Strategy for Optimizing Vitamin B12 Production in Pseudomonas putida KT2440 Using Metabolic Modeling
Abstract
:1. Introduction
1.1. Microbial Production of Vitamin B12
1.2. Industrial Production of Vitamin B12
2. Materials and Methods
2.1. Organism Model
2.2. Bioinformatic Model
2.3. In Silico Culture Medium Conditions
2.4. Flux Balance Analysis (FBA) and Knockin
2.5. OptGene-Based Simulations
2.6. Identification of Riboswitches in Vitamin B12 Pathway
3. Results
3.1. The Reference Value of Pseudomonas denitrificans
3.2. Metabolic Model Curation and FBA of Pseudomonas putida KT2440
3.3. Gene Knockin Analysis
3.4. OptGene Analysis
3.5. Theoretical Performance of Pseudomonas putida KT2440 versus Experimental Results of Pseudomonas denitrificans
3.6. Riboswitches Identified in the Vitamin B12 Pathway
4. Discussion
4.1. Biosynthetic Pathway of Vitamin B12 in Pseudomonas denitrificans and Pseudomonas putida
4.2. Genome-Scale Metabolic Models of Pseudomonas putida KT2440
4.3. Gene Knockin Analysis
4.4. Design of Possible Genetic Construct for Vitamin B12 Optimization in Pseudomonas putida KT2440
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watanabe, F. Vitamin B12 Sources and Bioavailability. Exp. Biol. Med. 2007, 232, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Biedendieck, R.; Malten, M.; Barg, H.; Bunk, B.; Martens, J.H.; Deery, E.; Leech, H.; Warren, M.J.; Jahn, D. Metabolic Engineering of Cobalamin (Vitamin B12) Production in Bacillus Megaterium. Microb. Biotechnol. 2010, 3, 24–37. [Google Scholar] [CrossRef]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.L.; Brito, A.; Guéant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; et al. Vitamin B12 Deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Li, D.; Kang, J.; Jiang, P.; Sun, J.; Zhang, D. Metabolic Engineering of Escherichia Coli for de Novo Biosynthesis of Vitamin B12. Nat. Commun. 2018, 9, 4917. [Google Scholar] [CrossRef] [PubMed]
- Czajka, J.; Wang, Q.; Wang, Y.; Tang, Y.J. Synthetic Biology for Manufacturing Chemicals: Constraints Drive the Use of Non-Conventional Microbial Platforms. Appl. Microbiol. Biotechnol. 2017, 101, 7427–7434. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Zhang, J.; Zhou, J.; Qi, Q.; Du, G.; Chen, J. Recent Advances in Microbial Production of δ-Aminolevulinic Acid and Vitamin B12. Biotechnol. Adv. 2012, 30, 1533–1542. [Google Scholar] [CrossRef]
- Loeschcke, A.; Thies, S. Pseudomonas Putida—A Versatile Host for the Production of Natural Products. Appl. Microbiol. Biotechnol. 2015, 99, 6197–6214. [Google Scholar] [CrossRef]
- Curran, K.A.; Crook, N.C.; Alper, H.S. Using Flux Balance Analysis to Guide Microbial Metabolic Engineering. Methods Mol. Biol. 2012, 834, 197–216. [Google Scholar] [CrossRef]
- Simeonidis, E.; Price, N.D. Genome-Scale Modeling for Metabolic Engineering. J. Ind. Microbiol. Biotechnol. 2015, 42, 327–338. [Google Scholar] [CrossRef]
- Orth, J.D.; Thiele, I.; Palsson, B.O. What Is Flux Balance Analysis? Nat. Biotechnol. 2010, 28, 245–248. [Google Scholar] [CrossRef]
- Balabanova, L.; Averianova, L.; Marchenok, M.; Son, O.; Tekutyeva, L. Microbial and Genetic Resources for Cobalamin (Vitamin B12) Biosynthesis: From Ecosystems to Industrial Biotechnology. Int. J. Mol. Sci. 2021, 22, 4522. [Google Scholar] [CrossRef] [PubMed]
- Schellenberger, J.; Park, J.O.; Conrad, T.M.; Palsson, B.T. BiGG: A Biochemical Genetic and Genomic Knowledgebase of Large Scale Metabolic Reconstructions. BMC Bioinform. 2010, 11, 213. [Google Scholar] [CrossRef] [PubMed]
- Patil, K.R.; Rocha, I.; Förster, J.; Nielsen, J. Evolutionary Programming as a Platform for in Silico Metabolic Engineering. BMC Bioinform. 2005, 6, 308. [Google Scholar] [CrossRef] [PubMed]
- Nogales, J.; Palsson, B.; Thiele, I. A Genome-Scale Metabolic Reconstruction of Pseudomonas Putida KT2440: IJN746 as a Cell Factory. BMC Syst. Biol. 2008, 2, 79. [Google Scholar] [CrossRef] [PubMed]
- Nikel, P.; Martínez-García, E.; de Lorenzo, V. Biotechnological Domestication of Pseudomonads Using Synthetic Biology. Nat. Rev. Microbiol. 2014, 12, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Vo, T.P.; Ainala, S.K.; Kim, J.R.; Park, S. Analysis and Characterization of Coenzyme B12 Biosynthetic Gene Clusters and Improvement of B12 Biosynthesis in Pseudomonas Denitrificans ATCC 13867. FEMS Microbiol. Lett. 2018, 365, fny211. [Google Scholar] [CrossRef]
- Serganov, A.; Nudler, E. A Decade of Riboswitches. Cell 2013, 152, 17–24. [Google Scholar] [CrossRef]
- Kalvari, I.; Nawrocki, E.P.; Argasinska, J.; Quinones-Olvera, N.; Finn, R.D.; Bateman, A.; Petrov, A.I. Non-Coding RNA Analysis Using the Rfam Database. Curr. Protoc. Bioinform. 2018, 62, 1–44. [Google Scholar] [CrossRef]
- Nikel, P.I.; Chavarría, M.; Danchin, A.; de Lorenzo, V. From Dirt to Industrial Applications: Pseudomonas Putida as a Synthetic Biology Chassis for Hosting Harsh Biochemical Reactions. Curr. Opin. Chem. Biol. 2016, 34, 20–29. [Google Scholar] [CrossRef]
- Cai, Y.; Xia, M.; Dong, H.; Qian, Y.; Zhang, T.; Zhu, B.; Wu, J.; Zhang, D. Engineering a Vitamin B 12 High-Throughput Screening System by Riboswitch Sensor in Sinorhizobium Meliloti. BMC Biotechnol. 2018, 18, 27. [Google Scholar] [CrossRef]
- Fang, H.; Kang, J.; Zhang, D. Microbial Production of Vitamin B12: A Review and Future Perspectives. Microb. Cell Fact. 2017, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.I.; Roessner, C.A. Biosynthesis of Cobalamin (Vitamin B12). Biochem. Soc. Trans. 2002, 30, 613–620. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Gurney, R.; Thomas, C.M. Mupirocin: Biosynthesis, Special Features and Applications of an Antibiotic from a Gram-Negative Bacterium. Appl. Microbiol. Biotechnol. 2011, 90, 11–21. [Google Scholar] [CrossRef]
- Schellenberger, J.; Que, R.; Fleming, R.M.T.; Thiele, I.; Orth, J.D.; Feist, A.M.; Zielinski, D.C.; Bordbar, A.; Lewis, N.E.; Rahmanian, S.; et al. Quantitative Prediction of Cellular Metabolism with Constraint-Based Models: The COBRA Toolbox v2.0. Nat. Protoc. 2011, 6, 1290–1307. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.E.; Nagarajan, H.; Palsson, B.O. Constraining the Metabolic Genotype-Phenotype Relationship Using a Phylogeny of in Silico Methods. Nat. Rev. Microbiol. 2012, 10, 291–305. [Google Scholar] [CrossRef]
- Keating, S.M.; Bornstein, B.J.; Finney, A.; Hucka, M. SBMLToolbox: An SBML Toolbox for MATLAB Users. Bioinformatics 2006, 22, 1275–1277. [Google Scholar] [CrossRef]
- Molina, L.; Rosa, R.L.; Nogales, J.; Rojo, F. Pseudomonas Putida KT2440 Metabolism Undergoes Sequential Modifications during Exponential Growth in a Complete Medium as Compounds Are Gradually Consumed. Environ. Microbiol. 2019, 21, 2375–2390. [Google Scholar] [CrossRef]
- Kampers, L.F.C.; Van Heck, R.G.A.; Donati, S.; Saccenti, E.; Volkers, R.J.M.; Schaap, P.J.; Suarez-Diez, M.; Nikel, P.I.; Martins Dos Santos, V.A.P. In Silico-Guided Engineering of Pseudomonas Putida towards Growth under Micro-Oxic Conditions. Microb. Cell Fact. 2019, 18, 179. [Google Scholar] [CrossRef]
- Oberhardt, M.A.; Palsson, B.; Papin, J.A. Applications of Genome-Scale Metabolic Reconstructions. Mol. Syst. Biol. 2009, 5, 320. [Google Scholar] [CrossRef]
- Anand, S.; Mukherjee, K.; Padmanabhan, P. An Insight to Flux-Balance Analysis for Biochemical Networks. Biotechnol. Genet. Eng. Rev. 2020, 36, 32–55. [Google Scholar] [CrossRef] [PubMed]
- Li, K.T.; Liu, D.H.; Chu, J.; Wang, Y.H.; Zhuang, Y.P.; Zhang, S.L. An Effective and Simplified PH-Stat Control Strategy for the Industrial Fermentation of Vitamin B12 by Pseudomonas Denitrificans. Bioprocess Biosyst. Eng. 2008, 31, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, Y.A.B.; Bockmayr, A. Double and Multiple Knockout Simulations for Genome-Scale Metabolic Network Reconstructions. Algorithms Mol. Biol. 2015, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Rocha, I.; Maia, P.; Rocha, M.; Ferreira, E.C. OptGene-a Framework for in Silico Metabolic Engineering. In Proceedings of the 10th International Conference on Chemical and Biological Engineering, Braga, Portugal, 4–6 September 2008; pp. 218–219. [Google Scholar]
- Shelton, A.N.; Seth, E.C.; Mok, K.C.; Han, A.W.; Jackson, S.N.; Haft, D.R.; Taga, M.E. Uneven Distribution of Cobamide Biosynthesis and Dependence in Bacteria Predicted by Comparative Genomics. ISME J. 2019, 13, 789–804. [Google Scholar] [CrossRef]
- Nikel, P.; Chavarría, M.; Fuhrer, T.; Sauer, U.; De Lorenzo, V. Pseudomonas Putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways. J. Biol. Chem. 2015, 290, 25920–25932. [Google Scholar] [CrossRef]
- Gu, C.; Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Current Status and Applications of Genome-Scale Metabolic Models. Genome Biol. 2019, 20, 121. [Google Scholar] [CrossRef]
- Nahvi, A.; Barrick, J.E.; Breaker, R.R. Coenzyme B12 Riboswitches Are Widespread Genetic Control Elements in Prokaryotes. Nucleic Acids Res. 2004, 32, 143–150. [Google Scholar] [CrossRef]
- Mandal, M.; Breaker, R.R. Gene Regulation by Riboswitches. Nat. Rev. Mol. Cell Biol. 2004, 5, 451–463. [Google Scholar] [CrossRef]
- Moore, S.J.; Mayer, M.J.; Biedendieck, R.; Deery, E.; Warren, M.J. Towards a Cell Factory for Vitamin B12 Production in Bacillus Megaterium: Bypassing of the Cobalamin Riboswitch Control Elements. New Biotechnol. 2014, 31, 553–561. [Google Scholar] [CrossRef]
- Silva-Rocha, R.; Martínez-García, E.; Calles, B.; Chavarría, M.; Arce-Rodríguez, A.; De Las Heras, A.; Páez-Espino, A.D.; Durante-Rodríguez, G.; Kim, J.; Nikel, P.I.; et al. The Standard European Vector Architecture (SEVA): A Coherent Platform for the Analysis and Deployment of Complex Prokaryotic Phenotypes. Nucleic Acids Res. 2013, 41, 666–675. [Google Scholar] [CrossRef]
Compound | Consumption Rates (mmol/gdw·h) |
---|---|
Oxygen | 18.5 |
Glucose | 11.7 |
L-Threonine | 0.48 |
Succinate | 0.95 |
Glycine | 0.1 |
Cobalt2+ | 0.0375 |
Reaction Name | EC Number | |
---|---|---|
1 | Coproporphyrinogen oxidase | 1.3.3.3 |
2 | Protoporphyrinogen oxidase (aerobic) | 1.3.3.4 |
3 | Oxygen-independent coproporphyrinogen III dehydrogenase | 1.3.98.3–1.3.99.22 |
4 | Uroporphyrinogen decarboxylase (uroporphyrinogen III) | 4.1.1.37 |
5 | Sirohydrochlorin ferrochelatase | 4.99.1.4 |
6 | Ferrochelatase | 4.99.1.1 |
7 | Glycine cleavage system | 1.4.4.2 |
8 | Tetrahydrofolate aminomethyltransferase | 2.1.2.10 |
9 | Aminomethyltransferase | 2.1.2.10 |
10 | 2-Oxogluterate dehydrogenase | 1.8.1.4–1.2.4.2 |
11 | L-allo-threonine dehydrogenase | 1.1.1.381 |
12 | Sirohydrochlorin dehydrogenase (NAD) | 1.3.1.76 |
Name of the Reaction(s) Added to the Model | EC Numbers of Reaction(s) Added | Vitamin B12 Production (µmol gDW−1 h−1 L−1) |
---|---|---|
None (curated model) | - | 0.359 |
Aminopropanol linker | 2.7.1.177, 4.1.1.81 | 0.400 |
Ala synthase reaction | 2.3.1.37 | 0.394 |
Ala synthase reaction and Glycine C-acetyltransferase | 2.3.1.37 and 2.3.1.29 | 0.394 |
Aminopropanol linker and Ala synthase | 2.7.1.177, 4.1.1.81 and 2.3.1.37 | 0.215 |
Threonine 3-dehydrogenase | 1.1.1.103 | 0.230 |
Glycine C-acetyltransferase | 2.3.1.29 | 0.180 |
Threonine 3-dehydrogenase and glycine C-acetyltransferase | 1.1.1.103, 2.3.1.29 | 0.391 |
Riboswitch | Length | Position | Rfam Accession |
---|---|---|---|
1 | 207 | 2,768,769–2,768,976 | RF00174 |
2 | 222 | 3,857,546–3,857,768 | RF00174 |
3 | 197 | 2,765,029–2,765,226 | RF00174 |
4 | 205 | 398,802–3,982,007 | RF00174 |
5 | 220 | 1,866,938–1,867,158 | RF00174 |
Pseudomonas denitrificans | Pseudomonas putida | EC Number of Reported Reactions | Stage of Biosynthesis | |
---|---|---|---|---|
1 | X | X | Síntesis de ALA (HemA o HemAL) | |
2 | X | X | EC:4.2.1.24 (HemB) | Tetrapyrrole |
3 | X | X | EC:2.5.1.61 (HemC) | Precursor |
4 | X | X | EC:4.2.1.75 (HemD) | Biosynthesis |
5 | X | X | EC:2.1.1.107/4.99.1.4 (CysG/CobA) | |
6 | X | X | EC:1.3.1.76/4.99.1.4/2.1.1.107 (CysG) | |
7 | - | - | EC:4.99.1.3 (CbiK/CbiX) | |
8 | X | X | EC:2.1.1.151 (CbiL) | |
9 | X | X | EC:2.1.1.131 (CbiH/CobJ) | |
10 | X | X | EC:2.1.1.271/2.1.1.133 (CbiF/CobM) | |
11 | X | X | EC:3.7.1.12/2.1.1.131 (CbiG/CobJ) | |
12 | X | X | EC:2.1.1.195 (CbiD) | Anaerobic |
13 | X | X | EC:1.3.1.106/1.3.1.54 (CbiJ/CobK) | Corrin Ring |
14 | - | - | EC:2.1.1.196/2.1.1.289/2.1.1.132(CbiT/CobL) | Biosynthesis |
15 | - | - | EC:2.1.1.289/2.1.1.132 (CbiE/CobL) | |
16 | X | X | EC:5.4.99.60/5.4.99.61 (CbiC/CobH) | |
17 | X | X | EC:6.3.5.11/6.3.5.9 (CbiA/CobB) | |
18 | X | X | EC:2.1.1.130 (CobI) | |
19 | X | X | EC:1.14.13.83 (CobG) | |
20 | X | X | EC:2.1.1.131 (CobJ) | |
21 | X | X | EC:2.1.1.133 (CobM) | |
22 | - | X | EC:2.1.1.152 (CobF) | Aerobic |
23 | X | X | EC:1.3.1.54 (CobK) | Corrin Ring |
24 | X | X | EC:2.1.1.132 (CobL) | Biosynthesis |
25 | X | X | EC:5.4.99.61 (CobH) | |
26 | X | X | EC:6.3.5.9 (CobB) | |
27 | X | X | EC:6.6.1.2 (CobNST) | |
28 | - | - | EC:1.16.8.1/2.5.1.17 (CobR/pduO) | |
29 | X | X | EC:2.5.1.17 (CobA/BtuR/CobO/PduO) | Adenosylation |
30 | - | - | EC:2.7.1.177 (PduX) | Aminopropanol |
31 | - | - | EC:4.1.1.81 (CobD) | Linker |
32 | X | X | EC:6.3.5.10 (CbiP/CobQ) | |
33 | X | X | EC:6.3.1.10 (CbiB/CobC/CobD) | |
34 | X | X | EC:2.7.1.156/2.7.7.62 (CobU/CobP) | Nucleotide Loop |
35 | X | X | EC: 2.7.7.62 (CobU/CobP/CobY) | Assembly |
36 | X | X | EC:2.4.2.21 (CobT/CobU/ArsAB) | |
37 | X | X | EC:3.1.3.73 Cbl Fosfatasa (CobS/CobV) | |
38 | X | X | EC:2.7.8.26 (CobC/CobZ) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto-de Lima, T.S.; Rojas-Jimenez, K.; Vaglio, C. Strategy for Optimizing Vitamin B12 Production in Pseudomonas putida KT2440 Using Metabolic Modeling. Metabolites 2024, 14, 636. https://doi.org/10.3390/metabo14110636
Prieto-de Lima TS, Rojas-Jimenez K, Vaglio C. Strategy for Optimizing Vitamin B12 Production in Pseudomonas putida KT2440 Using Metabolic Modeling. Metabolites. 2024; 14(11):636. https://doi.org/10.3390/metabo14110636
Chicago/Turabian StylePrieto-de Lima, Thomaz Satuye, Keilor Rojas-Jimenez, and Christopher Vaglio. 2024. "Strategy for Optimizing Vitamin B12 Production in Pseudomonas putida KT2440 Using Metabolic Modeling" Metabolites 14, no. 11: 636. https://doi.org/10.3390/metabo14110636
APA StylePrieto-de Lima, T. S., Rojas-Jimenez, K., & Vaglio, C. (2024). Strategy for Optimizing Vitamin B12 Production in Pseudomonas putida KT2440 Using Metabolic Modeling. Metabolites, 14(11), 636. https://doi.org/10.3390/metabo14110636