Possible Missing Sources of Atmospheric Glyoxal Part I: Phospholipid Oxidation from Marine Algae
Abstract
:1. Introduction
2. Experimental Design
2.1. Investigation into Marine Aerosol Chemistry and Transfer Science (IMPACTS)
2.2. Marine Aerosol Reference Tank (MART)—Mesocosm Scale
2.3. Large Culture Flask with Seawater—Microcosm Scale
2.4. Flask Experiment with Proxy Molecules—Proof of Concept
2.5. Gas Chromatography Mass Spectrometry (GC/MS)
2.6. Liquid Chromatography High Resolution Tandem Mass Spectrometry (LC-HR-MS/MS)
2.7. Chlorophyll a Measurements
2.8. Lipase (Stearase) Activity Measurements
3. Results and Discussion
3.1. The IMPACTS Experiment—Investigation into Marine Aerosol Chemistry and Transfer Science (IMPACTS)
3.2. Verification of IMPACTS at a Microcosm Scale
3.3. SSML Analysis with Marine Aerosol Reference Tank (MART)
3.4. Gas-Phase Verification of Proposed Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Kean, A.J.; Grosjean, E.; Grosjean, D. Carbonyl and Nitrogen Dioxide Emissions from Gasoline- and Diesel-Powered Motor Vehicles. Environ. Sci. Technol. 2008, 42, 3944–3950. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, D.; Grosjean, E.; Gertler, A.W. On-Road Emissions of Carbonyls from Light-Duty and Heavy-Duty Vehicles. Environ. Sci. Technol. 2000, 35, 45–53. [Google Scholar] [CrossRef]
- Hays, M.D.; Geron, C.D.; Linna, K.J.; Smith, N.D.; Schauer, J.J. Speciation of Gas-Phase and Fine Particle Emissions from Burning of Foliar Fuels. Environ. Sci. Technol. 2002, 36, 2281–2295. [Google Scholar] [CrossRef]
- Nishino, N.; Arey, J.; Atkinson, R. Formation Yields of Glyoxal and Methylglyoxal from the Gas-Phase OH Radical-Initiated Reactions of Toluene, Xylenes, and Trimethylbenzenes as a Function of NO2 Concentration. J. Phys. Chem. A 2010, 114, 10140–10147. [Google Scholar] [CrossRef]
- Sinreich, R.; Volkamer, R.; Filsinger, F.; Frieß, U.; Kern, C.; Platt, U.; Sebastián, O.; Wagner, T. MAX-DOAS detection of glyoxal during ICARTT 2004. Atmos. Chem. Phys. 2007, 7, 1293–1303. [Google Scholar] [CrossRef]
- Volkamer, R.; Molina, L.T.; Molina, M.J.; Shirley, T.; Brune, W.H. DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air. Geophys. Res. Lett. 2005, 32, L08806. [Google Scholar] [CrossRef]
- Volkamer, R.; Platt, U.; Wirtz, K. Primary and Secondary Glyoxal Formation from Aromatics: Experimental Evidence for the Bicycloalkyl−Radical Pathway from Benzene, Toluene, and p-Xylene. J. Phys. Chem. A 2001, 105, 7865–7874. [Google Scholar] [CrossRef]
- Grosjean, D.; Miguel, A.H.; Tavares, T.M. Urban air pollution in Brazil: Acetaldehyde and other carbonyls. Atmos. Environ. Part B Urban Atmos. 1990, 24, 101–106. [Google Scholar] [CrossRef]
- Fu, T.-M.; Jacob, D.J.; Wittrock, F.; Burrows, J.P.; Vrekoussis, M.; Henze, D.K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. Atmos. 2008, 113, D15303. [Google Scholar] [CrossRef]
- Huisman, A.J.; Hottle, J.R.; Galloway, M.M.; DiGangi, J.P.; Coens, K.L.; Choi, W.; Faloona, I.C.; Gilman, J.B.; Kuster, W.C.; de Gouw, J.; et al. Photochemical modeling of glyoxal at a rural site: Observations and analysis from BEARPEX 2007. Atmos. Chem. Phys. 2011, 11, 8883–8897. [Google Scholar] [CrossRef]
- MacDonald, S.M.; Oetjen, H.; Mahajan, A.S.; Whalley, L.K.; Edwards, P.M.; Heard, D.E.; Jones, C.E.; Plane, J.M.C. DOAS measurements of formaldehyde and glyoxal above a south-east Asian tropical rainforest. Atmos. Chem. Phys. 2012, 12, 5949–5962. [Google Scholar] [CrossRef]
- Spaulding, R.S.; Schade, G.W.; Goldstein, A.H.; Charles, M.J. Characterization of secondary atmospheric photooxidation products: Evidence for biogenic and anthropogenic sources. J. Geophys. Res. Atmos. 2003, 108, 4247. [Google Scholar] [CrossRef]
- Stavrakou, T.; Müller, J.F.; De Smedt, I.; Van Roozendael, M.; Kanakidou, M.; Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.P. The continental source of glyoxal estimated by the synergistic use of spaceborne measurements and inverse modelling. Atmos. Chem. Phys. 2009, 9, 8431–8446. [Google Scholar] [CrossRef]
- Wang, L.; Khalizov, A.F.; Zheng, J.; Xu, W.; Ma, Y.; Lal, V.; Zhang, R. Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nat. Geosci. 2010, 3, 238–242. [Google Scholar] [CrossRef]
- Tan, Y.; Perri, M.J.; Seitzinger, S.P.; Turpin, B.J. Effects of Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal−OH Radical Oxidation and Implications for Secondary Organic Aerosol. Environ. Sci. Technol. 2009, 43, 8105–8112. [Google Scholar] [CrossRef]
- Hastings, W.P.; Koehler, C.A.; Bailey, E.L.; De Haan, D.O. Secondary Organic Aerosol Formation by Glyoxal Hydration and Oligomer Formation: Humidity Effects and Equilibrium Shifts during Analysis. Environ. Sci. Technol. 2005, 39, 8728–8735. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Bayer, A.R.; Galloway, M.M.; Korshavn, K.J.; Fry, C.G.; Keutsch, F.N. Glyoxal in Aqueous Ammonium Sulfate Solutions: Products, Kinetics and Hydration Effects. Environ. Sci. Technol. 2011, 45, 6336–6342. [Google Scholar] [CrossRef]
- De Haan, D.O.; Corrigan, A.L.; Smith, K.W.; Stroik, D.R.; Turley, J.J.; Lee, F.E.; Tolbert, M.A.; Jimenez, J.L.; Cordova, K.E.; Ferrell, G.R. Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids. Environ. Sci. Technol. 2009, 43, 2818–2824. [Google Scholar] [CrossRef]
- Schwier, A.N.; Sareen, N.; Mitroo, D.; Shapiro, E.L.; McNeill, V.F. Glyoxal-Methylglyoxal Cross-Reactions in Secondary Organic Aerosol Formation. Environ. Sci. Technol. 2010, 44, 6174–6182. [Google Scholar] [CrossRef]
- De Haan, D.O.; Tolbert, M.A.; Jimenez, J.L. Atmospheric condensed-phase reactions of glyoxal with methylamine. Geophys. Res. Lett. 2009, 36, L11819. [Google Scholar] [CrossRef]
- Ervens, B.; Volkamer, R. Glyoxal processing by aerosol multiphase chemistry: Towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmos. Chem. Phys. 2010, 10, 8219–8244. [Google Scholar] [CrossRef]
- Heald, C.L.; Jacob, D.J.; Park, R.J.; Russell, L.M.; Huebert, B.J.; Seinfeld, J.H.; Liao, H.; Weber, R.J. A large organic aerosol source in the free troposphere missing from current models. Geophys. Res. Lett. 2005, 32, L18809. [Google Scholar] [CrossRef]
- Volkamer, R.; Martini, F.S.; Molina, L.T.; Salcedo, D.; Jimenez, J.L.; Molina, M.J. A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L19807. [Google Scholar] [CrossRef]
- Jang, M.; Carroll, B.; Chandramouli, B.; Kamens, R.M. Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols. Environ. Sci. Technol. 2003, 37, 3828–3837. [Google Scholar] [CrossRef]
- Jang, M.; Czoschke, N.M.; Lee, S.; Kamens, R.M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 2002, 298, 814–817. [Google Scholar] [CrossRef]
- Jang, M.; Kamens, R.M. Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environ. Sci. Technol. 2001, 35, 4758–4766. [Google Scholar] [CrossRef]
- De Haan, D.O.; Hawkins, L.N.; Kononenko, J.A.; Turley, J.J.; Corrigan, A.L.; Tolbert, M.A.; Jimenez, J.L. Formation of Nitrogen-Containing Oligomers by Methylglyoxal and Amines in Simulated Evaporating Cloud Droplets. Environ. Sci. Technol. 2010, 45, 984–991. [Google Scholar] [CrossRef]
- Ortiz-Montalvo, D.L.; Häkkinen, S.A.K.; Schwier, A.N.; Lim, Y.B.; McNeill, V.F.; Turpin, B.J. 1.Ammonium Addition (and Aerosol pH) Has a Dramatic Impact on the Volatility and Yield of Glyoxal Secondary Organic Aerosol. Environ. Sci. Technol. 2014, 48, 255–262. [Google Scholar] [CrossRef]
- Rossignol, S.; Aregahegn, K.Z.; Tinel, L.; Fine, L.; Nozière, B.; George, C. Glyoxal Induced Atmospheric Photosensitized Chemistry Leading to Organic Aerosol Growth. Environ. Sci. Technol. 2014, 48, 3218–3227. [Google Scholar] [CrossRef]
- Shapiro, E.L.; Szprengiel, J.; Sareen, N.; Jen, C.N.; Giordano, M.R.; McNeill, V.F. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 2009, 9, 2289–2300. [Google Scholar] [CrossRef]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef]
- Mahajan, A.S.; Prados-Roman, C.; Hay, T.D.; Lampel, J.; Pöhler, D.; Groβmann, K.; Tschritter, J.; Frieß, U.; Platt, U.; Johnston, P.; et al. Glyoxal observations in the global marine boundary layer. J. Geophys. Res. Atmos. 2014, 119, 6160–6169. [Google Scholar] [CrossRef]
- Lerot, C.; Stavrakou, T.; De Smedt, I.; Müller, J.F.; Van Roozendael, M. Glyoxal vertical columns from GOME-2 backscattered light measurements and comparisons with a global model. Atmos. Chem. Phys. 2010, 10, 12059–12072. [Google Scholar] [CrossRef]
- Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.P. GOME-2 observations of oxygenated VOCs: What can we learn from the ratio glyoxal to formaldehyde on a global scale? Atmos. Chem. Phys. 2010, 10, 10145–10160. [Google Scholar] [CrossRef]
- Wittrock, F.; Richter, A.; Oetjen, H.; Burrows, J.P.; Kanakidou, M.; Myriokefalitakis, S.; Volkamer, R.; Beirle, S.; Platt, U.; Wagner, T. Simultaneous global observations of glyoxal and formaldehyde from space. Geophys. Res. Lett. 2006, 33, L16804. [Google Scholar] [CrossRef]
- Coburn, S.; Ortega, I.; Thalman, R.; Blomquist, B.; Fairall, C.; Volkamer, R. Measurements of diurnal variations and Eddy Covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: Description of the Fast LED-CE-DOAS instrument. Atmos. Meas. Tech. 2014, 7, 3579–3595. [Google Scholar] [CrossRef]
- Lawson, S.J.; Selleck, P.W.; Galbally, I.E.; Keywood, M.D.; Harvey, M.J.; Lerot, C.; Helmig, D.; Ristovski, Z. Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere. Atmos. Chem. Phys. 2015, 15, 223–240. [Google Scholar] [CrossRef]
- Sinreich, R.; Coburn, S.; Dix, B.; Volkamer, R. Ship-based detection of glyoxal over the remote tropical Pacific Ocean. Atmos. Chem. Phys. 2010, 10, 11359–11371. [Google Scholar] [CrossRef]
- Myriokefalitakis, S.; Vrekoussis, M.; Tsigaridis, K.; Wittrock, F.; Richter, A.; Brühl, C.; Volkamer, R.; Burrows, J.P.; Kanakidou, M. The influence of natural and anthropogenic secondary sources on the glacial global distribution. Atmos. Chem. Phys. Discuss. 2008, 8, 1673–1708. [Google Scholar]
- Broadgate, W.J.; Liss, P.S.; Penkett, S.A. Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean. Geophys. Res. Lett. 1997, 24, 2675–2678. [Google Scholar] [CrossRef]
- Galbally, I.E.; Lawson, S.J.; Weeks, I.A.; Bentley, S.T.; Gillett, R.W.; Meyer, M.; Goldstein, A.H. Volatile organic compounds in marine air at Cape Grim, Australia. Environ. Chem. 2007, 4, 178–182. [Google Scholar] [CrossRef]
- Gantt, B.; Meskhidze, N.; Zhang, Y.; Xu, J. The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States. Atmos. Environ. 2010, 44, 115–121. [Google Scholar] [CrossRef]
- Palmer, P.I.; Shaw, S.L. Quantifying global marine isoprene fluxes using MODIS chlorophyll observations. Geophys. Res. Lett. 2005, 32, L09805. [Google Scholar] [CrossRef]
- Shaw, S.L.; Gantt, B.; Meskhidze, N. Production and Emissions of Marine Isoprene and Monoterpenes: A Review. Adv. Meteorol. 2010, 2010, 24. [Google Scholar] [CrossRef]
- Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L.A.; Li, S.M.; Bureekul, S.; et al. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air–water interface and of the sea surface microlayer. Atmos. Chem. Phys. 2014, 14, 1371–1384. [Google Scholar] [CrossRef]
- Ip, H.S.S.; Huang, X.H.H.; Yu, J.Z. Effective Henry’s law constants of glyoxal, glyoxylic acid, and glycolic acid. Geophys. Res. Lett. 2009, 36, L01802. [Google Scholar] [CrossRef]
- Prather, K.A.; Bertram, T.H.; Grassian, V.H.; Deane, G.B.; Stokes, M.D.; DeMott, P.J.; Aluwihare, L.I.; Palenik, B.P.; Azam, F.; Seinfeld, J.H.; et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. USA 2013, 110, 7550–7555. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, K.; Shibamoto, T. Determination of toxic carbonyl compounds in cigarette smoke. Environ. Toxicol. 2006, 21, 47–54. [Google Scholar] [CrossRef]
- Moree-Testa, P.; Saint-Jalm, Y. Determination of α-dicarbonyl compounds in cigarette smoke. J. Chromatogr. A 1981, 217, 197–208. [Google Scholar] [CrossRef]
- Niyati-Shirkhodaee, F.; Shibamoto, T. Gas chromatographic analysis of glyoxal and methylglyoxal formed from lipids and related compounds upon ultraviolet irradiation. J. Agric. Food Chem. 1993, 41, 227–230. [Google Scholar] [CrossRef]
- Stokes, M.D.; Deane, G.B.; Prather, K.; Bertram, T.H.; Ruppel, M.J.; Ryder, O.S.; Brady, J.M.; Zhao, D. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols. Atmos. Meas. Tech. 2013, 6, 1085–1094. [Google Scholar] [CrossRef]
- Clarke, N.R.; Casey, J.P.; Brown, E.D.; Oneyma, E.; Donaghy, K.J. Preparation and viscosity of biodiesel from new and used vegetable oil. An inquiry-based environmental chemistry laboratory. J. Chem. Educ. 2006, 83, 257. [Google Scholar] [CrossRef]
- Hoppe, H. Significance of exoenzymatic activities in the ecology of brackish water: Measurements by means of methylumbelliferyl-substrates. Mar. Ecol. Prog. Ser. 1983, 11, 299–308. [Google Scholar] [CrossRef]
- Martinez, J.; Smith, D.C.; Steward, G.F.; Azam, F. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 1996, 10, 223–230. [Google Scholar] [CrossRef]
- Danovaro, R.; Armeni, M.; Luna, G.; Corinaldesi, C.; Dell’Anno, A.; Ferrari, C.; Fiordelmondo, C.; Gambi, C.; Gismondi, M.; Manini, E. Exo-enzymatic activities and dissolved organic pools in relation with mucilage development in the Northern Adriatic Sea. Sci. Total Environ. 2005, 353, 189–203. [Google Scholar] [CrossRef]
- Desbois, A.; Smith, V. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef]
- Flavier, A.B.; Clough, S.J.; Schell, M.A.; Denny, T.P. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol. Microbiol. 1997, 26, 251–259. [Google Scholar] [CrossRef]
- Pryor, W.A.; Das, B.; Church, D.F. The ozonation of unsaturated fatty acids: Aldehydes and hydrogen peroxide as products and possible mediators of ozone toxicity. Chem. Res. Toxicol. 1991, 4, 341–348. [Google Scholar] [CrossRef]
- Reis, A.; Spickett, C.M. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta (BBA)-Biomembr. 2012, 1818, 2374–2387. [Google Scholar] [CrossRef]
- Kawamura, K.; Gagosian, R.B. Implications of [omega]-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature 1987, 325, 330–332. [Google Scholar] [CrossRef]
- Volkov, A.; Khoshnevis, S.; Neumann, P.; Herrfurth, C.; Wohlwend, D.; Ficner, R.; Feussner, I. Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.K.; Bates, T.S.; Schulz, K.S.; Coffman, D.J.; Frossard, A.A.; Russell, L.M.; Keene, W.C.; Kieber, D.J. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci. 2014, 7, 228–232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, R.T.; Caspers-Brown, A.; Sultana, C.M.; Lee, C.; Axson, J.L.; Malfatti, F.; Zhou, Y.; Moore, K.A.; Stevens, N.; Santander, M.V.; et al. Possible Missing Sources of Atmospheric Glyoxal Part I: Phospholipid Oxidation from Marine Algae. Metabolites 2024, 14, 639. https://doi.org/10.3390/metabo14110639
Williams RT, Caspers-Brown A, Sultana CM, Lee C, Axson JL, Malfatti F, Zhou Y, Moore KA, Stevens N, Santander MV, et al. Possible Missing Sources of Atmospheric Glyoxal Part I: Phospholipid Oxidation from Marine Algae. Metabolites. 2024; 14(11):639. https://doi.org/10.3390/metabo14110639
Chicago/Turabian StyleWilliams, Renee T., Annika Caspers-Brown, Camille M. Sultana, Christopher Lee, Jessica L. Axson, Francesca Malfatti, Yanyan Zhou, Kathryn A. Moore, Natalie Stevens, Mitchell V. Santander, and et al. 2024. "Possible Missing Sources of Atmospheric Glyoxal Part I: Phospholipid Oxidation from Marine Algae" Metabolites 14, no. 11: 639. https://doi.org/10.3390/metabo14110639
APA StyleWilliams, R. T., Caspers-Brown, A., Sultana, C. M., Lee, C., Axson, J. L., Malfatti, F., Zhou, Y., Moore, K. A., Stevens, N., Santander, M. V., Azam, F., Prather, K. A., & Pomeroy, R. S. (2024). Possible Missing Sources of Atmospheric Glyoxal Part I: Phospholipid Oxidation from Marine Algae. Metabolites, 14(11), 639. https://doi.org/10.3390/metabo14110639