Unveiling Metabolic Crosstalk: Bacillus-Mediated Defense Priming in Pine Needles Against Pathogen Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Microorganisms Used in This Study
2.2. Experimental Grouping and Planting Environment
2.3. Inoculation and Sampling
2.4. Metabolite Detection and Analysis
2.4.1. Metabolite Extraction
2.4.2. LC-MS/MS Analysis
2.4.3. Data Analysis
2.5. Statistical Analyses
3. Results
3.1. Clustering and Differences in Plant Metabolic Pathways Under Different Treatments
3.2. KEGG Pathway Analysis Under Early Infection and csuftcsp75 Induction Treatments
3.3. Expression Analysis of Significantly Different Metabolites
4. Discussion
4.1. Enhanced Defense Metabolism in Masson Pine Under Bacillus csuftcsp75 Treatment
4.2. Distinct Defense Mechanisms in Pathogen-Induced vs. Biocontrol-Agent-Induced Responses
4.3. Mechanisms of Local and Systemic Immune Induction by Bacillus csuftcsp75
4.4. Systemic Metabolic Reprogramming and Defense Optimization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nadarajah, K.; Abdul Rahman, N.S.N. The microbial connection to sustainable agriculture. Plants 2023, 12, 2307. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Tanaka, Y.; Zhang, G.; Stotzky, D.L.S. Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front. Plant Sci. 2021, 12, 634796. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Raaijmakers, J.; Lemanceau, P.; Van der Putten, W.H. Going Back to the Roots: The Microbial Ecology of the Rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Peter, A.H.M.B.; Boersma, R.L.; Dombrowski, R.F.; van Agtmaal, M.J.; van der Heijden, M.G.A. The rhizosphere revisited: Root microbiomics. Front. Plant Sci. 2013, 4, 148. [Google Scholar] [CrossRef]
- Alperovitch-Lavy, A. How Plants Modulate Their Rhizosphere Microbiome. In Microbial Cross-Talk in the Rhizosphere; Horwitz, B.A., Mukherjee, P.K., Eds.; Rhizosphere Biology; Springer: Singapore, 2022; pp. 9–24. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, B.; Dufour, S.; Vannini, N. Plant-growth-promoting rhizobacteria modulate carbohydrate metabolism in connection with host plant defense mechanisms. Int. J. Mol. Sci. 2024, 25, 1465. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, D.N.; Chaudhary, A.R.; Karan, S.; Pabbi, S.G.; Hegde, N.S.; Gawande, R.S. PGPR: The treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol, and plant growth promotion in field crops. World J. Microbiol. Biotechnol. 2023, 39, 135. [Google Scholar] [CrossRef]
- Castrillo, G.; Teixeira, P.; Paredes, S.; Law, T.F.; de Lorenzo, L.; Feltcher, M.E.; Finkel, O.M.; Breakfield, N.W.; Mieczkowski, P.; Jones, C.D.; et al. Root Microbiota Drive Direct Integration of Phosphate Stress and Immunity. Nature 2017, 543, 513–518. [Google Scholar] [CrossRef]
- Wani, A.K.; Rahayu, F.; Alkahtani, A.M.; Alreshidi, M.A.; Yadav, K.K.; Parnidi; Fauziah, L.; Murianingrum, M.; Akhtar, N.; Mufidah, E.; et al. Metagenomic Profiling of Rhizosphere Microbiota: Unraveling the Plant-Soil Dynamics. Physiol. Mol. Plant Pathol. 2024, 133, 102381. [Google Scholar] [CrossRef]
- Li, J.-H.; Aslam, M.M.; Gao, Y.-Y.; Dai, L.; Hao, G.-F.; Wei, Z.; Chen, M.-X.; Dini-Andreote, F. Microbiome-Mediated Signal Transduction within the Plant Holobiont. Trends Microbiol. 2023, 31, 616–628. [Google Scholar] [CrossRef]
- Teboho, T.; Lerato, N.; Motumiseng, M.; Fidele, T. Bacillus for plant growth promotion and stress resilience: What have we learned? Plants 2022, 11, 2482. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.; Li, P.; Jin, J.; Li, Z.; Wang, Y. The bacterial consortia promote plant growth and secondary metabolite accumulation in Astragalus mongholicus under drought stress. BMC Plant Biol. 2022, 22, 475. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.-S.; Yang, J.W.; Ryu, C.-M. ISR meets SAR outside: Additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front. Plant Sci. 2013, 4, 51. [Google Scholar] [CrossRef]
- Msizi, I.M.; Pienaar, L.A.; Ntakadzeni, E.M.; Louw, N.; Dempsey, I.A. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front. Plant Sci. 2018, 9, 784. [Google Scholar] [CrossRef]
- Saha, S.; Paul, D.; Poudel, T.R.; Hossain, M.I.; Saha, S.; Ghosh, A.; Mukherjee, A.; Khurshid, M.; Kumar, R.; Singha, R.; et al. Biofertilizer science and practice for agriculture and forestry: A review. J. Appl. Biol. Biotechnol. 2023, 11, 31–44. [Google Scholar] [CrossRef]
- Alam, T.; Bibi, F.; Fatima, H.; Munir, F.; Gul, A.; Haider, G.; Jahanzaib, M.; Amir, R. Biochar and PGPR: A Winning Combination for Peanut Growth and Nodulation under Dry Spell. J. Soil Sci. Plant Nutr. 2024, 14, 1–16. [Google Scholar] [CrossRef]
- Diao, Y.; Hung, C.; Wang, M.; Kachroo, P.; Lu, Y. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (sbfnsii) in sorghum. J. Exp. Bot. 2009, 61, 983–994. [Google Scholar] [CrossRef]
- Wang, L.; Wong, C.W.L.; Lau, P.Y.; Li, G.; Goh, I.D.; Kachroo, P.; Leung, A. Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum. Plant Biotechnol. J. 2020, 18, 2170–2172. [Google Scholar] [CrossRef]
- Ghitti, E.; Rolli, E.; Crotti, E.; Borin, S. Flavonoids are intra- and inter-kingdom modulator signals. Microorganisms 2022, 10, 2479. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Liu, W.; Wang, J.; Yang, A.; Jin, Y. Advances in the biosynthesis of terpenoids and their ecological func-tions in plant resistance. Int. J. Mol. Sci. 2023, 24, 11561. [Google Scholar] [CrossRef]
- Chen, B.; Zeng, X.; Shen, X.; Wang, Y. Host plant-derived benzoic acid interferes with 4-hydroxybenzoic acid degradation in the phytopathogen Xanthomonas campestris by competitively binding to PobR. Phytopathol. Res. 2024, 6, 40. [Google Scholar] [CrossRef]
- Halina, M.; Konrad, M.; Elzbieta, P.; Joanna, J.; Paulina, M.; Joanna, W.; Hanna, G.; Anna, T.; Miroslaw, G.; Gajewska, M. 4-Hydroxybenzoic acid-based hydrazide–hydrazones as potent growth inhibition agents of laccase-producing phytopatho-genic fungi that are useful in the protection of oilseed crops. Molecules 2024, 29, 2212. [Google Scholar] [CrossRef] [PubMed]
- Ioannis, A.S.; Ke, Y.; Kirstin, F.; Ronnie, D.J.; Sietske, V.B.; Marcel, C.V.V.; Boersma, R.L.; Peter, A.H.M.B.; Ivo, F.; Corné, M.J.P. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl. Acad. Sci. USA 2018, 115, E5213–E5222. [Google Scholar] [CrossRef]
- Izabela, P.; Marta, P.; Joanna, S.; Dominika, S.; Ewa, L.; Anna, I.; Karpinski, S. Interplay between coumarin accumulation, iron deficiency and plant resistance to Dickeya spp. Int. J. Mol. Sci. 2021, 22, 6449. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gu, Y.; Li, Z.; Jiang, C.; Guo, J.; Ni, D.; Jin, X. Induced systemic resistance for improving plant immunity by bene-ficial microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef]
- Wang, L.; Chen, M.; Lau, P.-Y.; Duran, L.; Du, M.; Zhang, Y.; Liu, Y. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome 2022, 10, 233. [Google Scholar] [CrossRef]
- Pršić, J.; Ongena, M. Elicitors of plant immunity triggered by beneficial bacteria. Front. Plant Sci. 2020, 11, 757. [Google Scholar] [CrossRef]
- Newitt, J.T.; Prudence, S.M.; Hutchings, M.I.; Worsley, S.F. Biocontrol of cereal crop diseases using streptomycetes. Pathogens 2019, 8, 78. [Google Scholar] [CrossRef]
- Olumide, O.O.; Feyisara, E.O.; Humaira, B.; Henok, Z.Y.; René, D.M.; Monica, H. Pseudomonas cyclic lipopeptides suppress the rice blast fungus Magnaporthe oryzae by induced resistance and direct antagonism. Front. Plant Sci. 2019, 10, 901. [Google Scholar] [CrossRef]
- Bu, Z.; Li, W.; Liu, X.; Liu, Y.; Gao, Y.; Pei, G.; Zhuo, R.; Cui, K.; Qin, Z.; Zheng, H.; et al. The rice endophyte-derived α-mannosidase ShAM1 degrades host cell walls to activate DAMP-triggered immunity against disease. Microbiol. Spectr. 2023, 11, 583. [Google Scholar] [CrossRef]
- Wilson, S.K.; Pretorius, M.W.; Naidoo, S. Mechanisms of systemic resistance to pathogen infection in plants and their potential application in forestry. BMC Plant Biol. 2023, 23, 404. [Google Scholar] [CrossRef]
- Payá, C.; Minguillón, S.; Hernández, M.; Miguel, S.M.; Campos, L.; Rodrigo, I.; Bellés, J.M.; López-Gresa, M.P.; Lisón, P. SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato. BMC Plant Biol. 2022, 22, 549. [Google Scholar] [CrossRef] [PubMed]
- Rumyantsev, S.D.; Veselova, S.V.; Burkhanova, G.F.; Alekseev, V.Y.; Maksimov, I.V. Bacillus subtilis 26D triggers induced systemic resistance against Rhopalosiphum padi L. by regulating the expression of genes AGO, DCL, and MicroRNA in bread spring wheat. Microorganisms 2023, 11, 2983. [Google Scholar] [CrossRef] [PubMed]
- Nishad, R.; Ahmed, T.; Rahman, V.J.; Kareem, A. Modulation of plant defense system in response to microbial inter-actions. Front. Microbiol. 2020, 11, 1298. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.; Khadka, R.; Doni, F.; Uphoff, N. Benefits to plant health and productivity from enhancing plant microbial sym-bionts. Front. Plant Sci. 2021, 11, 610065. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 2017, 8, 667. [Google Scholar] [CrossRef]
Group Name | Abbreviation | Treatments | Biological Replicates |
---|---|---|---|
Control group | CK | No additional treatments were applied apart from the application of sterile distilled water once a day for a total of 3 days (100 mL per pot). | 5 pots (one pine seedling per pot) |
Pathogen-infected group | PT | The P9 spore solution was evenly sprayed onto the needle leaves of the pine using a sprayer followed by sealing with a transparent plastic bag. The plants were irrigated with sterile distilled water once a day for a total of 3 days (100 mL per pot). | 5 pots (one pine seedling per pot) |
Bacillus-infected group | IT | The plants were irrigated with the csuftcsp75 suspension prepared in Section 2.1, with 100 mL per pot each time. The plants were irrigated once a day for a total of 3 days. | 5 pots (one pine seedling per pot) |
Pathogen- and Bacillus-infected group | PIT | The P9 spore solution was evenly sprayed onto the needle leaves of the pine using a sprayer followed by sealing with a transparent plastic bag. The plants were irrigated with the csuftcsp75 suspension prepared in Section 2.1, with 100 mL per pot each time. The plants were irrigated once a day for a total of 3 days. | 5 pots (one pine seedling per pot) |
Group Abbreviation | Description |
---|---|
CK1 | Control group: the sampling time point was 72 h post treatment. |
CK2 | Control group: the sampling time point was 144 h post treatment. |
PT1 | Pathogen-infected group: the sampling time point was 72 h post treatment. |
PT2 | Pathogen-infected group: the sampling time point was 144 h post treatment. |
IT1 | Bacillus-infected group: the sampling time point was 72 h post treatment. |
IT2 | Bacillus-infected group: the sampling time point was 144 h post treatment. |
PIT1 | Pathogen- and Bacillus-infected group: the sampling time point was 72 h post treatment. |
PIT2 | Pathogen- and Bacillus-infected group: the sampling time point was 144 h post treatment. |
The Main Specific Metabolites | |
---|---|
IT (vs. CK) | PT (vs. CK) |
(R)-5-oxopyrrolidine-2-carboxylic acid | (−)-Epigallocatechin |
2′-deoxyguanosine | (+)-Taxifolin |
6-amino-2-oxohexanoate | 2′-deoxyadenosine |
Catechin | 2′-deoxy-IMP |
Chrysin | 3-O-acetylpinobanksin |
Dihydrokaempferol | 5-aminolevulinate |
D-mannitol | Adenine |
D-melibiose | Adenosine |
D-phenylalanine | Adenosine 2′,3′-cyclic phosphate |
D-proline | Alpha-1,5-L-arabinotetraose |
D-sorbitol | Apigenin |
I-inositol | Dihydromyricetin |
Inosine | Guanosine |
L-arginine | Guanosine 3′,5′-cyclic monophosphate |
L-asparagine | L-arginine |
L-aspartic acid | L-glutamic acid |
L-glutamine | L-glutamine |
L-isoleucine | L-isoleucine |
L-leucine | L-lysine |
L-lysine | L-proline |
L-phenylalanine | L-serine |
L-proline | L-threonine |
L-tryptophan | L-valine |
L-tyrosine | Maltotriose |
L-valine | Myricetin |
Mannitol | Quercetin-1 |
Naringenin chalcone | S-methyl-L-cysteine |
P-Coumaroyl quinic acid | Sn-glycerol 3-phosphate |
Phloretin | Sucrose |
Pinobanksin 3-acetate | Sulfate |
Pinocembrin | Taxifolin |
Pinocembrin chalcone | Tricetin |
Sulfate | Uric acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Niu, A.; Li, S.; Liu, J.; Zhou, G. Unveiling Metabolic Crosstalk: Bacillus-Mediated Defense Priming in Pine Needles Against Pathogen Infection. Metabolites 2024, 14, 646. https://doi.org/10.3390/metabo14120646
Yang Q, Niu A, Li S, Liu J, Zhou G. Unveiling Metabolic Crosstalk: Bacillus-Mediated Defense Priming in Pine Needles Against Pathogen Infection. Metabolites. 2024; 14(12):646. https://doi.org/10.3390/metabo14120646
Chicago/Turabian StyleYang, Quan, Anqi Niu, Shuang Li, Junang Liu, and Guoying Zhou. 2024. "Unveiling Metabolic Crosstalk: Bacillus-Mediated Defense Priming in Pine Needles Against Pathogen Infection" Metabolites 14, no. 12: 646. https://doi.org/10.3390/metabo14120646
APA StyleYang, Q., Niu, A., Li, S., Liu, J., & Zhou, G. (2024). Unveiling Metabolic Crosstalk: Bacillus-Mediated Defense Priming in Pine Needles Against Pathogen Infection. Metabolites, 14(12), 646. https://doi.org/10.3390/metabo14120646