Rapid Determination of Methamphetamine, Methylenedioxymethamphetamine, Methadone, Ketamine, Cocaine, and New Psychoactive Substances in Urine Samples Using Comprehensive Two-Dimensional Gas Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Standards
2.3. Sample Preparation
2.4. Instrumentation
2.4.1. GC−MS System
2.4.2. GC×GC−Flame Ionisation Detector (FID) System
2.5. Validation of Analytical Method
2.6. Data Handling
3. Results and Discussion
3.1. GC−MS Analysis of Psychoactive Drugs
3.2. Evaluation of GC×GC Conditions for Separation of Psychoactive Compounds
3.3. Validation Studies
3.3.1. Linearity
3.3.2. Limits of Detection and Lower Limits of Quantitation
3.3.3. Precision, Bias and Recovery
3.4. Analysis of Spiked Urine Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bisaga, A.; Tardelli, V.S.; Gerra, G.; Busse, A.; Campello, G.; Kashino, W.; Saenz, E.; Fidalgo, T.M. Continuing Increase in Stimulant Dependence—Time to Implement Medical Treatment. Can. J. Psychiatry 2022, 67, 507–511. [Google Scholar] [CrossRef]
- Chiappini, S.; Vaccaro, G.; Mosca, A.; Miuli, A.; Stigliano, G.; Stefanelli, G.; Giovannetti, G.; Carullo, R.; D’andrea, G.; Di Carlo, F.; et al. New trends of drug abuse in custodial settings: A systematic review on the misuse of over-the-counter drugs, prescription-only-medications, and new psychoactive substances. Neurosci. Biobehav. Rev. 2024, 162, 105691. [Google Scholar] [CrossRef]
- Lewis, D.; Kenneally, M.; van denHeuvel, C.; Byard, R.W. Methamphetamine deaths: Changing trends and diagnostic issues. Med. Sci. Law. 2021, 61, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wang, L.; Dai, I.; Harmon, T.; Bernert, J.T. Simultaneous determination of multiple drugs of abuse and relevant metabolites in urine by LC-MS-MS. J. Anal. Toxicol. 2007, 31, 359–368. [Google Scholar] [CrossRef]
- Ignaszewski, M.J. The Epidemiology of Drug Abuse. J. Clin. Pharmacol. 2021, 61, S10–S17. [Google Scholar] [CrossRef]
- Lin, O.A.; Chuang, P.J.; Tseng, Y.J. Comparison of controlled drugs and new psychoactive substances (NPS) regulations in East and Southeast Asia. Regul. Toxicol. Pharmacol. 2023, 138, 105338. [Google Scholar] [CrossRef]
- Shen, J.; Hua, G.; Li, C.; Liu, S.; Liu, L.; Jiao, J. Prevalence, incidence, deaths, and disability-adjusted life-years of drug use disorders for 204 countries and territories during the past 30 years. Asian J. Psychiatry 2023, 86, 103677. [Google Scholar] [CrossRef]
- Chen, A.; Zou, M.; Fan, M.; Young, C.A.; Chiu, H.; Jin, G.; Tian, L. Time trends and associated factors of global burden due to drug use disorders in 204 countries and territories, 1990–2019. Drug Alcohol Depend. 2022, 238, 109542. [Google Scholar] [CrossRef]
- UNODC. Executive summary World Drug Report 2023. United Nations Publication. 2023. Available online: www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2023.html (accessed on 14 October 2024).
- Mars, S.G.; Rosenblum, D.; Ciccarone, D. Illicit fentanyls in the opioid street market: Desired or imposed? Addiction 2019, 114, 774–780. [Google Scholar] [CrossRef]
- Chaves, T.V.; Wilffert, B.; Sanchez, Z.M. Overdoses and deaths related to the use of ketamine and its analogues: A systematic review. Am. J. Drug Alcohol Abus. 2023, 49, 141–150. [Google Scholar] [CrossRef]
- “Five Defendants, Including Two Doctors, Charged in Connection with Actor Matthew Perry’s Fatal Drug Overdose Last Year” |United States Department of Justice. Available online: https://www.justice.gov/usao-cdca/pr/five-defendants-including-two-doctors-charged-connection-actor-matthew-perrys-fatal (accessed on 14 October 2024).
- Santos, I.C.; Maia, D.; Dinis-Oliveira, R.J.; Barbosa, D.J. New Psychoactive Substances: Health and Legal Challenges. Psychoactives 2024, 3, 285–302. [Google Scholar] [CrossRef]
- UNODC. Early Warning Advisory on New Psychoactive Substances. United Nations Office on Drugs and Crime. 2024. Available online: https://www.unodc.org/LSS/Page/NPS (accessed on 26 July 2024).
- Mercolini, L.; Protti, M. Biosampling strategies for emerging drugs of abuse: Towards the future of toxicological and forensic analysis. J. Pharm. Biomed. Anal. 2016, 130, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Caro, S.; Borrull, F.; Calull, M.; Aguilar, C. Recent chromatographic and electrophoretic based methods for determining drugs of abuse in urine and oral fluid: A review from 2018 to June 2021. Trends Anal. Chem. 2022, 156, 116705. [Google Scholar] [CrossRef]
- Shafi, A.; Berry, A.J.; Sumnall, H.; Wood, D.M.; Tracy, D.K. New psychoactive substances: A review and updates. Ther. Adv. Psychopharmacol. 2020, 10, 1–21. [Google Scholar] [CrossRef]
- Alexandridou, A.; Mouskeftara, T.; Raikos, N.; Gika, H.G. GC-MS analysis of underivatised new psychoactive substances in whole blood and urine. J. Chromatogr. B 2020, 1156, 122308. [Google Scholar] [CrossRef]
- Matey, J.M.; Montalvo, G.; García-Ruiz, C.; Zapata, F.; López-Fernández, A.; Martínez, M.A. Prevalence study of drugs and new psychoactive substances in hair of ketamine consumers using a methanolic direct extraction prior high-resolution mass spectrometry. Forensic Sci. Int. 2021, 329, 111080. [Google Scholar] [CrossRef]
- Wong, Y.F.; Hartmann, C.; Marriott, P.J. Multidimensional gas chromatography methods for bioanalytical research. Bioanalysis 2014, 6, 2461–2479. [Google Scholar] [CrossRef]
- Orfanidis, A.; Gika, H.G.; Theodoridis, G.; Mastrogianni, O.; Raikos, N. A UHPLC-MS-MS Method for the Determination of 84 Drugs of Abuse and Pharmaceuticals in Blood. J. Anal. Toxicol. 2021, 45, 28–43. [Google Scholar] [CrossRef]
- Silveira, G.D.O.; Pego, A.M.F.; Silva, J.P.E.; Yonamine, M. Green sample preparations for the bioanalysis of drugs of abuse in complex matrices. Bioanalysis 2019, 11, 295–312. [Google Scholar] [CrossRef]
- Tamama, K. Advances in drugs of abuse testing. Clin. Chim. Acta 2021, 514, 40–47. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X.; Luan, T.; Jiang, R.; Ouyang, G. Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: A review. J. Chromatogr. A 2021, 1640, 461961. [Google Scholar] [CrossRef] [PubMed]
- Dragan, A.M.; Parrilla, M.; Feier, B.; Oprean, R.; Cristea, C.; De Wael, K. Analytical techniques for the detection of amphetamine-type substances in different matrices: A comprehensive review. Trends Anal. Chem. 2021, 145, 116447. [Google Scholar] [CrossRef]
- Chung, H.; Choe, S. Amphetamine-type stimulants in drug testing. Mass Spectrom. Lett. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Hsu, M.C.; Chen, D.; Liu, R.H. Detection of abused drugs in urine by GC-MS. J. Food Drug Anal. 2009, 17, 233–245. [Google Scholar] [CrossRef]
- Mitrevski, B.S.; Wilairat, P.; Marriott, P.J. Comprehensive two-dimensional gas chromatography improves separation and identification of anabolic agents in doping control. J. Chromatogr. A 2010, 1217, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Mitrevski, B.; Veleska, B.; Engel, E.; Wynne, P.; Song, S.M.; Marriott, P.J. Chemical signature of ecstasy volatiles by comprehensive two-dimensional gas chromatography. Forensic Sci. Int. 2011, 209, 11–20. [Google Scholar] [CrossRef]
- Borden, S.A.; Palaty, J.; Termopoli, V.; Famiglini, G.; Cappiello, A.; Gill, C.G.; Palma, P. Mass spectrometry analysis of drugs of abuse: Challenges and emerging strategies. Mass Spectrom. Rev. 2020, 39, 703–744. [Google Scholar] [CrossRef]
- Cain, C.N.; Synovec, R.E. Enhancing gas chromatography-mass spectrometry resolution and pure analyte discovery using intra-chromatogram elution profile matching. Talanta 2024, 278, 126453. [Google Scholar] [CrossRef]
- Boswell, H.; Carrillo, K.T.; Górecki, T. Evaluation of the performance of cryogen-free thermal modulation-based comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) for the qualitative analysis of a complex bitumen sample. Separations 2020, 7, 7010013. [Google Scholar] [CrossRef]
- Milani, N.B.L.; van Gilst, E.; Pirok, B.W.J.; Schoenmakers, P.J. Comprehensive two-dimensional gas chromatography—A discussion on recent innovations. J. Sep. Sci. 2023, 46, 2300304. [Google Scholar] [CrossRef]
- Song, S.M.; Marriott, P.; Wynne, P. Comprehensive two-dimensional gas chromatography—Quadrupole mass spectrometric analysis of drugs. J. Chromatogr. A 2004, 1058, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Song, S.M.; Marriott, P.; Kotsos, A.; Drummer, O.H.; Wynne, P. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC x GC-TOFMS) for drug screening and confirmation. Forensic Sci. Int. 2004, 143, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Zaid, A.; Hassan, N.H.; Marriott, P.J.; Wong, Y.F. Comprehensive Two-Dimensional Gas Chromatography as a Bioanalytical Platform for Drug Discovery and Analysis. Pharmaceutics 2023, 15, 1121. [Google Scholar] [CrossRef] [PubMed]
- Nolvachai, Y.; Kulsing, C.; Sharif, K.M.; Wong, Y.F.; Chin, S.; Mitrevski, B.S.; Marriott, P.J. Multi-column trajectory to advanced methods in comprehensive two-dimensional gas chromatography. Trends Anal. Chem. 2018, 106, 11–20. [Google Scholar] [CrossRef]
- Graziano, S.; Anzillotti, L.; Mannocchi, G.; Pichini, S.; Busardò, F.P. Screening methods for rapid determination of new psychoactive substances (NPS) in conventional and non-conventional biological matrices. J. Pharm. Biomed. Anal. 2019, 163, 170–179. [Google Scholar] [CrossRef]
- Kueh, A.J.; Marriott, P.J.; Wynne, P.M.; Vine, J.H. Application of comprehensive two-dimensional gas chromatography to drugs analysis in doping control. J. Chromatogr. A 2003, 1000, 109–124. [Google Scholar] [CrossRef]
- Mitrevski, B.S.; Wilairat, P.; Marriott, P.J. Evaluation of World Anti-Doping Agency criteria for anabolic agent analysis by using comprehensive two-dimensional gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2010, 396, 2503–2511. [Google Scholar] [CrossRef]
- ASB AAFS Standards Board. Standard Practices for Method Validation in Forensic Toxicology. American Academy of Forensic Sciences. 2019. Available online: https://www.aafs.org/sites/default/files/media/documents/036_Std_e1.pdf (accessed on 11 September 2024).
- Peters, F.T.; Drummer, O.H.; Musshoff, F. Validation of new methods. Forensic Sci. Int. 2007, 165, 216–224. [Google Scholar] [CrossRef]
- Mendes, V.M.; Coelho, M.; Tomé, A.R.; Cunha, R.A.; Manadas, B. Validation of an LC-MS/MS Method for the quantification of caffeine and theobromine using non-matched matrix calibration curve. Molecules 2019, 24, 2863. [Google Scholar] [CrossRef]
- Purkiewicz, A.; Pietrzak-Fiećko, R.; Sörgel, F.; Kinzig, M. Caffeine, Paraxanthine, Theophylline, and Theobromine Content in Human Milk. Nutrients 2022, 14, 14112196. [Google Scholar] [CrossRef]
- Scanferla, D.T.P.; Lini, R.S.; Marchioni, C.; Mossini, S.A.G. Drugs of abuse: A narrative review of recent trends in biological sample preparation and chromatographic techniques. Forensic Chem. 2022, 30, 100442. [Google Scholar] [CrossRef]
- Alsenedi, K.A.; Morrison, C. Determination of amphetamine-type stimulants (ATSs) and synthetic cathinones in urine using solid phase micro-extraction fibre tips and gas chromatography-mass spectrometry. Anal. Methods 2018, 10, 1431–1440. [Google Scholar] [CrossRef]
- Nisbet, L.A.; Wylie, F.M.; Logan, B.K.; Scott, K.S. Gas chromatography-mass spectrometry method for the quantitative identification of 23 new psychoactive substances in blood and urine. J. Anal. Toxicol. 2019, 43, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Mercieca, G.; Odoardi, S.; Cassar, M.; Rossi, S.S. Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC–MS. J. Pharm. Biomed. Anal. 2018, 149, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Gerace, E.; Caneparo, D.; Borio, F.; Salomone, A.; Vincenti, M. Determination of several synthetic cathinones and an amphetamine-like compound in urine by gas chromatography with mass spectrometry. Method validation and application to real cases. J. Sep. Sci. 2019, 42, 1577–1584. [Google Scholar] [CrossRef]
- De Vos, J.; Dixon, R.; Vermeulen, G.; Gorst-Allman, P.; Cochran, J.; Rohwer, E.; Focant, J. Comprehensive two-dimensional gas chromatography time of flight mass spectrometry (GC×GC-TOFMS) for environmental forensic investigations in developing countries. Chemosphere 2011, 82, 1230–1239. [Google Scholar] [CrossRef]
- Edwards, M.; Mostafa, A.; Górecki, T. Modulation in comprehensive two-dimensional gas chromatography: 20 years of innovation. Anal. Bioanal. Chem. 2011, 401, 2335–2349. [Google Scholar] [CrossRef]
- Guterstam, J.; Tavic, C.; Barosso, M.; Beck, O. A multicomponent LC-MS/MS method for drugs of abuse testing using volumetric DBS and a clinical evaluation by comparison with urine. J. Pharm. Biomed. Anal. 2024, 243, 116075. [Google Scholar] [CrossRef]
- Chen, H.W.; Liu, H.T.; Kuo, Y.N.; Yang, D.P.; Ting, T.T.; Chen, J.H.; Chiu, J.Y.; Jair, Y.C.; Li, H.C.; Chiang, P.J.; et al. Rapid and sensitive dilute-and-shoot analysis using LC-MS-MS for identification of multi-class psychoactive substances in human urine. J. Pharm. Biomed. Anal. 2023, 233, 115443. [Google Scholar] [CrossRef]
- Kim, J.Y.; Suh, S.; Park, J.; In, M.K. Simultaneous Determination of Amphetamine-Related New Psychoactive Substances in Urine by Gas Chromatography-Mass Spectrometry. J. Anal. Toxicol. 2018, 42, 605–616. [Google Scholar] [CrossRef]
Compound | Class of Drug | r2 | Linearity Range (ng mL−1) | LOD (ng mL−1) | LLOQ (ng mL−1) |
---|---|---|---|---|---|
Amphetamine | Amphetamine type stimulants | 0.9931 | 50–1500 | 10 | 50 |
Methamphetamine | Amphetamine type stimulants | 0.9960 | 50–1500 | 10 | 50 |
Mephedrone | New psychoactive substance | 0.9934 | 50–1500 | 15 | 50 |
MDA | Amphetamine type stimulants | 0.9915 | 50–1500 | 20 | 50 |
MDMA | Amphetamine type stimulants | 0.9965 | 50–1500 | 15 | 50 |
PVP | New psychoactive substance | 0.9974 | 50–1500 | 15 | 50 |
Norketamine | Dissociative anesthetic | 0.9968 | 50–1500 | 20 | 50 |
Ephylone | New psychoactive substance | 0.9965 | 50–1500 | 20 | 50 |
Ketamine | Dissociative anesthetic | 0.9976 | 50–1500 | 15 | 50 |
MDPV | New psychoactive substance | 0.9977 | 50–1500 | 20 | 50 |
Methadone | Opioid | 0.9973 | 50–1500 | 10 | 50 |
Cocaine | Stimulant | 0.9975 | 50–1500 | 15 | 50 |
Drug Classes | Number of Substances | Extraction Method | Analyte Detection Technique | LOD (ng mL−1) | LLOQ (ng mL−1) | Recovery (%) | Runtime (min) | Ref. |
---|---|---|---|---|---|---|---|---|
ATS, NPS. ketamine, methadone, cocaine | 12 | LLE | GC×GC−FID | 10–20 | 50 | 96.9–114.5 | 9.6 | Present work |
Cathinones, ATS | 29 | SPE | GC−MS | 0.5–10 | 5–50 | 80–120 | 25 | [46] |
NPS | 23 | SPE | GC-MS | 0.2–1 | 0.5–20 | 64–105 | 30 | [47] |
Cathinones, ATS, NPS | 26 | DLLME | GC−MS | 1–10 | 2–50 | 92–115 | 16.1 | [48] |
Cathinones | 19 | LLE | GC−MS | 10–30 | 30–100 | - | 9.9 | [49] |
ATS. NPS, opioids, benzodiazepines, ketamine | 37 | Hydrolysis and LLE | LC-MS/MS | 1–30 | 50 | 13.6–112.8 | 6 | [52] |
ATS. NPS, opioids, benzodiazepines, cocaine, ketamine | 68 | Dilution | LC-MS/MS | 0.05–0.5 | 0.1–0.5 | - | 15 | [53] |
Compound | a Within-Run Precision, CV (%) | a Between-Run Precision, CV (%) | Bias (%) | Recovery (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 ng mL−1 | 450 ng mL−1 | 900 ng mL−1 | 100 ng mL−1 | 450 ng mL−1 | 900 ng mL−1 | 100 ng mL−1 | 450 ng mL−1 | 900 ng mL−1 | 100 ng mL−1 | 450 ng mL−1 | 900 ng mL−1 | |
Amphetamine | 10.9 | 7.3 | 4.1 | 8.0 | 7.2 | 6.9 | 2.7 | −2.8 | 3.8 | 102.7 | 97.2 | 103.8 |
Methamphetamine | 8.3 | 6.4 | 5.6 | 7.0 | 6.5 | 6.0 | 4.6 | 2.5 | 3.6 | 104.6 | 102.5 | 103.6 |
Mephedrone | 5.1 | 5.8 | 2.9 | 6.1 | 5.3 | 2.5 | 13.8 | −1.1 | 2.1 | 113.8 | 98.9 | 102.1 |
MDA | 9.4 | 5.7 | 3.6 | 10.3 | 6.7 | 4.3 | 1.5 | −0.6 | 4.2 | 101.5 | 99.4 | 104.2 |
MDMA | 11.4 | 5.3 | 3.0 | 8.3 | 6.1 | 3.8 | 0.6 | 6.0 | 6.0 | 100.6 | 106.0 | 106.0 |
PVP | 6.8 | 2.7 | 2.1 | 5.5 | 3.1 | 2.5 | 7.1 | −3.1 | 1.5 | 107.1 | 96.9 | 101.5 |
Norketamine | 5.7 | 3.0 | 3.1 | 9.2 | 2.6 | 3.1 | 5.5 | 3.5 | 4.5 | 105.5 | 103.5 | 104.5 |
Ephylone | 10.3 | 4.7 | 2.3 | 7.8 | 4.0 | 4.7 | 9.3 | −0.7 | 1.5 | 109.3 | 99.3 | 101.5 |
Ketamine | 6.5 | 3.5 | 2.4 | 6.2 | 2.8 | 2.5 | 7.7 | 2.0 | 3.4 | 107.7 | 102.0 | 103.4 |
MDPV | 8.0 | 2.0 | 2.1 | 5.2 | 2.8 | 2.8 | 14.5 | 0.4 | 5.0 | 114.5 | 100.4 | 105.0 |
Methadone | 7.1 | 2.9 | 2.0 | 6.6 | 1.9 | 1.2 | 12.3 | 1.5 | 1.3 | 112.3 | 101.5 | 101.3 |
Cocaine | 4.7 | 1.8 | 1.5 | 3.5 | 3.0 | 4.7 | 8.8 | −1.6 | −0.9 | 108.8 | 98.4 | 99.1 |
Sample | Compounds | Spiked Concentration (ng mL−1) | Mean Calculated Concentration (ng mL−1) | Recovery (%) |
---|---|---|---|---|
1 | Amphetamine Methamphetamine | 300.0 700.0 | 282.5 ± 7.8 658.5 ± 12.0 | 94.2 ± 2.6 94.1 ± 1.7 |
2 | Ketamine Norketamine | 600.0 300.0 | 593.0 ± 8.5 317.0 ± 7.1 | 98.8 ± 2.4 105.8 ± 1.4 |
3 | MDMA MDA | 700.0 150.0 | 643.5 ± 34.6 140.5 ± 4.9 | 91.9 ± 4.9 93.4 ± 3.3 |
4 | Methadone | 500.0 | 533.0 ± 0.1 | 106.5 ± 0.1 |
5 | Amphetamine Methamphetamine | 250.0 600.0 | 258.0 ± 5.7 557.0 ± 7.1 | 103.2 ± 2.3 92.8 ± 1.2 |
6 | PVP Ephylone MDPV | 350.0 350.0 400.0 | 344.5 ± 2.1 331.0 ± 4.2 382.5 ± 12.0 | 98.4 ± 0.6 94.5 ± 1.2 95.7 ± 3.0 |
7 | Mephedrone Cocaine | 330.0 400.0 | 330.5 ± 37.5 429.5 ± 6.4 | 100.1 ± 11.4 107.4 ± 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandra Siri, D.N.B.; Goh, S.Y.; Chong, N.S.; Marriott, P.J.; Wong, Y.F. Rapid Determination of Methamphetamine, Methylenedioxymethamphetamine, Methadone, Ketamine, Cocaine, and New Psychoactive Substances in Urine Samples Using Comprehensive Two-Dimensional Gas Chromatography. Metabolites 2024, 14, 643. https://doi.org/10.3390/metabo14110643
Chandra Siri DNB, Goh SY, Chong NS, Marriott PJ, Wong YF. Rapid Determination of Methamphetamine, Methylenedioxymethamphetamine, Methadone, Ketamine, Cocaine, and New Psychoactive Substances in Urine Samples Using Comprehensive Two-Dimensional Gas Chromatography. Metabolites. 2024; 14(11):643. https://doi.org/10.3390/metabo14110643
Chicago/Turabian StyleChandra Siri, Doreen N. B., Seng Yo Goh, Ngee Sing Chong, Philip J. Marriott, and Yong Foo Wong. 2024. "Rapid Determination of Methamphetamine, Methylenedioxymethamphetamine, Methadone, Ketamine, Cocaine, and New Psychoactive Substances in Urine Samples Using Comprehensive Two-Dimensional Gas Chromatography" Metabolites 14, no. 11: 643. https://doi.org/10.3390/metabo14110643
APA StyleChandra Siri, D. N. B., Goh, S. Y., Chong, N. S., Marriott, P. J., & Wong, Y. F. (2024). Rapid Determination of Methamphetamine, Methylenedioxymethamphetamine, Methadone, Ketamine, Cocaine, and New Psychoactive Substances in Urine Samples Using Comprehensive Two-Dimensional Gas Chromatography. Metabolites, 14(11), 643. https://doi.org/10.3390/metabo14110643