Possible Missing Sources of Atmospheric Glyoxal Part II: Oxidation of Toluene Derived from the Primary Production of Marine Microorganisms
Abstract
:1. Introduction
2. Experimental Design
2.1. Investigation into Marine Aerosol Chemistry and Transfer Science (IMPACTS)
2.2. Culture Flask Experiments
2.3. Gas Chromatography–Mass Spectrometry (GC/MS)
2.4. Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (LC-ESI-MS/MS)
2.5. Chlorophyll a Measurements
2.6. Ammonium, Nitrate, and Phosphate (Nutrients) Measurements
2.7. Ectohydrolytic Chitinase (β-1,4-ploy-N-acetylglucosaminidase) Activity Measurements
3. Results and Discussion
3.1. Investigation into Marine Aerosol Chemistry and Transfer Science (IMPACTS)
3.2. Culture Flask Studies
3.3. 13C Isotopic Fractionation
3.4. Biochemical Pathway for Toluene Formation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henze, D.; Seinfeld, J.; Ng, N.; Kroll, J.; Fu, T.-M.; Jacob, D.J.; Heald, C. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: High-vs. low-yield pathways. Atmos. Chem. Phys. 2008, 8, 2405–2420. [Google Scholar] [CrossRef]
- Hurley, M.D.; Sokolov, O.; Wallington, T.J.; Takekawa, H.; Karasawa, M.; Klotz, B.; Barnes, I.; Becker, K.H. Organic Aerosol Formation during the Atmospheric Degradation of Toluene. Environ. Sci. Technol. 2001, 35, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Kamens, R.M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. Environ. Sci. Technol. 2001, 35, 3626–3639. [Google Scholar] [CrossRef] [PubMed]
- Ng, N.; Kroll, J.; Chan, A.; Chhabra, P.; Flagan, R.; Seinfeld, J. Secondary organic aerosol formation from m-xylene, toluene, and benzene. Atmos. Chem. Phys. 2007, 7, 3909–3922. [Google Scholar] [CrossRef]
- Nishino, N.; Arey, J.; Atkinson, R. Formation Yields of Glyoxal and Methylglyoxal from the Gas-Phase OH Radical-Initiated Reactions of Toluene, Xylenes, and Trimethylbenzenes as a Function of NO2 Concentration. J. Phys. Chem. A 2010, 114, 10140–10147. [Google Scholar] [CrossRef]
- Volkamer, R.; Platt, U.; Wirtz, K. Primary and Secondary Glyoxal Formation from Aromatics: Experimental Evidence for the Bicycloalkyl–Radical Pathway from Benzene, Toluene, and p-Xylene. J. Phys. Chem. A 2001, 105, 7865–7874. [Google Scholar] [CrossRef]
- Tan, Y.; Perri, M.J.; Seitzinger, S.P.; Turpin, B.J. Effects of Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal–OH Radical Oxidation and Implications for Secondary Organic Aerosol. Environ. Sci. Technol. 2009, 43, 8105–8112. [Google Scholar] [CrossRef] [PubMed]
- Hastings, W.P.; Koehler, C.A.; Bailey, E.L.; De Haan, D.O. Secondary Organic Aerosol Formation by Glyoxal Hydration and Oligomer Formation: Humidity Effects and Equilibrium Shifts during Analysis. Environ. Sci. Technol. 2005, 39, 8728–8735. [Google Scholar] [CrossRef]
- Yu, G.; Bayer, A.R.; Galloway, M.M.; Korshavn, K.J.; Fry, C.G.; Keutsch, F.N. Glyoxal in Aqueous Ammonium Sulfate Solutions: Products, Kinetics and Hydration Effects. Environ. Sci. Technol. 2011, 45, 6336–6342. [Google Scholar] [CrossRef]
- De Haan, D.O.; Corrigan, A.L.; Smith, K.W.; Stroik, D.R.; Turley, J.J.; Lee, F.E.; Tolbert, M.A.; Jimenez, J.L.; Cordova, K.E.; Ferrell, G.R. Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids. Environ. Sci. Technol. 2009, 43, 2818–2824. [Google Scholar] [CrossRef]
- Schwier, A.N.; Sareen, N.; Mitroo, D.; Shapiro, E.L.; McNeill, V.F. Glyoxal-Methylglyoxal Cross-Reactions in Secondary Organic Aerosol Formation. Environ. Sci. Technol. 2010, 44, 6174–6182. [Google Scholar] [CrossRef] [PubMed]
- De Haan, D.O.; Tolbert, M.A.; Jimenez, J.L. Atmospheric condensed-phase reactions of glyoxal with methylamine. Geophys. Res. Lett. 2009, 36, L11819. [Google Scholar] [CrossRef]
- Ervens, B.; Volkamer, R. Glyoxal processing by aerosol multiphase chemistry: Towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmos. Chem. Phys. 2010, 10, 8219–8244. [Google Scholar] [CrossRef]
- Fu, T.-M.; Jacob, D.J.; Wittrock, F.; Burrows, J.P.; Vrekoussis, M.; Henze, D.K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. Atmos. 2008, 113, D15303. [Google Scholar] [CrossRef]
- Heald, C.L.; Jacob, D.J.; Park, R.J.; Russell, L.M.; Huebert, B.J.; Seinfeld, J.H.; Liao, H.; Weber, R.J. A large organic aerosol source in the free troposphere missing from current models. Geophys. Res. Lett. 2005, 32, L18809. [Google Scholar] [CrossRef]
- Volkamer, R.; San Martini, F.; Molina, L.T.; Salcedo, D.; Jimenez, J.L.; Molina, M.J. A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L19807. [Google Scholar] [CrossRef]
- De Haan, D.O.; Hawkins, L.N.; Kononenko, J.A.; Turley, J.J.; Corrigan, A.L.; Tolbert, M.A.; Jimenez, J.L. Formation of Nitrogen-Containing Oligomers by Methylglyoxal and Amines in Simulated Evaporating Cloud Droplets. Environ. Sci. Technol. 2010, 45, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Montalvo, D.L.; Häkkinen, S.A.K.; Schwier, A.N.; Lim, Y.B.; McNeill, V.F.; Turpin, B.J. Ammonium Addition (and Aerosol pH) Has a Dramatic Impact on the Volatility and Yield of Glyoxal Secondary Organic Aerosol. Environ. Sci. Technol. 2014, 48, 255–262. [Google Scholar] [CrossRef]
- Rossignol, S.; Aregahegn, K.Z.; Tinel, L.; Fine, L.; Nozière, B.; George, C. Glyoxal Induced Atmospheric Photosensitized Chemistry Leading to Organic Aerosol Growth. Environ. Sci. Technol. 2014, 48, 3218–3227. [Google Scholar] [CrossRef]
- Shapiro, E.L.; Szprengiel, J.; Sareen, N.; Jen, C.N.; Giordano, M.R.; McNeill, V.F. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 2009, 9, 2289–2300. [Google Scholar] [CrossRef]
- Johnson, D.; Jenkin, M.E.; Wirtz, K.; Martin-Reviejo, M. Simulating the formation of secondary organic aerosol from the photooxidation of aromatic hydrocarbons. Environ. Chem. 2005, 2, 35–48. [Google Scholar] [CrossRef]
- Koch, R.; Knispel, R.; Elend, M.; Siese, M.; Zetzsch, C. Consecutive reactions of aromatic-OH adducts with NO, NO2 and O2: Benzene, naphthalene, toluene, m-and p-xylene, hexamethylbenzene, phenol, m-cresol and aniline. Atmos. Chem. Phys. 2007, 7, 2057–2071. [Google Scholar] [CrossRef]
- Bohn, B. Formation of Peroxy Radicals from OH–Toluene Adducts and O2. J. Phys. Chem. A 2001, 105, 6092–6101. [Google Scholar] [CrossRef]
- Raoult, S.; Rayez, M.-T.; Rayez, J.-C.; Lesclaux, R. Gas phase oxidation of benzene: Kinetics, thermochemistry and mechanism of initial steps. Phys. Chem. Chem. Phys. 2004, 6, 2245–2253. [Google Scholar] [CrossRef]
- Prather, K.A.; Bertram, T.H.; Grassian, V.H.; Deane, G.B.; Stokes, M.D.; DeMott, P.J.; Aluwihare, L.I.; Palenik, B.P.; Azam, F.; Seinfeld, J.H.; et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. USA 2013, 110, 7550–7555. [Google Scholar] [CrossRef]
- ZoBell, C.E. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J. Mar. Res. 1941, 4, 42–75. [Google Scholar]
- Kropat, J.; Hong-Hermesdorf, A.; Casero, D.; Ent, P.; Castruita, M.; Pellegrini, M.; Merchant, S.S.; Malasarn, D. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J. 2011, 66, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. USA 1960, 46, 83. [Google Scholar] [CrossRef]
- Kim, M.J.; Michaud, J.M.; Williams, R.; Sherwood, B.P.; Pomeroy, R.; Azam, F.; Burkart, M.; Bertram, T.H. Bacteria-driven production of alkyl nitrates in seawater. Geophys. Res. Lett. 2015, 42, 597–604. [Google Scholar] [CrossRef]
- Wood, E.D.; Armstrong, F.; Richards, F.A. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. Mar. Biol. Assoc. UK 1967, 47, 23–31. [Google Scholar] [CrossRef]
- Koroleff, F. Direct determination of ammonia in natural waters as indophenol blue. Inf. Tech. Methods Seawater Anal. 1969, 9, 19–22. [Google Scholar]
- Hoppe, H. Significance of exoenzymatic activities in the ecology of brackish water: Measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser. 1983, 11, 299–308. [Google Scholar] [CrossRef]
- Martinez, J.; Smith, D.C.; Steward, G.F.; Azam, F. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 1996, 10, 223–230. [Google Scholar] [CrossRef]
- Danovaro, R.; Armeni, M.; Luna, G.; Corinaldesi, C.; Dell’Anno, A.; Ferrari, C.; Fiordelmondo, C.; Gambi, C.; Gismondi, M.; Manini, E. Exo-enzymatic activities and dissolved organic pools in relation with mucilage development in the Northern Adriatic Sea. Sci. Total Environ. 2005, 353, 189–203. [Google Scholar] [CrossRef]
- Dortch, Q. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. Oldendorf 1990, 61, 183–201. [Google Scholar] [CrossRef]
- Clark, D.R.; Miller, P.I.; Malcolm, E.; Woodward, S.; Rees, A.P. Inorganic nitrogen assimilation and regeneration in the coastal upwelling region of the Iberian Peninsula. Limnol. Oceanogr. 2011, 56, 1689–1702. [Google Scholar] [CrossRef]
- Johnson, M.; Sanders, R.; Avgoustidi, V.; Lucas, M.; Brown, L.; Hansell, D.; Moore, M.; Gibb, S.; Liss, P.; Jickells, T. Ammonium accumulation during a silicate-limited diatom bloom indicates the potential for ammonia emission events. Mar. Chem. 2007, 106, 63–75. [Google Scholar] [CrossRef]
- Joubert, W.; Thomalla, S.; Waldron, H.; Lucas, M.; Boye, M.; Le Moigne, F.; Planchon, F.; Speich, S. Nitrogen uptake by phytoplankton in the Atlantic sector of the Southern Ocean during late austral summer. Biogeosciences 2011, 85, 2947–2959. [Google Scholar] [CrossRef]
- Heiden, A.C.; Kobel, K.; Komenda, M.; Koppmann, R.; Shao, M.; Wildt, J. Toluene emissions from plants. Geophys. Res. Lett. 1999, 26, 1283–1286. [Google Scholar] [CrossRef]
- Christian, J.R.; Karl, D.M. Bacterial ectoenzymes in marine waters: Activity ratios and temperature responses in three oceanographic provinces. Limnol. Oceanogr. 1995, 40, 1042–1049. [Google Scholar] [CrossRef]
- Hoppe, H.-G. Phosphatase activity in the sea. Hydrobiologia 2003, 493, 187–200. [Google Scholar] [CrossRef]
- Jansson, M.; Olsson, H.; Pettersson, K. Phosphatases; Origin, Characteristics and Function in Lakes. In Phosphorus in Freshwater Ecosystems; Springer: Berlin/Heidelberg, Germany, 1988; pp. 157–175. [Google Scholar]
- Karner, M.; Herndl, G.J. Extracellular enzymatic activity and secondary production in free-living and marine-snow-associated bacteria. Mar. Biol. 1992, 113, 341–347. [Google Scholar] [CrossRef]
- Vrba, J.; Callieri, C.; Bittl, T.; Šimek, K.; Bertoni, R.; Filandr, P.; Hartman, P.; Hejzlar, J.; Macek, M.; Nedoma, J. Are bacteria the major producers of extracellular glycolytic enzymes in aquatic environments? Int. Rev. Hydrobiol. 2004, 89, 102–117. [Google Scholar] [CrossRef]
- Štrojsová, A.; Dyhrman, S.T. Cell-specific β-N-acetylglucosaminidase activity in cultures and field populations of eukaryotic marine phytoplankton. FEMS Microbiol. Ecol. 2008, 64, 351–361. [Google Scholar] [CrossRef]
- Fischer-Romero, C.; Tindall, B.; Jüttner, F. Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int. J. Syst. Bacteriol. 1996, 46, 183–188. [Google Scholar] [CrossRef]
- Jüttner, F. Formation of toluene by microorganisms from anoxic freshwater sediments. Fresenius’ J. Anal. Chem. 1991, 339, 785–787. [Google Scholar] [CrossRef]
- Juttner, F.; Henatsch, J.J. Anoxic hypolimnion is a significant source of biogenic toluene. Nature 1986, 323, 797–798. [Google Scholar] [CrossRef]
- Pons, J.L.; Rimbault, A.; Darbord, J.C.; Leluan, G. Biosynthèse de toluène chez Clostridium aerofoetidum souche WS. Ann. L’institut Pasteur/Microbiol. 1984, 135, 219–222. [Google Scholar] [CrossRef]
- Bendoraitis, J.; Brown, B.; Hepner, L. Isoprenoid hydrocarbons in petroleum. Isolation of 2, 6, 10, 14-tetramethylpentadecane by high temperature gas-liquid chromatography. Anal. Chem. 1962, 34, 49–53. [Google Scholar] [CrossRef]
- Burlingame, A.; Haug, P.; Belsky, T.; Calvin, M. Occurrence of biogenic steranes and pentacyclic triterpanes in an Eocene shale (52 million years) and in an early Precambrian shale (2.7 billion years): A preliminary report. Proc. Natl. Acad. Sci. USA 1965, 54, 1406. [Google Scholar] [CrossRef]
- Mair, B.J. Terpenoids, fatty acids and alcohols as source materials for petroleum hydrocarbons. Geochim. Cosmochim. Acta 1964, 28, 1303–1321. [Google Scholar] [CrossRef]
- Hills, I.R.; Whitehead, E.V. Triterpanes in Optically Active Petroleum Distillates. Nature 1966, 209, 977–979. [Google Scholar] [CrossRef]
- Abelson, P.H.; Hoering, T.C. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc. Natl. Acad. Sci. USA 1961, 47, 623. [Google Scholar] [CrossRef] [PubMed]
- Park, R.; Epstein, S. Metabolic fractionation of C13 & C12 in plants. Plant Physiol. 1961, 36, 133. [Google Scholar]
- Smith, B.N. Natural Abundance of the Stable Isotopes of Carbon in Biological Systems. BioScience 1972, 22, 226–231. [Google Scholar] [CrossRef]
- Fuex, A.N. The use of stable carbon isotopes in hydrocarbon exploration. J. Geochem. Explor. 1977, 7, 155–188. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon isotope fractionation in plants. Phytochemistry 1981, 20, 553–567. [Google Scholar] [CrossRef]
- Prins, H.B.A.; Elzenga, J.T.M. Bicarbonate utilization: Function and mechanism. Aquat. Bot. 1989, 34, 59–83. [Google Scholar] [CrossRef]
- Fogel, M.; Cifuentes, L. Isotope Fractionation During Primary Production. In Organic Geochemistry; Topics in Geobiology; Engel, M., Macko, S., Eds.; Springer: New York, NY, USA, 1993; Volume 11, pp. 73–98. [Google Scholar]
- Beardall, J.; Griffiths, H.; Raven, J. Carbon isotope discrimination and the CO2 accumulating mechanism in Chlorella emersonii. J. Exp. Bot. 1982, 33, 729–737. [Google Scholar] [CrossRef]
- Beardall, J. Effects of photon flux density on the CO2-concentrating mechanism’of the cyanobacterium Anabaena variabilis. J. Plankton Res. 1991, 13, 133–141. [Google Scholar]
- Beardall, J.; Giordano, M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct. Plant Biol. 2002, 29, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Burns, B.D.; Beardall, J. Utilization of inorganic carbon by marine microalgae. J. Exp. Mar. Biol. Ecol. 1987, 107, 75–86. [Google Scholar] [CrossRef]
- Moroney, J.V.; Ynalvez, R.A. Proposed Carbon Dioxide Concentrating Mechanism in Chlamydomonas reinhardtii. Eukaryot. Cell 2007, 6, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.; Bowes, G. Gas exchange and C allocation in Dunaliella salina cells in response to the N source and CO2 concentration used for growth. Plant Physiol. 1997, 115, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Beardall, J.; Roberts, S.; Raven, J.A. Regulation of inorganic carbon acquisition by phosphorus limitation in the green alga Chlorella emersonii. Can. J. Bot. 2005, 83, 859–864. [Google Scholar] [CrossRef]
- Beardall, J.; Johnston, A.; Raven, J. Environmental regulation of CO2-concentrating mechanisms in microalgae. Can. J. Bot. 1998, 76, 1010–1017. [Google Scholar] [CrossRef]
- Abe, H.; Uchiyama, M.; Sato, R. Isolation of phenylacetic acid and its p-hydroxy derivative as auxin-like substances from Undaria pinnatifida. Agric. Biol. Chem. 1974, 38, 897–898. [Google Scholar] [CrossRef]
- Fregeau, J.A.; Wightman, F. Natural occurrence and biosynthesis of auxins in chloroplast and mitochondrial fractions from sunflower leaves. Plant Sci. Lett. 1983, 32, 23–34. [Google Scholar] [CrossRef]
- Milborrow, B.V.; Purse, J.G.; Wightman, F. On the Auxin Activity of Phenylacetic Acid. Ann. Bot. 1975, 39, 1143–1146. [Google Scholar]
- Veal, D.; Trimble, J.E.; Beattie, A. Antimicrobial properties of secretions from the metapleural glands of Myrmecia gulosa (the Australian bull ant). J. Appl. Bacteriol. 1992, 72, 188–194. [Google Scholar] [CrossRef]
- Mayrand, D. Identification of clinical isolates of selected species of Bacteroides: Production of phenylacetic acid. Can. J. Microbiol. 1979, 25, 927–928. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, R.T.; Caspers-Brown, A.; Michaud, J.; Stevens, N.; Meehan, M.; Sultana, C.M.; Lee, C.; Malfatti, F.; Zhou, Y.; Azam, F.; et al. Possible Missing Sources of Atmospheric Glyoxal Part II: Oxidation of Toluene Derived from the Primary Production of Marine Microorganisms. Metabolites 2024, 14, 631. https://doi.org/10.3390/metabo14110631
Williams RT, Caspers-Brown A, Michaud J, Stevens N, Meehan M, Sultana CM, Lee C, Malfatti F, Zhou Y, Azam F, et al. Possible Missing Sources of Atmospheric Glyoxal Part II: Oxidation of Toluene Derived from the Primary Production of Marine Microorganisms. Metabolites. 2024; 14(11):631. https://doi.org/10.3390/metabo14110631
Chicago/Turabian StyleWilliams, Renee T., Annika Caspers-Brown, Jennifer Michaud, Natalie Stevens, Michael Meehan, Camille M. Sultana, Christopher Lee, Francesca Malfatti, Yanyan Zhou, Farooq Azam, and et al. 2024. "Possible Missing Sources of Atmospheric Glyoxal Part II: Oxidation of Toluene Derived from the Primary Production of Marine Microorganisms" Metabolites 14, no. 11: 631. https://doi.org/10.3390/metabo14110631
APA StyleWilliams, R. T., Caspers-Brown, A., Michaud, J., Stevens, N., Meehan, M., Sultana, C. M., Lee, C., Malfatti, F., Zhou, Y., Azam, F., Prather, K. A., Dorrestein, P., Burkart, M. D., & Pomeroy, R. S. (2024). Possible Missing Sources of Atmospheric Glyoxal Part II: Oxidation of Toluene Derived from the Primary Production of Marine Microorganisms. Metabolites, 14(11), 631. https://doi.org/10.3390/metabo14110631