Leflunomide-Induced Weight Loss: Involvement of DAHPS Activity and Synthesis of Aromatic Amino Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Cells
2.2. Reagent
2.3. Animal Grouping
2.4. Immunohistochemical Method
2.5. Metabolomic Analysis of Liver Flux Target
2.6. Cell Function Test
2.7. Western Blot Analysis
2.8. Isolation of Intestinal Flora Samples
2.9. Detection of DAHPS Activity
2.10. Statistics
3. Results
3.1. Effect of Leflunomide on Body Weight of Mice
3.2. The Effect of Leflunomide on the Polysaccharides and Triglycerides in the Mice Livers
3.3. Leflunomide Inhibited the Biosynthesis of Aromatic Amino Acids
3.4. Leflunomide Induces Endoplasmic Reticulum Stress in Hepatocytes and Causes Mice Liver Injury
3.5. Leflunomide Inhibited the Activity of DAHPS in Intestinal Flora
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, Q.; Wu, C.; Dai, M.; Wang, S.; Xu, J.; Dai, L.; Li, Z.; He, L.; Zhu, X.; Sun, L.; et al. Leflunomide versus azathioprine for maintenance therapy of lupus nephritis: A prospective, multicentre, randomised trial and long-term follow-up. Ann. Rheum. Dis. 2022, 81, 1549–1555. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, N.; Barra, L.; Carette, S.; Cuthbertson, D.; Khalidi, N.A.; Koening, C.L.; Langford, C.A.; McAlear, C.A.; Milman, N.; Moreland, L.W.; et al. Efficacy of leflunomide in the treatment of vasculitis. Clin. Exp. Rheumatol. 2021, 129 (Suppl. 39), 114–118. [Google Scholar] [CrossRef] [PubMed]
- Alamri, R.D.; Elmeligy, M.A.; Albalawi, G.A.; Alquayr, S.M.; Alsubhi, S.S.; El-Ghaiesh, S.H. Leflunomide an immunomodulator with antineoplastic and antiviral potentials but drug-induced liver injury: A comprehensive review. Int. Immunopharmacol. 2021, 93, 107398. [Google Scholar] [CrossRef] [PubMed]
- Alcorn, N.; Saunders, S.; Madhok, R. Benefit-risk assessment of leflunomide: An appraisal of leflunomide in rheumatoid arthritis 10 years after licensing. Drug Saf. 2009, 32, 1123–1134. [Google Scholar] [CrossRef]
- Núñez, P.; Quera, R.; Flores, L.; Contreras, L. Leflunomide as a cause of collagenous colitis: An entity to consider. Rev. Esp. Enfermedades Dig. 2021, 113, 735. [Google Scholar] [CrossRef]
- Esfahani, N.Z.; von Geldern, G.; Romba, M.C.; Parikh, D.A.; Wundes, A. Inflammatory colitis associated with Teriflunomide. Mult. Scler. Relat. Disord. 2020, 46, 102480. [Google Scholar] [CrossRef]
- Coblyn, J.S.; Shadick, N.; Helfgott, S. Leflunomide-associated weight loss in rheumatoid arthritis. Arthritis Rheum. 2001, 44, 1048–1051. [Google Scholar] [CrossRef]
- Baker, J.F.; Sauer, B.C.; Cannon, G.W.; Teng, C.C.; Michaud, K.; Ibrahim, S.; Jorgenson, E.; Davis, L.; Caplan, L.; Cannella, A.; et al. Changes in Body Mass Related to the Initiation of Disease-Modifying Therapies in Rheumatoid Arthritis. Arthritis Rheumatol. 2016, 68, 1818–1827. [Google Scholar] [CrossRef]
- Hopkins, A.M.; Moghaddami, M.; Foster, D.J.; Proudman, S.M.; Upton, R.N.; Wiese, M.D. Intracellular CD3+ T Lymphocyte Teriflunomide Concentration Is Poorly Correlated with and Has Greater Variability Than Unbound Plasma Teriflunomide Concentration. Drug Metab. Dispos. Biol. Fate Chem. 2017, 45, 8–16. [Google Scholar] [CrossRef]
- Madak, J.T.; Bankhead, A., 3rd; Cuthbertson, C.R.; Showalter, H.D.; Neamati, N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol. Ther. 2019, 195, 111–131. [Google Scholar] [CrossRef]
- Malla, B.; Liotta, A.; Bros, H.; Ulshöfer, R.; Paul, F.; Hauser, A.E.; Niesner, R.; Infante-Duarte, C. Teriflunomide Preserves Neuronal Activity and Protects Mitochondria in Brain Slices Exposed to Oxidative Stress. Int. J. Mol. Sci. 2022, 23, 1538. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Veir, J.K.; Legare, M.; Lappin, M.R. A Retrospective Study on the Safety and Efficacy of Leflunomide in Dogs. J. Vet. Intern. Med. 2017, 31, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, R. Data-driven multiple-level analysis of gut-microbiome-immune-joint interactions in rheumatoid arthritis. BMC Genom. 2019, 20, 124. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Nouvenne, A.; Cerundolo, N.; Catania, P.; Prati, B.; Tana, C.; Meschi, T. Gut Microbiota, Muscle Mass and Function in Aging: A Focus on Physical Frailty and Sarcopenia. Nutrients 2019, 11, 1633. [Google Scholar] [CrossRef]
- Wong, C.C.; Yu, J. Gut microbiota in colorectal cancer development and therapy. Nat. Rev. Clin. Oncol. 2023, 20, 429–452. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.L.; Farzi, A.; Zhu, W.Y. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef]
- Pushpanathan, P.; Mathew, G.S.; Selvarajan, S.; Seshadri, K.G.; Srikanth, P. Gut microbiota and its mysteries. Indian J. Med. Microbiol. 2019, 37, 268–277. [Google Scholar] [CrossRef]
- Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A.; et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017, 551, 648–652. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, Y.; Wang, G.; Zheng, X.; Hao, H. Gut Microbial Metabolites of Aromatic Amino Acids as Signals in Host-Microbe Interplay. Trends Endocrinol. Metab. TEM 2020, 31, 818–834. [Google Scholar] [CrossRef]
- Galina, L.; Hopf, F.S.M.; Abbadi, B.L.; Sperotto, N.D.M.; Czeczot, A.M.; Duque-Villegas, M.A.; Perello, M.A.; Matter, L.B.; de Souza, E.V.; Parish, T.; et al. Evaluation of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS) as a Vulnerable Target in Mycobacterium tuberculosis. Microbiol. Spectr. 2022, 10, e0072822. [Google Scholar] [CrossRef]
- Pratap, S.; Dev, A.; Kumar, V.; Yadav, R.; Narwal, M.; Tomar, S.; Kumar, P. Structure of Chorismate Mutase-like Domain of DAHPS from Bacillus subtilis Complexed with Novel Inhibitor Reveals Conformational Plasticity of Active Site. Sci. Rep. 2017, 7, 6364. [Google Scholar] [CrossRef] [PubMed]
- Johansson, K.; Askling, J.; Alfredsson, L.; Di Giuseppe, D. Mediterranean diet and risk of rheumatoid arthritis: A population-based case-control study. Arthritis Res. Ther. 2018, 20, 175. [Google Scholar] [CrossRef]
- Verschueren, P.; Vandooren, A.K.; Westhovens, R. Debilitating diarrhoea and weight loss due to colitis in two RA patients treated with leflunomide. Clin. Rheumatol. 2005, 24, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Bhatia, J.; Gupta, S.K. Risk of hepatotoxicity with add-on leflunomide in rheumatoid arthritis patients. Arzneim. Forsch. 2011, 61, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Sokar, S.S.; Alkabbani, M.A.; Akool, E.S.; Abu-Risha, S.E. Hepatoprotective effects of carvedilol and crocin against leflunomide-induced liver injury. Int. Immunopharmacol. 2022, 113 Pt A, 109297. [Google Scholar] [CrossRef]
- Ma, L.L.; Wu, Z.T.; Wang, L.; Zhang, X.F.; Wang, J.; Chen, C.; Ni, X.; Lin, Y.F.; Cao, Y.Y.; Luan, Y.; et al. Inhibition of hepatic cytochrome P450 enzymes and sodium/bile acid cotransporter exacerbates leflunomide-induced hepatotoxicity. Acta Pharmacol. Sin. 2016, 37, 415–424. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, S.; Qing, T.; Xuan, J.; Couch, L.; Yu, D.; Ning, B.; Shi, L.; Guo, L. Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology 2017, 392, 11–21. [Google Scholar] [CrossRef]
- Goda, K.; Takahashi, T.; Kobayashi, A.; Shoda, T.; Kuno, H.; Sugai, S. Usefulness of in vitro combination assays of mitochondrial dysfunction and apoptosis for the estimation of potential risk of idiosyncratic drug induced liver injury. J. Toxicol. Sci. 2016, 41, 605–615. [Google Scholar] [CrossRef]
- Labbe, G.; Pessayre, D.; Fromenty, B. Drug-induced liver injury through mitochondrial dysfunction: Mechanisms and detection during preclinical safety studies. Fundam. Clin. Pharmacol. 2008, 22, 335–353. [Google Scholar] [CrossRef]
- Liu, C.; Sekine, S.; Ito, K. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes. Toxicol. Appl. Pharmacol. 2016, 302, 23–30. [Google Scholar] [CrossRef]
- Clarke, H.J.; Chambers, J.E.; Liniker, E.; Marciniak, S.J. Endoplasmic reticulum stress in malignancy. Cancer Cell 2014, 25, 563–573. [Google Scholar] [CrossRef]
- Fernández, A.; Ordóñez, R.; Reiter, R.J.; González-Gallego, J.; Mauriz, J.L. Melatonin and endoplasmic reticulum stress: Relation to autophagy and apoptosis. J. Pineal Res. 2015, 59, 292–307. [Google Scholar] [CrossRef]
- Ji, X.; Chen, J.; You, C.; Sun, J.; Xu, X. Leflunomide alleviates obesity via activation of the TAK1-AMPK pathway and induction of lipophagy. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2023, 37, e23227. [Google Scholar] [CrossRef] [PubMed]
- Latchoumycandane, C.; Seah, Q.M.; Tan, R.C.; Sattabongkot, J.; Beerheide, W.; Boelsterli, U.A. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes. Toxicol. Appl. Pharmacol. 2006, 217, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, D.; Rong, N.; Ikhapoh, I.; Rajabian, N.; Tseropoulos, G.; Wu, Y.; Mehrotra, P.; Thiyagarajan, R.; Shahini, A.; Seldeen, K.L.; et al. Inhibition of glutaminolysis restores mitochondrial function in senescent stem cells. Cell Rep. 2022, 41, 111744. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Pérez, R.; Wanders, R.J.A.; van Karnebeek, C.D.M.; Houtkooper, R.H. NAD(+) homeostasis in human health and disease. EMBO Mol. Med. 2021, 13, e13943. [Google Scholar] [CrossRef]
- Willett, E.; Banta, S. Synthetic NAD(P)(H) Cycle for ATP Regeneration. ACS Synth. Biol. 2023, 12, 2118–2126. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Wang, K.; Chen, H.; Wang, N.; Qiu, D.; Huang, H.; Luo, J.; Xu, A.; Xu, L.; Yu, Z.; et al. Leflunomide-Induced Weight Loss: Involvement of DAHPS Activity and Synthesis of Aromatic Amino Acids. Metabolites 2024, 14, 645. https://doi.org/10.3390/metabo14110645
Guo X, Wang K, Chen H, Wang N, Qiu D, Huang H, Luo J, Xu A, Xu L, Yu Z, et al. Leflunomide-Induced Weight Loss: Involvement of DAHPS Activity and Synthesis of Aromatic Amino Acids. Metabolites. 2024; 14(11):645. https://doi.org/10.3390/metabo14110645
Chicago/Turabian StyleGuo, Xiaoyu, Kai Wang, Hongli Chen, Na Wang, Dongmei Qiu, Haiyun Huang, Jiyu Luo, Ao Xu, Lingyun Xu, Zejun Yu, and et al. 2024. "Leflunomide-Induced Weight Loss: Involvement of DAHPS Activity and Synthesis of Aromatic Amino Acids" Metabolites 14, no. 11: 645. https://doi.org/10.3390/metabo14110645
APA StyleGuo, X., Wang, K., Chen, H., Wang, N., Qiu, D., Huang, H., Luo, J., Xu, A., Xu, L., Yu, Z., Li, Y., & Zhang, H. (2024). Leflunomide-Induced Weight Loss: Involvement of DAHPS Activity and Synthesis of Aromatic Amino Acids. Metabolites, 14(11), 645. https://doi.org/10.3390/metabo14110645