Associations Between Cardiorespiratory Fitness and Metabolic Syndrome in Adolescents: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Databases and Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Assessment of the Risk of Bias in the Included Studies
2.5. Statistical Analysis
2.6. Analysis of the Certainty of Evidence
2.7. Sensitivity and Subgroup Analyses
3. Results
Quantitative Synthesis (Meta-Analysis)
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: A systematic review and modelling analysis. Lancet Child. Adolesc. Health 2022, 6, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Ku, M.; Kiyoji, T.; Isobe, T.; Sakae, T.; Oh, S. Cardiorespiratory fitness is strongly linked to metabolic syndrome among physical fitness components: A retrospective cross-sectional study. J. Physiol. Anthropol. 2020, 39, 30. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E.A.; Tompuri, T.; Lintu, N.; Viitasalo, A.; Savonen, K.; Lakka, T.A.; Laukkanen, J.A. Is low cardiorespiratory fitness a feature of metabolic syndrome in children and adults? J. Sci. Med. Sport. 2022, 25, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Mäestu, E.; Harro, J.; Veidebaum, T.; Kurrikoff, T.; Jürimäe, J.; Mäestu, J. Changes in cardiorespiratory fitness through adolescence predict metabolic syndrome in young adults. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 701–708. [Google Scholar] [CrossRef]
- Oliveira, R.G.; Guedes, D.P. Physical Activity, Sedentary Behavior, Cardiorespiratory Fitness and Metabolic Syndrome in Adolescents: Systematic Review and Meta-Analysis of Observational Evidence. PLoS ONE 2016, 11, e0168503. [Google Scholar] [CrossRef]
- Janssen, I.; Cramp, W.C. Cardiorespiratory fitness is strongly related to the metabolic syndrome in adolescents. Diabetes Care 2007, 30, 2143–2144. [Google Scholar] [CrossRef]
- McMurray, R.G.; Bangdiwala, S.I.; Harrell, J.S.; Amorim, L.D. Adolescents with metabolic syndrome have a history of low aerobic fitness and physical activity levels. Dyn. Med. 2008, 7, 5. [Google Scholar] [CrossRef]
- Ekelund, U.; Anderssen, S.; Andersen, L.B.; Riddoch, C.J.; Sardinha, L.B.; Luan, J.; Froberg, K.; Brage, S. Prevalence and correlates of the metabolic syndrome in a population-based sample of European youth. Am. J. Clin. Nutr. 2009, 89, 90–96. [Google Scholar] [CrossRef]
- Stabelini Neto, A.; Sasaki, J.E.; Mascarenhas, L.P.; Boguszewski, M.C.; Bozza, R.; Ulbrich, A.Z.; da Silva, S.G.; de Campos, W. Physical activity, cardiorespiratory fitness, and metabolic syndrome in adolescents: A cross-sectional study. BMC Public Health 2011, 11, 674. [Google Scholar] [CrossRef] [PubMed]
- Laurson, K.R.; Saint-Maurice, P.F.; Karsai, I.; Csányi, T. Cross-Validation of FITNESSGRAM® Health-Related Fitness Standards in Hungarian Youth. Res. Q. Exerc. Sport. 2015, 86 (Suppl. 1), S13–S20. [Google Scholar] [CrossRef] [PubMed]
- González-Gálvez, N.; Ribeiro, J.; Mota, J. Metabolic syndrome and cardiorespiratory fitness in children and adolescents: The role of obesity as a mediator. J. Pediatr. Endocrinol. Metab. 2021, 34, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Al Hazmy, A.; Doewes, M.; Rachma, N.; Kristiyanto, A. Relationship of Body Mass Index and Cardiorespiratory Fitness with Metabolic Syndrome Risk in Adolescents. Sports Sci. Health/Sport. Nauk. I Zdr. 2018, 8, 5–11. [Google Scholar] [CrossRef]
- Moreira, C.; Santos, R.; Vale, S.; Soares-Miranda, L.; Marques, A.I.; Santos, P.C.; Mota, J. Metabolic syndrome and physical fitness in a sample of Azorean adolescents. Metab. Syndr. Relat. Disord. 2010, 8, 443–449. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Downes, M.J.; Brennan, M.L.; Williams, H.C.; Dean, R.S. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 2016, 6, e011458. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Schünemann, H.; Brożek, J.; Guyatt, G.; Oxman, A. GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations; The GRADE Working Group: Hamilton, ON, USA, 2013. [Google Scholar]
- Zimmet, P.; Alberti, K.G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef]
- Jolliffe, C.J.; Janssen, I. Development of age-specific adolescent metabolic syndrome criteria that are linked to the Adult Treatment Panel III and International Diabetes Federation criteria. J. Am. Coll. Cardiol. 2007, 49, 891–898. [Google Scholar] [CrossRef]
- Oliveira, R.G.; Guedes, D.P. Physical Fitness and Metabolic Syndrome in Brazilian Adolescents: Validity of Diagnostic Health Criteria. Percept. Mot. Skills 2018, 125, 1140–1159. [Google Scholar] [CrossRef] [PubMed]
- Meredith, M.D.; Welk, G.J. Fitnessgram/Activitygram: Test Administration Manual, 4th ed.; The Cooper Institute: Dallas, TX, USA, 2013. [Google Scholar]
- Mendonça, F.R.; Ferreira de Faria, W.; Marcio da Silva, J.; Massuto, R.B.; Castilho Dos Santos, G.; Correa, R.C.; Ferreira Dos Santos, C.; Sasaki, J.E.; Neto, A.S. Effects of aerobic exercise combined with resistance training on health-related physical fitness in adolescents: A randomized controlled trial. J. Exerc. Sci. Fit. 2022, 20, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef] [PubMed]
- Mensah, G.A.; Fuster, V.; Murray, C.J.L.; Roth, G.A. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef]
- Killilea, T. Long-term consequences of type 2 diabetes mellitus: Economic impact on society and managed care. Am. J. Manag. Care 2002, 8 (Suppl. 16), S441–S449. [Google Scholar]
Study, Country | Sample (Number, Gender, Age) | Design | MetS (Criteria and Prevalence) | Cardiorespiratory Fitness Measure and Classification Criteria | Adjustments | Results (p < 0.05) | Risk of Bias 0–20 |
---|---|---|---|---|---|---|---|
González-Gálvez et al. [13] (2021), Portugal | N = 209, 96 (M), 113 (F), 10–12 years | CS | IDF [20], MetS = 5.7% | VO2Max (20 m shuttle run test): dichotomous classification (fit and unfit) | No adjustment | β −0.017 [SD 0.005] for lower CRF and MetS | 16 |
Mäestu et al. [6] (2020), Estonia | N = 1076, 482 (M), 594 (F), 15 years | PRO (10 and 18 yrs) | Harmonized criteria * MetS = 2.2% | VO2Peak (maximal treadmill test): quartile (high, high–moderate, low–moderate and low) | Length to follow-up, sex, and cohort | OR 34.43 [CI 95%, 4.62 to 256.85] and OR 11.52 [CI 95%, 3.79 to 34.98] for low (vs. high) CRF in adolescence (15 yrs) and MetS in adults (25 and 33 yrs, respectively) | 17 |
Al Hazmy et al. [14] (2018), Indonesia | N = 44, 22 (M), 22 (F) 15–17 years | CS | Harmonized criteria * MetS = 27.3% | VO2Max (20 m shuttle run test): dichotomous classification (fit and unfit) | Age | OR 16.08 [CI 95%, 1.84 to 140.13] for unfit CRF (vs. fit) and MetS | 16 |
Laurson et al. [12] (2015), Hungary | N = 379, 213 (M), 166 (F), 12–18 years | CS | Harmonized criteria *, MetS = 6.7% | VO2Peak (maximal treadmill test): FitnessGram classification (“Healthy Fitness Zone”; “Need to improve”; or “Needs Improvement/Risk Zone”) | No adjustment | OR 3.9 [CI 95%, 1.6–9.1] for “Needs Improvement” and MetS or OR 4.7 [CI 95%, 2.0 to 11.0] for “Needs Improvement/Risk Zone” and MetS | 15 |
Stabelini Neto et al. [11] (2011), Brazil | N = 456, 233 (M), 223 (F), 10–18 years | CS | Cook [21], MetS = 7.7% | VO2Max (20 m shuttle run test): tertiles (low, moderate, and high) | Age and sex | OR 3.0 [CI 95%, 1.13 to 7.94] for low CRF (vs. high) and MetS | 18 |
Moreira et al. [15] (2010), Portugal | N = 517, 220 (M), 297 (F), 15–18 years | CS | IDF [20], MetS = 5% | PACER (20 m): FitnessGram classification (“below the healthy zone”; or “inside/above the healthy zone”) | Pubertal stage and socioeconomic status | OR 40.29 [CI 95%, 2.44 to 664.96] for CRF below the healthy zone (vs. inside/above the healthy zone) and MetS | 16 |
Ekelund et al. [10] (2009), Denmark, Estonia, and Portugal | N = 2.446, NR (M), NR (F), 10–15 years | CS | IDF [20], MetS = 0.8% | Maximal cycle ergometer test: watts per fat-free mass, per minute | Age, sex, and nationality | OR 0.43 [CI 95%, 0.24 to 0.80] for high CRF and lower chance of MetS | 15 |
McMurray et al. [9] (2008), USA | N = 389, 212 (M), 177 (F), 14–17 years (at follow-up) | PRO (7 yrs) | Jolliffe [22], MetS = 4.6% (at follow-up) | VO2Max (submaximal test on cycle ergometer): absolute and/or tertile value (low, moderate, or high) | Sex, BMI, blood pressure, and cholesterol | OR 6.09 [CI 95%, 1.18 to 60.29] for low (vs. high) and OR 5.58 [CI 95%, 1.15 to 53.75] (vs. moderate) CRF in childhood (7–10 yrs) and MetS in adolescence (14–17 yrs) | 16 |
Janssen and Cramp [8] (2007), USA | N = 1.561, 829 (M), 732 (F) 12–19 years | CS | Jolliffe [22], MetS = 7.6% | VO2Max (submaximal treadmill test): tertiles (low, moderate, or high) | Age, sex, ethnicity, smoking, economic status, lipid and carbohydrate intake | OR 0.18 [CI 95%, 0.07 to 0.48] for moderate and OR 0.01 [CI 95%, 0.00 to 0.07] for high CRF (vs. low) and lower chance of MetS | 11 |
Certainty Assessment | № of Participants | OR (95% CI) | GRADE Certainty | |||||
---|---|---|---|---|---|---|---|---|
№ of Studies | Risk of Bias | Inconsistency | Indirectness | Imprecision | Other Considerations | |||
8 | not serious | not serious | not serious | not serious | strong association; plausible residual confounding would reduce the effect; dose response gradient | 6868 | 3.63 (2.54, 5.20) | ⨁⨁⨁⨁ High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, J.C.d.; Guedes, D.P.; Dias, P.H.G.; Stabelini Neto, A.; Oliveira, R.G.d. Associations Between Cardiorespiratory Fitness and Metabolic Syndrome in Adolescents: A Systematic Review and Meta-Analysis. Metabolites 2024, 14, 635. https://doi.org/10.3390/metabo14110635
Prado JCd, Guedes DP, Dias PHG, Stabelini Neto A, Oliveira RGd. Associations Between Cardiorespiratory Fitness and Metabolic Syndrome in Adolescents: A Systematic Review and Meta-Analysis. Metabolites. 2024; 14(11):635. https://doi.org/10.3390/metabo14110635
Chicago/Turabian StylePrado, Jonathan Cesar do, Dartagnan Pinto Guedes, Pedro Henrique Garcia Dias, Antonio Stabelini Neto, and Raphael Gonçalves de Oliveira. 2024. "Associations Between Cardiorespiratory Fitness and Metabolic Syndrome in Adolescents: A Systematic Review and Meta-Analysis" Metabolites 14, no. 11: 635. https://doi.org/10.3390/metabo14110635
APA StylePrado, J. C. d., Guedes, D. P., Dias, P. H. G., Stabelini Neto, A., & Oliveira, R. G. d. (2024). Associations Between Cardiorespiratory Fitness and Metabolic Syndrome in Adolescents: A Systematic Review and Meta-Analysis. Metabolites, 14(11), 635. https://doi.org/10.3390/metabo14110635