Influence of Uric Acid on Vascular and Cognitive Functions: Evidence for an Ambivalent Relationship
Abstract
:1. Introduction
2. Monosodium Urate Deposition and Cerebrovascular Damage
3. Direct Influence of Uric Acid on Vascular and Brain Health
4. Influence of Xanthine Oxidase on Vascular and Brain Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.T.; Beiser, A.S.; Breteler, M.M.B.; Fratiglioni, L.; Helmer, C.; Hendrie, H.C.; Honda, H.; Ikram, M.A.; Langa, K.M.; Lobo, A.; et al. The changing prevalence and incidence of dementia over time—Current evidence. Nat. Rev. Neurol. 2017, 13, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Langa, K.M.; Larson, E.B.; Crimmins, E.M.; Faul, J.D.; Levine, D.A.; Kabeto, M.U.; Weir, D.R. A Comparison of the Prevalence of Dementia in the United States in 2000 and 2012. JAMA Intern. Med. 2017, 177, 51–58. [Google Scholar] [CrossRef]
- Williams, K.N.; Kemper, S. Interventions to reduce cognitive decline in aging. J. Psychosoc. Nurs. Ment. Health Serv. 2010, 48, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, P.B.; Scuteri, A.; Black, S.E.; Decarli, C.; Greenberg, S.M.; Iadecola, C.; Launer, L.J.; Laurent, S.; Lopez, O.L.; Nyenhuis, D.; et al. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011, 42, 2672–2713. [Google Scholar] [CrossRef] [PubMed]
- Novak, V.; Hajjar, I. The relationship between blood pressure and cognitive function. Nat. Rev. Cardiol. 2010, 7, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, K.; Malhotra, K.; Sowers, J.; Aroor, A. Uric Acid—Key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 2013, 3, 208–220. [Google Scholar] [CrossRef]
- Hayden, M.R.; Tyagi, S.C. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr. Metab. 2004, 1, 10. [Google Scholar] [CrossRef]
- Gallo, G.; Lanza, O.; Savoia, C. New Insight in Cardiorenal Syndrome: From Biomarkers to Therapy. Int. J. Mol. Sci. 2023, 24, 5089. [Google Scholar] [CrossRef]
- Desideri, G.; Rajzer, M.; Gerritsen, M.; Nurmohamed, M.T.; Giannattasio, C.; Tausche, A.K.; Borghi, C. Effects of intensive urate lowering therapy with febuxostat in comparison with allopurinol on pulse wave velocity in patients with gout and increased cardiovascular risk: The FORWARD study. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 236–242. [Google Scholar] [CrossRef]
- Tsai, W.C.; Huang, Y.Y.; Lin, C.C.; Li, W.T.; Lee, C.H.; Chen, J.Y.; Chen, J.H. Uric acid is an independent predictor of arterial stiffness in hypertensive patients. Heart Vessels 2009, 24, 371–375. [Google Scholar] [CrossRef]
- Ando, K.; Takahashi, H.; Watanabe, T.; Daidoji, H.; Otaki, Y.; Nishiyama, S.; Arimoto, T.; Shishido, T.; Miyashita, T.; Miyamoto, T.; et al. Impact of Serum Uric Acid Levels on Coronary Plaque Stability Evaluated Using Integrated Backscatter Intravascular Ultrasound in Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2016, 23, 932–939. [Google Scholar] [CrossRef]
- Arévalo-Lorido, J.C.; Carretero-Gómez, J.; Robles Pérez-Monteoliva, N.R. Association between serum uric acid and carotid disease in patients with atherosclerotic acute ischemic stroke. Vascular 2019, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Tavil, Y.; Kaya, M.G.; Oktar, S.O.; Sen, N.; Okyay, K.; Yazici, H.U.; Cengel, A. Uric acid level and its association with carotid intima-media thickness in patients with hypertension. Atherosclerosis 2008, 197, 159–163. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Dong, K.; Wang, A.; Yang, X.; Zhang, C.; Zhu, Y.; Wu, S.; Zhao, X. The Association between Serum Uric Acid Levels and the Prevalence of Vulnerable Atherosclerotic Carotid Plaque: A Cross-sectional Study. Sci. Rep. 2015, 5, 10003. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Jia, F.; Sun, Y.; Zhang, L.; Han, J.; Li, D.; Yang, Q.; Hou, R.; Jiang, W. Predictive value of the serum uric acid to high-density lipoprotein cholesterol ratio for culprit plaques in patients with acute coronary syndrome. BMC Cardiovasc. Disord. 2024, 24, 155. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, A.; Fabbian, F.; Pala, M.; Tiseo, R.; Parisi, C.; Misurati, E.; Manfredini, R. Uric acid: Friend or foe? Uric acid and cognitive function “Gout kills more wise men than simple”. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 640–646. [Google Scholar] [PubMed]
- Qiao, M.; Chen, C.; Liang, Y.; Luo, Y.; Wu, W. The Influence of Serum Uric Acid Level on Alzheimer’s Disease: A Narrative Review. Biomed. Res. Int. 2021, 2021, 5525710. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.; Desideri, G.; Grossi, G.; Urso, R.; Rosticci, M.; D’Addato, S.; Borghi, C.; Group, B.H.S. Serum uric acid and impaired cognitive function in a cohort of healthy young elderly: Data from the Brisighella Study. Intern. Emerg. Med. 2015, 10, 25–31. [Google Scholar] [CrossRef]
- Latourte, A.; Dumurgier, J.; Paquet, C.; Richette, P. Hyperuricemia, Gout, and the Brain-an Update. Curr. Rheumatol. Rep. 2021, 23, 82. [Google Scholar] [CrossRef]
- Johnson, R.J.; Sautin, Y.Y.; Oliver, W.J.; Roncal, C.; Mu, W.; Gabriela Sanchez-Lozada, L.; Rodriguez-Iturbe, B.; Nakagawa, T.; Benner, S.A. Lessons from comparative physiology: Could uric acid represent a physiologic alarm signal gone awry in western society? J. Comp. Physiol. B 2009, 179, 67–76. [Google Scholar] [CrossRef]
- Andrews, P.; Johnson, R.J. Evolutionary basis for the human diet: Consequences for human health. J. Intern. Med. 2020, 287, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Lario, B.; Macarrón-Vicente, J. Uric acid and evolution. Rheumatology 2010, 49, 2010–2015. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Sanchez Lozada, L.G.; et al. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. Am. J. Kidney Dis. 2018, 71, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Desideri, G.; Castaldo, G.; Lombardi, A.; Mussap, M.; Testa, A.; Pontremoli, R.; Punzi, L.; Borghi, C. Is it time to revise the normal range of serum uric acid levels? Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1295–1306. [Google Scholar] [PubMed]
- So, A.; Thorens, B. Uric acid transport and disease. J. Clin. Investig. 2010, 120, 1791–1799. [Google Scholar] [CrossRef]
- Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef]
- Borghi, C.; Desideri, G. Urate-Lowering Drugs and Prevention of Cardiovascular Disease: The Emerging Role of Xanthine Oxidase Inhibition. Hypertension 2016, 67, 496–498. [Google Scholar] [CrossRef]
- Desideri, G.; Sesti, G. Clinical implications of the biological ambivalence of uric acid. Eur. J. Intern. Med. 2023, 112, 24–26. [Google Scholar] [CrossRef]
- Desideri, G.; Borghi, C. Xanthine oxidase inhibition and cardiovascular protection: Don’t shoot in the dark. Eur. J. Intern. Med. 2023, 113, 10–12. [Google Scholar] [CrossRef]
- Bardin, T. Hyperuricemia starts at 360 micromoles (6 mg/dL). Jt. Bone Spine 2015, 82, 141–143. [Google Scholar] [CrossRef]
- Bowman, G.L.; Shannon, J.; Frei, B.; Kaye, J.A.; Quinn, J.F. Uric acid as a CNS antioxidant. J. Alzheimers Dis. 2010, 19, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Tohgi, H.; Abe, T.; Takahashi, S.; Kikuchi, T. The urate and xanthine concentrations in the cerebrospinal fluid in patients with vascular dementia of the Binswanger type, Alzheimer type dementia, and Parkinson’s disease. J. Neural Transm. Park. Dis. Dement. Sect. 1993, 6, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.; Agabiti-Rosei, E.; Johnson, R.J.; Kielstein, J.T.; Lurbe, E.; Mancia, G.; Redon, J.; Stack, A.G.; Tsioufis, K.P. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur. J. Intern. Med. 2020, 80, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Clarson, L.E.; Chandratre, P.; Hider, S.L.; Belcher, J.; Heneghan, C.; Roddy, E.; Mallen, C.D. Increased cardiovascular mortality associated with gout: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2015, 22, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.D.; Molenberghs, G.; Verbeke, G.; Rahimi, K.; Rao, S.; McInnes, I.B.; McMurray, J.J.V.; Sattar, N.; Conrad, N. Gout and incidence of 12 cardiovascular diseases: A case-control study including 152 663 individuals with gout and 709 981 matched controls. Lancet Rheumatol. 2024, 6, e156–e167. [Google Scholar] [CrossRef]
- Seminog, O.O.; Goldacre, M.J. Gout as a risk factor for myocardial infarction and stroke in England: Evidence from record linkage studies. Rheumatology 2013, 52, 2251–2259. [Google Scholar] [CrossRef]
- Clarson, L.E.; Hider, S.L.; Belcher, J.; Heneghan, C.; Roddy, E.; Mallen, C.D. Increased risk of vascular disease associated with gout: A retrospective, matched cohort study in the UK clinical practice research datalink. Ann. Rheum. Dis. 2015, 74, 642–647. [Google Scholar] [CrossRef]
- Singh, J.A.; Ramachandaran, R.; Yu, S.; Yang, S.; Xie, F.; Yun, H.; Zhang, J.; Curtis, J.R. Is gout a risk equivalent to diabetes for stroke and myocardial infarction? A retrospective claims database study. Arthritis Res. Ther. 2017, 19, 228. [Google Scholar] [CrossRef]
- Yen, F.S.; Hsu, C.C.; Li, H.L.; Wei, J.C.; Hwu, C.M. Urate-lowering therapy may mitigate the risks of hospitalized stroke and mortality in patients with gout. PLoS ONE 2020, 15, e0234909. [Google Scholar] [CrossRef]
- Kang, H.S.; Lee, N.E.; Yoo, D.M.; Han, K.M.; Hong, J.Y.; Choi, H.G.; Lim, H.; Kim, J.H.; Cho, S.J.; Nam, E.S.; et al. An elevated likelihood of stroke, ischemic heart disease, or heart failure in individuals with gout: A longitudinal follow-up study utilizing the National Health Information database in Korea. Front. Endocrinol. 2023, 14, 1195888. [Google Scholar] [CrossRef]
- Keenan, T.; Zhao, W.; Rasheed, A.; Ho, W.K.; Malik, R.; Felix, J.F.; Young, R.; Shah, N.; Samuel, M.; Sheikh, N.; et al. Causal Assessment of Serum Urate Levels in Cardiometabolic Diseases Through a Mendelian Randomization Study. J. Am. Coll. Cardiol. 2016, 67, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cheng, Y.; Wang, X.; Upreti, B.; Cui, R.; Liu, S.; Shan, B.; Yu, H.; Luo, C.; Xu, J. Gout Is Not Just Arthritis: Abnormal Cortical Thickness and Structural Covariance Networks in Gout. Front. Neurol. 2021, 12, 662497. [Google Scholar] [CrossRef] [PubMed]
- Topiwala, A.; Mankia, K.; Bell, S.; Webb, A.; Ebmeier, K.P.; Howard, I.; Wang, C.; Alfaro-Almagro, F.; Miller, K.; Burgess, S.; et al. Association of gout with brain reserve and vulnerability to neurodegenerative disease. Nat. Commun. 2023, 14, 2844. [Google Scholar] [CrossRef] [PubMed]
- Desai, J.; Steiger, S.; Anders, H.J. Molecular Pathophysiology of Gout. Trends Mol. Med. 2017, 23, 756–768. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Torne, C.; Ortiz, M.A.; Garcia-Guillen, A.; Jeria-Navarro, S.; Sainz, L.; Fernandez-Sanchez, S.; Corominas, H.; Vidal, S. The inflammatory role of silent urate crystal deposition in intercritical gout. Rheumatology 2021, 60, 5463–5472. [Google Scholar] [CrossRef]
- Desideri, G.; Ferri, C. Endothelial activation. Sliding door to atherosclerosis. Curr. Pharm. Des. 2005, 11, 2163–2175. [Google Scholar] [CrossRef]
- Savoia, C.; Schiffrin, E.L. Vascular inflammation in hypertension and diabetes: Molecular mechanisms and therapeutic interventions. Clin. Sci. 2007, 112, 375–384. [Google Scholar] [CrossRef]
- Scarpino, S.; Marchitti, S.; Stanzione, R.; Evangelista, A.; Di Castro, S.; Savoia, C.; Quarta, G.; Sciarretta, S.; Ruco, L.; Volpe, M.; et al. Reactive oxygen species-mediated effects on vascular remodeling induced by human atrial natriuretic peptide T2238C molecular variant in endothelial cells in vitro. J. Hypertens. 2009, 27, 1804–1813. [Google Scholar] [CrossRef]
- Battistoni, A.; Michielon, A.; Marino, G.; Savoia, C. Vascular Aging and Central Aortic Blood Pressure: From Pathophysiology to Treatment. High Blood Press. Cardiovasc. Prev. 2020, 27, 299–308. [Google Scholar] [CrossRef]
- Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet 2021, 397, 1843–1855. [Google Scholar] [CrossRef]
- Gu, H.; Yu, H.; Qin, L.; Song, Y.; Chen, G.; Zhao, D.; Wang, S.; Xue, W.; Wang, L.; Ai, Z.; et al. MSU crystal deposition contributes to inflammation and immune responses in gout remission. Cell Rep. 2023, 42, 113139. [Google Scholar] [CrossRef]
- Andrés, M.; Quintanilla, M.A.; Sivera, F.; Sánchez-Payá, J.; Pascual, E.; Vela, P.; Ruiz-Nodar, J.M. Silent Monosodium Urate Crystal Deposits Are Associated With Severe Coronary Calcification in Asymptomatic Hyperuricemia: An Exploratory Study. Arthritis Rheumatol. 2016, 68, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Klauser, A.S.; Halpern, E.J.; Strobl, S.; Gruber, J.; Feuchtner, G.; Bellmann-Weiler, R.; Weiss, G.; Stofferin, H.; Jaschke, W. Dual-Energy Computed Tomography Detection of Cardiovascular Monosodium Urate Deposits in Patients With Gout. JAMA Cardiol. 2019, 4, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K. The Mechanism of the NLRP3 Inflammasome Activation and Pathogenic Implication in the Pathogenesis of Gout. J. Rheum. Dis. 2022, 29, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Schretlen, D.J.; Inscore, A.B.; Jinnah, H.A.; Rao, V.; Gordon, B.; Pearlson, G.D. Serum uric acid and cognitive function in community-dwelling older adults. Neuropsychology 2007, 21, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, C.; Cherubini, A.; Lauretani, F.; Bandinelli, S.; Maggio, M.; Di Iorio, A.; Zuliani, G.; Dragonas, C.; Senin, U.; Ferrucci, L. Uric acid and dementia in community-dwelling older persons. Dement. Geriatr. Cogn. Disord. 2009, 27, 382–389. [Google Scholar] [CrossRef]
- Orowan, E. The origin of man. Nature 1955, 175, 683–684. [Google Scholar] [CrossRef]
- Stetten, D.; Hearon, J.Z. Intellectual level measured by army classification battery and serum uric acid concentration. Science 1959, 129, 1737. [Google Scholar] [CrossRef]
- Brooks, G.W.; Mueller, E. Serum urate concentrations among university professors; relation to drive, achievement, and leadership. JAMA 1966, 195, 415–418. [Google Scholar] [CrossRef]
- Bloch, S.; Brackenridge, C.J. Psychological, performance and biochemical factors in medical students under examination stress. J. Psychosom. Res. 1972, 16, 25–33. [Google Scholar] [CrossRef]
- Barrera, C.M.; Hunter, R.E.; Dunlap, W.P. Hyperuricemia and locomotor activity in developing rats. Pharmacol. Biochem. Behav. 1989, 33, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Rahe, R.H.; Rubin, R.T.; Arthur, R.J. The three investigators study. Serum uric acid, cholesterol, and cortisol variability during stresses of everyday life. Psychosom. Med. 1974, 36, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Barrera, C.M.; Ruiz, Z.R.; Dunlap, W.P. Uric acid: A participating factor in the symptoms of hyperactivity. Biol. Psychiatry 1988, 24, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Patil, U.; Divekar, S.; Vaidya, S.; Ruikar, V.M.; Patwardhan, M.S. Study of serum uric acid and its correlation with intelligence quotient and other parameters in normal healthy adults. IJCST 2013, 6, 64–66. [Google Scholar]
- Yu, W.; Cheng, J.D. Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective. Front. Pharmacol. 2020, 11, 582680. [Google Scholar] [CrossRef]
- Mikami, T.; Sorimachi, M. Uric acid contributes greatly to hepatic antioxidant capacity besides protein. Physiol. Res. 2017, 66, 1001–1007. [Google Scholar] [CrossRef]
- Yang, K.J.; Choi, W.J.; Chang, Y.K.; Park, C.W.; Kim, S.Y.; Hong, Y.A. Inhibition of Xanthine Oxidase Protects against Diabetic Kidney Disease through the Amelioration of Oxidative Stress via VEGF/VEGFR Axis and NOX-FoxO3a-eNOS Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 3807. [Google Scholar] [CrossRef]
- Desideri, G.; Gentile, R.; Antonosante, A.; Benedetti, E.; Grassi, D.; Cristiano, L.; Manocchio, A.; Selli, S.; Ippoliti, R.; Ferri, C.; et al. Uric Acid Amplifies Aβ Amyloid Effects Involved in the Cognitive Dysfunction/Dementia: Evidences From an Experimental Model In Vitro. J. Cell. Physiol. 2017, 232, 1069–1078. [Google Scholar] [CrossRef]
- Santos, M.J.; Quintanilla, R.A.; Toro, A.; Grandy, R.; Dinamarca, M.C.; Godoy, J.A.; Inestrosa, N.C. Peroxisomal proliferation protects from beta-amyloid neurodegeneration. J. Biol. Chem. 2005, 280, 41057–41068. [Google Scholar] [CrossRef]
- Tomioka, N.H.; Nakamura, M.; Doshi, M.; Deguchi, Y.; Ichida, K.; Morisaki, T.; Hosoyamada, M. Ependymal cells of the mouse brain express urate transporter 1 (URAT1). Fluids Barriers CNS 2013, 10, 31. [Google Scholar] [CrossRef]
- Brouillette, J. The effects of soluble Aβ oligomers on neurodegeneration in Alzheimer’s disease. Curr. Pharm. Des. 2014, 20, 2506–2519. [Google Scholar] [CrossRef] [PubMed]
- Cimini, A.; Gentile, R.; D’Angelo, B.; Benedetti, E.; Cristiano, L.; Avantaggiati, M.L.; Giordano, A.; Ferri, C.; Desideri, G. Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J. Cell. Biochem. 2013, 114, 2209–2220. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, E.; D’Angelo, B.; Cristiano, L.; Di Giacomo, E.; Fanelli, F.; Moreno, S.; Cecconi, F.; Fidoamore, A.; Antonosante, A.; Falcone, R.; et al. Involvement of peroxisome proliferator-activated receptor β/δ (PPAR β/δ) in BDNF signaling during aging and in Alzheimer disease: Possible role of 4-hydroxynonenal (4-HNE). Cell Cycle 2014, 13, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, R.N.; Akinyemi, R.; Ihara, M. Stroke injury, cognitive impairment and vascular dementia. Biochim. Biophys. Acta 2016, 1862, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Cui, Y.; Kim, B.G. Interaction between hypertension and cerebral hypoperfusion in the development of cognitive dysfunction and white matter pathology in rats. Neuroscience 2015, 303, 115–125. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, X.; Tao, Y.; Lan, L.; Zheng, L.; Sun, J. Tight junction disruption of blood-brain barrier in white matter lesions in chronic hypertensive rats. Neuroreport 2015, 26, 1039–1043. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, S.; Ni, J.; Wei, M.; Li, T.; Long, S.; Shi, J.; Tian, J. Gout or Hyperuricemia and Dementia Risk: A Meta-Analysis of Observational Studies. J. Alzheimers Dis. 2024, 101, 417–427. [Google Scholar] [CrossRef]
- Pan, S.Y.; Cheng, R.J.; Xia, Z.J.; Zhang, Q.P.; Liu, Y. Risk of dementia in gout and hyperuricaemia: A meta-analysis of cohort studies. BMJ Open 2021, 11, e041680. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, J.; Tian, Q.; Tian, N.; He, X.; Wang, Y.; Dong, Z. Uric Acid Mitigates Cognitive Deficits via TFEB-Mediated Microglial Autophagy in Mice Models of Alzheimer’s Disease. Mol. Neurobiol. 2024, 61, 3678–3696. [Google Scholar] [CrossRef]
- Tamayev, R.; Matsuda, S.; Arancio, O.; D’Adamio, L. β- but not γ-secretase proteolysis of APP causes synaptic and memory deficits in a mouse model of dementia. EMBO Mol. Med. 2012, 4, 171–179. [Google Scholar] [CrossRef]
- Mandal, A.K.; Mount, D.B. Interaction Between ITM2B and GLUT9 Links Urate Transport to Neurodegenerative Disorders. Front. Physiol. 2019, 10, 1323. [Google Scholar] [CrossRef] [PubMed]
- Patetsios, P.; Song, M.; Shutze, W.P.; Pappas, C.; Rodino, W.; Ramirez, J.A.; Panetta, T.F. Identification of uric acid and xanthine oxidase in atherosclerotic plaque. Am. J. Cardiol. 2001, 88, 188–191, A186. [Google Scholar] [CrossRef] [PubMed]
- Nardi, V.; Franchi, F.; Prasad, M.; Fatica, E.M.; Alexander, M.P.; Bois, M.C.; Lam, J.; Singh, R.J.; Meyer, F.B.; Lanzino, G.; et al. Uric Acid Expression in Carotid Atherosclerotic Plaque and Serum Uric Acid Are Associated With Cerebrovascular Events. Hypertension 2022, 79, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Mastroiacovo, D.; Ettorre, E.; Mengozzi, A.; Virdis, A.; Camerota, A.; Muselli, M.; Necozione, S.; Bocale, R.; Ferri, C.; Desideri, G. Serum Uric Acid Levels Are Associated with the Echogenic Features of Carotid Plaque Vulnerability in Elderly Patients with Atherosclerotic Disease. Metabolites 2023, 13, 693. [Google Scholar] [CrossRef]
- Mastroiacovo, D.; Mengozzi, A.; Dentali, F.; Pomero, F.; Virdis, A.; Camerota, A.; Muselli, M.; Necozione, S.; Bocale, R.; Ferri, C.; et al. Enhanced Carotid Plaque Echolucency Is Associated with Reduced Cognitive Performance in Elderly Patients with Atherosclerotic Disease Independently on Metabolic Profile. Metabolites 2023, 13, 478. [Google Scholar] [CrossRef]
- Engel, B.; Gomm, W.; Broich, K.; Maier, W.; Weckbecker, K.; Haenisch, B. Hyperuricemia and dementia—A case-control study. BMC Neurol. 2018, 18, 131. [Google Scholar] [CrossRef]
- Chuang, T.J.; Wang, Y.H.; Wei, J.C.; Yeh, C.J. Association Between Use of Anti-gout Preparations and Dementia: Nested Case-Control Nationwide Population-Based Cohort Study. Front. Med. 2020, 7, 607808. [Google Scholar] [CrossRef]
- Min, K.H.; Kang, S.O.; Oh, S.J.; Han, J.M.; Lee, K.E. Association Between Gout and Dementia in the Elderly: A Nationwide Population-Based Cohort Study. Am. J. Geriatr. Psychiatry 2021, 29, 1177–1185. [Google Scholar] [CrossRef]
- Singh, J.A.; Cleveland, J.D. Gout and dementia in the elderly: A cohort study of Medicare claims. BMC Geriatr. 2018, 18, 281. [Google Scholar] [CrossRef]
- Burrage, E.N.; Coblentz, T.; Prabhu, S.S.; Childers, R.; Bryner, R.W.; Lewis, S.E.; DeVallance, E.; Kelley, E.E.; Chantler, P.D. Xanthine oxidase mediates chronic stress-induced cerebrovascular dysfunction and cognitive impairment. J. Cereb. Blood Flow. Metab. 2023, 43, 905–920. [Google Scholar] [CrossRef]
- Polito, L.; Bortolotti, M.; Battelli, M.G.; Bolognesi, A. Xanthine oxidoreductase: A leading actor in cardiovascular disease drama. Redox Biol. 2021, 48, 102195. [Google Scholar] [CrossRef] [PubMed]
- Boueiz, A.; Damarla, M.; Hassoun, P.M. Xanthine oxidoreductase in respiratory and cardiovascular disorders. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294, L830–L840. [Google Scholar] [CrossRef] [PubMed]
- Pritsos, C.A. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system. Chem. Biol. Interact. 2000, 129, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Perrotta, I.; Aquila, S. The role of oxidative stress and autophagy in atherosclerosis. Oxid. Med. Cell. Longev. 2015, 2015, 130315. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Gori, T.; Bruno, R.M.; Taddei, S. Is oxidative stress a therapeutic target in cardiovascular disease? Eur. Heart J. 2010, 31, 2741–2748. [Google Scholar] [CrossRef]
- Dai, Y.; Cao, Y.; Zhang, Z.; Vallurupalli, S.; Mehta, J.L. Xanthine Oxidase Induces Foam Cell Formation through LOX-1 and NLRP3 Activation. Cardiovasc. Drugs Ther. 2017, 31, 19–27. [Google Scholar] [CrossRef]
- Nomura, J.; Busso, N.; Ives, A.; Matsui, C.; Tsujimoto, S.; Shirakura, T.; Tamura, M.; Kobayashi, T.; So, A.; Yamanaka, Y. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci. Rep. 2014, 4, 4554. [Google Scholar] [CrossRef]
- Kushiyama, A.; Okubo, H.; Sakoda, H.; Kikuchi, T.; Fujishiro, M.; Sato, H.; Kushiyama, S.; Iwashita, M.; Nishimura, F.; Fukushima, T.; et al. Xanthine oxidoreductase is involved in macrophage foam cell formation and atherosclerosis development. Arter. Thromb. Vasc. Biol. 2012, 32, 291–298. [Google Scholar] [CrossRef]
- Ganji, M.; Nardi, V.; Prasad, M.; Jordan, K.L.; Bois, M.C.; Franchi, F.; Zhu, X.Y.; Tang, H.; Young, M.D.; Lerman, L.O.; et al. Carotid Plaques From Symptomatic Patients Are Characterized by Local Increase in Xanthine Oxidase Expression. Stroke 2021, 52, 2792–2801. [Google Scholar] [CrossRef]
- Kaddurah-Daouk, R.; Zhu, H.; Sharma, S.; Bogdanov, M.; Rozen, S.G.; Matson, W.; Oki, N.O.; Motsinger-Reif, A.A.; Churchill, E.; Lei, Z.; et al. Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl. Psychiatry 2013, 3, e244. [Google Scholar] [CrossRef]
- MacIsaac, R.L.; Salatzki, J.; Higgins, P.; Walters, M.R.; Padmanabhan, S.; Dominiczak, A.F.; Touyz, R.M.; Dawson, J. Allopurinol and Cardiovascular Outcomes in Adults With Hypertension. Hypertension 2016, 67, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tang, L.; Zhang, Y.; Wang, Q.; Wang, X.; Bai, Y.; Fang, Z.; Zhang, T.; Xu, T.; Li, Y. Febuxostat, a xanthine oxidase inhibitor, regulated long noncoding RNAs and protected the brain after intracerebral hemorrhage. Neuroreport 2023, 34, 703–712. [Google Scholar] [CrossRef] [PubMed]
Clinical Data—Cerebrovascular Outcomes | |||
First Author (Year) | Study Design | Population | Results |
Seminog, O. (2013) [36] | Prospective data from UK registries | 202,033 patients | The relative risk for all strokes was 1.71 (1.68, 1.75), ischemic stroke 1.68 (1.64, 1.73), hemorrhagic stroke 1.69 (1.61, 1.77), and stroke of an unspecified type 2.00 (1.95, 2.06). |
Keenan, T. (2016) [41] | Mendelian randomization | 82,091patients | Results were in contrast with previous prospective studies. Serum urate levels, increased by 1 standard deviation due to the genetic score, were not associated with type 2 diabetes mellitus, chronic heart disease, ischemic stroke, or heart failure. |
Singh, J.A. (2017) [38] | Retrospective registry cohort study | 1,338,501 patients | Compared with diabetes mellitus (DM) only, gout was associated with a similar risk of stroke (HR 1.02, 95% CI 0.95–1.10). Compared with patients with DM only, patients with both gout and DM had higher HRs for incident stroke (HR 1.42, 95% CI 1.29–1.56). |
Yen, F.S. (2020) [39] | Retrospective database propensitive score matching cohort study | 5218 patients | Incidence rates of hospitalized stroke were 0.6 and 1.0 per 100 person-years for urate-lowering therapy (ULT) users and nonusers, respectively, after adjusting for age, sex, residence, comorbidities, and medications. ULT users showed lower adjusted hazard ratios for hospitalized stroke (aHR: 0.52, p < 0.001). The effect of uricosuric agents on the decrease in hospitalized stroke risk indicated a dose–response relationship. |
Kang, H.S. (2023) [40] | Retrospective database propensitive score matching cohort study | 44,960 patients | In patients with gout, the incidences of stroke were slightly higher than those in controls (9.84 vs. 8.41 per 1000 person-years). After adjustment, the gout group had an 11% (95% confidence interval [CI] = 1.04–1.19) higher likelihood of experiencing stroke than the control group. |
Clinical Data—Cognitive Outcomes | |||
Schretlen, D.J. (2007) [55] | Cross-sectional data | 96 patients | The multivariate-adjusted odds of poor verbal memory aOR 5.02 (1.24 to 20.30) and working memory aOR 4.25 (1.44 to 12.57) were higher in patients with mildly elevated (but normal) serum UA. |
Ruggiero, C. 2009 [56] | Cross-sectional study | 1016 patients | Demented persons had higher (uric acid) UA levels (p = 0.001), and the prevalence of persons affected by dementia increased across UA tertiles (p < 0.0001). Persons belonging to the highest UA tertile had a threefold (OR = 3.32; 95% CI: 1.06–10.42) higher probability of suffering from dementia syndrome. |
Cicero, A.F.G. (2015) [18] | Cross-sectional data | 288 patients | The only factors associated with the mini-mental state examination score were age (B = −0.058, 95% CI −0.108, −0.009, p = 0.022), LDL-C (B = −0.639, 95% CI −0.912, −0.411, p = 0.034) and SUA (B = −0.527, 95% CI −0.709, −0.344, p = 0.022). |
MacIsaac, R.L. (2016) [101] | Prospective case–control study | 4064 patients | Allopurinol use was associated with a significantly lower risk of stroke aHR 0.50, 0.32–0.80. In exposed patients, high-dose (≥300 mg) was associated with a significantly lower risk of stroke aHR 0.58, 0.36–0.94. |
Engel, B. 2018 [86] | Cross-sectional study | 137,640 patients | Patients with a hyperuricemia diagnosis had a slightly reduced risk for dementia (aOR 0.94, 0.89–0.98). The risk reduction was more pronounced for patients treated with anti-hyperuricemic drugs (aOR 0.89, 0.85–0.94, for regular treatment). |
Sing, J.A. (2018) [89] | Database cohort study | 1,710,000 patients | Gout was independently associated with a significantly higher hazard ratio of incident dementia, with an HR of 1.15 (95% CI, 1.12, 1.18); sensitivity analyses confirmed the main findings. Compared to age 65 to < 75 years, age 75 to <85 and ≥85 years were associated with 3.5 and 7.8-fold higher hazards of dementia. |
Chuang, T.J. 2020 [87] | Retrospective case–control study | 3242 patients | Benzbromarone decreased the risk of dementia (aOR, 0.81, 0.68–0.97), and its use for ≥180 days showed a significantly lower risk of dementia (aOR, 0.72, 0.58–0.89). |
Min, K.H. (2021) [88] | Database cohort study | 125,768 patients | Gout was independently associated with a significantly lower hazard ratio of incident dementia, aHR 0.63, 0.60–0.66. Moreover, febuxostat use significantly decreased incident dementia. |
Pan, S.Y. (2021) [78] | Meta-analysis | 2,155,959 patients | Gout and hyperuricemia did not increase the risk of dementia, with a pooled HR of 0.94 (95% CI 0.69 to 1.28), but might decrease the risk of Alzheimer’s disease (AD), with a pooled HR of 0.78 (95% CI 0.64 to 0.95). |
Topiwala, A. (2023) [43] | Prospective data (UK Biobank) | 303,149 patients | Gout is associated with a higher incidence of dementia (average over study HR = 1.60 [1.38–1.85]). The risk was time-varying, highest in the first 3 years after gout diagnosis (HR = 7.40 [4.95–11.07]) and then decreasing. Risks were higher for vascular dementia (average HR = 2.41 [1.93–3.02]) compared to all-cause dementia but not for Alzheimer’s disease (average HR = 1.62 [1.30–2.02]). Amongst asymptomatic individuals, in the linear model, there was an inverse association between urate and dementia incidence (HR = 0.85, 95% CI: 0.80–0.89). |
Yao, Y. (2024) [77] | Meta-analysis | 2,928,152 patients | Hyperuricemia (or gout) did not reduce the overall risk of dementia (OR/HR = 0.92, 95% CI: 0.81–1.05) and vascular dementia (OR/HR = 0.74, 95% CI: 0.53–1.05), but may have a protective effect against Alzheimer’s disease (OR/HR = 0.82, 95% CI: 0.70–0.96). |
In Vivo Study | |||
First Author (Year) | Study Design | Population | Results |
Bowman, G.L. (2010) [31] | Prospective study | 32 patients | Cerebrospinal fluid (CSF) and plasma uric acid (UA) were positively correlated (r = 0.669, p = 0.001), and blood–brain barrier impairment was associated with higher CSF levels of UA (p = 0.028). Neither plasma nor CSF UA reached a significant association with rates of cognitive decline over 1 year. |
Kaddurah-Daouk, R. (2013) [100] | Cross-sectional data | 124 patients | At metabolic analyses, Alzheimer’s Disease (AD) subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine, and glutathione versus controls. Mild cognitive impairment (MCI) subjects had elevated 5-HIAA, MET, hypoxanthine, and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET, and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. |
Topiwala, A. (2023) [43] | Cross-sectional data (UK Biobank) | 33,367 patients | From magnetic resonance imaging analyses, there were highly significant differences in regional grey matter volumes, particularly of mid- and hindbrain structures, such as cerebellum (beta = −9.91 × 10−4, T = −9.26, p = 2.25 × 10−20), pons (beta = −5.63 × 10−4, T = −6.23, p = 4.95 × 10−10) and midbrain (beta = −4.00 × 10−4, T = −5.15, p = 2.67 × 10−07) in gout and high urate. In addition, they had higher iron deposition (lower T2* and higher magnetic susceptibility) of several basal ganglia structures, including bilateral putamen (beta = 9.50 × 10−4, T = 9.25, p = 2.38 × 10−20) and caudate (7.62 × 10−4, T = 7.12, p = 1.13 × 10−12). Data were confirmed by genetic analyses for single-nucleotide polymorphisms associated with both elevated uric acid and gout. |
Deng, F. (2024) [15] | Cross-sectional data | 346 patients | The uric acid to HDL-C ratio (UHR) was found to be independently associated with plaque rupture, erosion, and thrombus. Furthermore, ROC analysis suggested that the UHR had a better predictive value than low-density lipoprotein cholesterol. |
In vitro and Experimental Studies | |||
First Author (Year) | Experimental Study Design | Results | |
Santos, M.J. (2005) [69] | Primary Rat Hippocampal Neuron Cultures | Pretreatment with Wy-14.463, a peroxisome proliferator, prevents neuronal cell death and neuritic network loss induced by the Aβ peptide by increasing both the number of peroxisomes and the catalase activity. | |
Tomioka, N.H. (2013) [70] | Mouse Ependymal Cells | Urate transporter 1 (URAT1) was distributed throughout the ventricular walls of the lateral ventricle, dorsal third ventricle, ventral third ventricle, aqueduct, and fourth ventricle, but not in the non-ciliated tanycytes in the lower part of the ventral third ventricle. Antibody specificity was confirmed by the lack of immunostaining in brain tissue from URAT1 knockout mice. | |
Desideri, G. (2017) [68] | Human neuroblastoma Cells | The incubation of the cells model (SHSY5Y neuroblastoma cells incubated with amyloid β to reproduce an in vitro model of Alzheimer’s disease) with uric acid significantly reduced cell viability and potentiated the proapoptotic effect of amyloid β. | |
Burrage, E.N. (2023) [90] | Mouse | Blocking xanthine oxidase using febuxostat prevented the unpredictable chronic mild stress (UCMS)-induced impaired middle cerebral artery response, while free radical production and hydrogen peroxide levels were like controls in the liver and brain of UCMS mice treated with febuxostat. Further, UCMS + Feb mice did not have a significant reduction in working memory. | |
Zhang, C. (2023) [102] | Mouse | The authors found 15 long noncoding RNAs (lncRNAs) related to maintaining the blood–brain barrier (BBB). This study demonstrated that febuxostat protected the brain after intracerebral hemorrhage (ICH). Fifteen lncRNAs were regulated and were associated with the effects of febuxostat on BBB integrity after ICH. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baratta, F.; Moscucci, F.; Ettorre, E.; Bocale, R.; Cicero, A.F.G.; Cirillo, P.; Fogacci, F.; Lospinuso, I.; Savoia, C.; Mengozzi, A.; et al. Influence of Uric Acid on Vascular and Cognitive Functions: Evidence for an Ambivalent Relationship. Metabolites 2024, 14, 642. https://doi.org/10.3390/metabo14110642
Baratta F, Moscucci F, Ettorre E, Bocale R, Cicero AFG, Cirillo P, Fogacci F, Lospinuso I, Savoia C, Mengozzi A, et al. Influence of Uric Acid on Vascular and Cognitive Functions: Evidence for an Ambivalent Relationship. Metabolites. 2024; 14(11):642. https://doi.org/10.3390/metabo14110642
Chicago/Turabian StyleBaratta, Francesco, Federica Moscucci, Evaristo Ettorre, Raffaella Bocale, Arrigo F. G. Cicero, Pietro Cirillo, Federica Fogacci, Ilaria Lospinuso, Carmine Savoia, Alessandro Mengozzi, and et al. 2024. "Influence of Uric Acid on Vascular and Cognitive Functions: Evidence for an Ambivalent Relationship" Metabolites 14, no. 11: 642. https://doi.org/10.3390/metabo14110642
APA StyleBaratta, F., Moscucci, F., Ettorre, E., Bocale, R., Cicero, A. F. G., Cirillo, P., Fogacci, F., Lospinuso, I., Savoia, C., Mengozzi, A., Virdis, A., Borghi, C., & Desideri, G. (2024). Influence of Uric Acid on Vascular and Cognitive Functions: Evidence for an Ambivalent Relationship. Metabolites, 14(11), 642. https://doi.org/10.3390/metabo14110642