney disease (CKD) | 38 (24%) | |
Diabetes, n (%) | 61 (38%) | |
Hypertension, n (%) | 68 (42%) | |
WBC (×103/µL) | 11.2 ± 3.8 | 4.0–11.0 |
RDW (%) | 14.5 ± 2.1 | 11.5–14.5 |
Platelet (×103/µL) | 190 ± 58 | 150–450 |
Neutrophil (×103/µL) | 7.5 ± 2.9 | 1.5–8.0 |
MPV (fL) | 8.9 ± 1.2 | 7.5–11.5 |
Red blood cell (RBC; ×103/µL) | 4.8 ± 0.5 | 4.5–5.9 (male) 4.0–5.2 (female) |
Hemoglobin (Hb; g/dL) | 14.5 ± 1.3 | 13.8–17.2 (male) 12.1–15.1 (female) |
Monocyte (×103/µL) | 0.7 ± 0.3 | 0.2–0.8 |
Lymphocyte (×103/µL) | 1.0 ± 0.4 | 1.0–4.8 |
Platelet-to-lymphocyte ratio (PLR) | 180 ± 35 | 100–300 |
Neutrophil-to-lymphocyte ratio (NLR) | 7.1 ± 3.0 | 1–3 |
Pan-immune-inflammation value (PIV) | 540 ± 110 | 300–600 |
Ca++ (mg/dL) | 8.9 ± 0.7 | 8.5–10.5 |
CRP (mg/L) | 65 ± 22 | <10 |
Procalcitonin (ng/L) | 2.8 ± 1.2 | <0.5 |
Vitamin D (ng/mL) | 18.5 ± 6.2 | 20–50 |
Gla-rich protein (GRP; μg/mL) | 0.81 ± 0.6 | 0.3–0.8 |
dp-ucMGP (pmol/L) | 720 ± 225 | 300–800 |
Hospital stay (days) | 15.3 ± 6.5 | |
Survivor Non-survivor | 120 (75%) 40 (25%) |
Parameters | Survivor (N = 120) Mean ± SD | Mortality (N = 40) Mean ± SD | p-Value |
---|---|---|---|
WBC (×103/μL) | 10.5 ± 3.2 | 12.0 ± 3.8 | 0.05 |
RDW (%) | 14.0 ± 1.8 | 15.2 ± 2.4 | 0.03 |
Platelet (×103/μL) | 210 ± 60 | 160 ± 50 | 0.01 |
Neutrophil (×103/μL) | 7.0 ± 2.5 | 8.5 ± 3.0 | 0.02 |
MPV (fL) | 8.6 ± 1.0 | 9.2 ± 1.2 | 0.05 |
Monocyte (×103/μL) | 0.7 ± 0.3 | 0.9 ± 0.4 | 0.05 |
Lymphocyte (×103/μL) | 1.2 ± 0.4 | 0.9 ± 0.3 | 0.03 |
Platelet-to-lymphocyte ratio (PLR) | 175 ± 35 | 230 ± 50 | 0.02 |
Neutrophil-to-lymphocyte ratio (NLR) | 6.0 ± 2.5 | 9.0 ± 3.5 | 0.01 |
Pan-immune-inflammation value (PIV) | 450 ± 110 | 610 ± 120 | 0.01 |
Ca++ (mg/dL) | 8.8 ± 0.6 | 8.4 ± 0.7 | 0.04 |
CRP (mg/L) | 32 ± 10 | 78 ± 25 | 0.01 |
Procalcitonin (ng/L) | 2.5 ± 1.1 | 3.8 ± 1.5 | 0.03 |
Vitamin D (ng/mL) | 19.0 ± 6.0 | 12.5 ± 5.0 | 0.02 |
Gla-rich protein (GRP; ng/mL) | 0.76 ± 0.5 | 0.98 ± 0.6 | 0.03 |
dp-ucMGP (pmol/L) | 650 ± 210 | 920 ± 180 | 0.02 |
Variables | Hospital Stay (Days) R Value, p-Value | ICU Mortality R Value, p-Value |
---|---|---|
WBC (×103/μL) | 0.28, 0.02 | 0.35, 0.01 |
RDW (%) | 0.30, 0.01 | 0.40, 0.01 |
Platelet (×103/μL) | −0.20, 0.04 | −0.25, 0.03 |
Neutrophil (×103/μL) | 0.22, 0.03 | 0.30, 0.02 |
MPV (fL) | 0.18, 0.05 | 0.25, 0.03 |
Monocyte (×103/μL) | 0.10, 0.10 | 0.15, 0.08 |
Lymphocyte (×103/μL) | −0.25, 0.03 | −0.30, 0.02 |
Platelet-to-lymphocyte ratio (PLR) | 0.32, 0.01 | 0.35, 0.01 |
Neutrophil-to-lymphocyte ratio (NLR) | 0.40, 0.01 | 0.45, 0.01 |
Pan-immune-inflammation value (PIV) | 0.38, 0.01 | 0.42, 0.01 |
Ca++ (mg/dL) | −0.15, 0.08 | −0.18, 0.06 |
CRP (mg/L) | 0.28, 0.02 | 0.32, 0.01 |
Procalcitonin (ng/L) | 0.35, 0.01 | 0.40, 0.01 |
Vitamin D (ng/mL) | −0.30, 0.02 | −0.40, 0.01 |
GRP (ng/mL) | 0.35, 0.01 | 0.38, 0.01 |
dp-ucMGP (pmol/L) | 0.40, 0.01 | 0.50, 0.001 |
Variable | B | St. Error | Beta | t | p-Value |
---|---|---|---|---|---|
WBC (×103/μL) | 0.15 | 0.05 | 0.20 | 2.98 | 0.01 |
RDW (%) | 0.30 | 0.07 | 0.35 | 4.29 | 0.001 |
Platelet (×103/μL) | −0.10 | 0.04 | −0.25 | −2.50 | 0.02 |
Neutrophil (×103/μL) | 0.18 | 0.06 | 0.22 | 3.00 | 0.01 |
MPV (fL) | 0.08 | 0.03 | 0.20 | 2.67 | 0.02 |
Monocyte (×103/μL) | 0.12 | 0.05 | 0.15 | 2.40 | 0.03 |
Lymphocyte (×103/μL) | −0.20 | 0.06 | −0.25 | −3.33 | 0.01 |
Platelet-to-lymphocyte ratio (PLR) | 0.22 | 0.07 | 0.30 | 3.14 | 0.01 |
Neutrophil-to-lymphocyte ratio (NLR) | 0.35 | 0.08 | 0.40 | 4.38 | 0.001 |
Pan-immune-inflammation value (PIV) | 0.40 | 0.09 | 0.42 | 4.44 | 0.001 |
Ca++ (mg/dL) | −0.10 | 0.04 | −0.18 | −2.50 | 0.02 |
CRP (mg/L) | 0.28 | 0.07 | 0.32 | 3.57 | 0.01 |
Procalcitonin (ng/L) | 0.35 | 0.08 | 0.40 | 4.38 | 0.001 |
Vitamin D (ng/mL) | −0.40 | 0.10 | −0.45 | −4.00 | 0.001 |
GRP (ng/mL) | 0.25 | 0.07 | 0.35 | 3.57 | 0.01 |
dp-ucMGP (pmol/L) | 0.20 | 0.06 | 0.30 | 3.25 | 0.01 |
ICU Mortality | |||
---|---|---|---|
Odds Ratio | 95% CI | p-Value | |
WBC (×103/μL) | 1.20 | 1.05–1.35 | 0.02 |
RDW (%) | 1.35 | 1.10–1.60 | 0.01 |
Platelet (×103/μL) | 0.85 | 0.75–0.95 | 0.02 |
Neutrophil (×103/μL) | 1.25 | 1.10–1.40 | 0.01 |
MPV (fL) | 1.20 | 1.05–1.35 | 0.02 |
Monocyte (×103/μL) | 1.10 | 0.95–1.25 | 0.08 |
Lymphocyte (×103/μL) | 0.85 | 0.75–0.95 | 0.03 |
Platelet-to-lymphocyte ratio (PLR) | 1.30 | 1.10–1.50 | 0.01 |
Neutrophil-to-lymphocyte ratio (NLR) | 1.40 | 1.20–1.60 | 0.001 |
Pan-immune-inflammation value (PIV) | 1.50 | 1.30–1.70 | 0.001 |
Ca++ (mg/dL) | 0.90 | 0.80–1.00 | 0.05 |
CRP (mg/L) | 1.32 | 1.15–1.50 | 0.01 |
Procalcitonin (ng/L) | 1.45 | 1.25–1.65 | 0.001 |
Vitamin D (ng/mL) | 1.30 | 1.10–1.52 | 0.001 |
GRP (ng/mL) | 1.40 | 1.18–1.62 | 0.001 |
dp-ucMGP (pmol/L) | 1.30 | 1.12–1.48 | 0.001 |
Cut-Off | Sensitivity | Specificity | AUC (95% CI) | p-Value | |
---|---|---|---|---|---|
RDW | >14.8 | 0.78 | 0.72 | 0.77 (0.70–0.83) | 0.01 |
PLR | >200 | 0.81 | 0.74 | 0.79 (0.72–0.85) | 0.001 |
NLR | >7.5 | 0.84 | 0.76 | 0.82 (0.75–0.88) | 0.001 |
PIV | >520 | 0.85 | 0.79 | 0.83 (0.77–0.89) | 0.001 |
CRP | >40 | 0.80 | 0.75 | 0.78 (0.72–0.84) | 0.01 |
Procalcitonin | >3.0 | 0.82 | 0.74 | 0.79 (0.73–0.86) | 0.001 |
Vitamin D | <12 | 0.75 | 0.72 | 0.74 (0.68–0.80) | 0.01 |
GRP | >0.90 | 0.83 | 0.77 | 0.82 (0.75–0.88) | 0.001 |
dp-ucMGP | >720 | 0.85 | 0.80 | 0.83 (0.76–0.89) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seğmen, F.; Aydemir, S.; Küçük, O.; Dokuyucu, R. The Roles of Vitamin D Levels, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), and Inflammatory Markers in Predicting Mortality in Intensive Care Patients: A New Biomarker Link? Metabolites 2024, 14, 620. https://doi.org/10.3390/metabo14110620
Seğmen F, Aydemir S, Küçük O, Dokuyucu R. The Roles of Vitamin D Levels, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), and Inflammatory Markers in Predicting Mortality in Intensive Care Patients: A New Biomarker Link? Metabolites. 2024; 14(11):620. https://doi.org/10.3390/metabo14110620
Chicago/Turabian StyleSeğmen, Fatih, Semih Aydemir, Onur Küçük, and Recep Dokuyucu. 2024. "The Roles of Vitamin D Levels, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), and Inflammatory Markers in Predicting Mortality in Intensive Care Patients: A New Biomarker Link?" Metabolites 14, no. 11: 620. https://doi.org/10.3390/metabo14110620
APA StyleSeğmen, F., Aydemir, S., Küçük, O., & Dokuyucu, R. (2024). The Roles of Vitamin D Levels, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), and Inflammatory Markers in Predicting Mortality in Intensive Care Patients: A New Biomarker Link? Metabolites, 14(11), 620. https://doi.org/10.3390/metabo14110620