Metabolic Aging as an Increased Risk for Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohorts
2.2. Clinical Data and Definitions
2.3. Metabolomic Profiling and Processing
2.4. Software and Statistical and Bioinformatic Analysis
2.5. Pathway Analysis
2.6. Univariate Associations
3. Results
3.1. Demographic Characteristics
3.2. Metabolomic Age Score
3.3. Differences Between COPD Subjects with Accelerated and Decelerated Metabolomic Age
3.4. A Metabolomic Lung Obstruction Score
3.5. Overlap Between the Age and COPD Metabolome Scores
3.6. Overlap Between Metabolite Univariate Associations with Age and COPD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syamlal, G.; Kurth, L.M.; Dodd, K.E.; Blackley, D.J.; Hall, N.B.; Mazurek, J.M. Chronic Obstructive Pulmonary Disease Mortality by Industry and Occupation—United States, 2020. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 1550–1554. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, M.A.; Azab, N.Y.; El Wahsh, R.A.; Ragab, A.Z.; Allam, E.M. Quality of life in COPD patients. Egypt. J. Chest Dis. Tuberc. 2012, 61, 281–289. [Google Scholar] [CrossRef]
- Agusti, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2023, 207, 819–837. [Google Scholar] [CrossRef] [PubMed]
- Agusti, A.; Soriano, J.B. COPD as a systemic disease. COPD 2008, 5, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Divo, M.J.; Celli, B.R.; Poblador-Plou, B.; Calderón-Larrañaga, A.; de-Torres, J.P.; Gimeno-Feliu, L.A.; Bertó, J.; Zulueta, J.J.; Casanova, C.; Pinto-Plata, V.M.; et al. Chronic Obstructive Pulmonary Disease (COPD) as a disease of early aging: Evidence from the EpiChron Cohort. PLoS ONE 2018, 13, e0193143. [Google Scholar] [CrossRef]
- Adav, S.S.; Wang, Y. Metabolomics Signatures of Aging: Recent Advances. Aging Dis. 2021, 12, 646–661. [Google Scholar] [CrossRef]
- Auro, K.; Joensuu, A.; Fischer, K.; Kettunen, J.; Salo, P.; Mattsson, H.; Niironen, M.; Kaprio, J.; Eriksson, J.G.; Lehtimaki, T.; et al. A metabolic view on menopause and ageing. Nat. Commun. 2014, 5, 4708. [Google Scholar] [CrossRef]
- Chaleckis, R.; Murakami, I.; Takada, J.; Kondoh, H.; Yanagida, M. Individual variability in human blood metabolites identifies age-related differences. Proc. Natl. Acad. Sci. USA 2016, 113, 4252–4259. [Google Scholar] [CrossRef]
- Jove, M.; Mate, I.; Naudi, A.; Mota-Martorell, N.; Portero-Otin, M.; De la Fuente, M.; Pamplona, R. Human Aging Is a Metabolome-related Matter of Gender. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 578–585. [Google Scholar] [CrossRef]
- Godbole, S.; Bowler, R.P. Metabolome Features of COPD: A Scoping Review. Metabolites 2022, 12, 621. [Google Scholar] [CrossRef]
- Pinto-Plata, V.; Casanova, C.; Divo, M.; Tesfaigzi, Y.; Calhoun, V.; Sui, J.; Polverino, F.; Priolo, C.; Petersen, H.; de Torres, J.P.; et al. Plasma metabolomics and clinical predictors of survival differences in COPD patients. Respir. Res. 2019, 20, 219. [Google Scholar] [CrossRef] [PubMed]
- Godbole, S.; Labaki, W.W.; Pratte, K.A.; Hill, A.; Moll, M.; Hastie, A.T.; Peters, S.P.; Gregory, A.; Ortega, V.E.; DeMeo, D.; et al. A Metabolomic Severity Score for Airflow Obstruction and Emphysema. Metabolites 2022, 12, 368. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; You, H.; Xu, M.Y.; Dong, Z.Y.; Liu, M.; Jin, W.J.; Zhou, C. A Novel Metabolic Score for Predicting the Acute Exacerbation in Patients with Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obs. Pulm. Dis. 2023, 18, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Vaarhorst, A.A.; Verhoeven, A.; Weller, C.M.; Böhringer, S.; Göraler, S.; Meissner, A.; Deelder, A.M.; Henneman, P.; Gorgels, A.P.; van den Brandt, P.A.; et al. A metabolomic profile is associated with the risk of incident coronary heart disease. Am. Heart J. 2014, 168, 45–52.e7. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, C.; Nambi, V.; Morrison, A.C.; Folsom, A.R.; Ballantyne, C.M.; Boerwinkle, E.; Yu, B. Metabolomic Pattern Predicts Incident Coronary Heart Disease. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1475–1482. [Google Scholar] [CrossRef]
- Floegel, A.; Stefan, N.; Yu, Z.; Muhlenbruch, K.; Drogan, D.; Joost, H.G.; Fritsche, A.; Haring, H.U.; Hrabe de Angelis, M.; Peters, A.; et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 2013, 62, 639–648. [Google Scholar] [CrossRef]
- Oexner, R.R.; Ahn, H.; Theofilatos, K.; Shah, R.A.; Schmitt, R.; Chowienczyk, P.; Zoccarato, A.; Shah, A.M. Serum metabolomics improves risk stratification for incident heart failure. Eur. J. Heart Fail. 2024, 26, 829–840. [Google Scholar] [CrossRef]
- Alotaibi, M.; Liu, Y.; Magalang, G.A.; Kwan, A.C.; Ebinger, J.E.; Nichols, W.C.; Pauciulo, M.W.; Jain, M.; Cheng, S. Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension. Metabolites 2023, 13, 802. [Google Scholar] [CrossRef]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef]
- Rutledge, J.; Oh, H.; Wyss-Coray, T. Measuring biological age using omics data. Nat. Rev. Genet. 2022, 23, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, W.; Duan, Y.; Niu, Y.; Chen, Y.; Liu, X.; Dong, Z.; Zheng, Y.; Chen, X.; Feng, Z.; et al. Progress in biological age research. Front. Public Health 2023, 11, 1074274. [Google Scholar] [CrossRef] [PubMed]
- Regan, E.A.; Hokanson, J.E.; Murphy, J.R.; Make, B.; Lynch, D.A.; Beaty, T.H.; Curran-Everett, D.; Silverman, E.K.; Crapo, J.D. Genetic epidemiology of COPD (COPDGene) study design. COPD 2010, 7, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Couper, D.; LaVange, L.M.; Han, M.; Barr, R.G.; Bleecker, E.; Hoffman, E.A.; Kanner, R.; Kleerup, E.; Martinez, F.J.; Woodruff, P.G.; et al. Design of the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). Thorax 2014, 69, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, P. GOLD COPD report: 2024 update. Lancet Respir. Med. 2024, 12, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.A.; Moore, C.M.; Wilson, C.; Nevrekar, D.; Jennermann, T.; Humphries, S.M.; Austin, J.H.M.; Grenier, P.A.; Kauczor, H.U.; Han, M.K.; et al. CT-based Visual Classification of Emphysema: Association with Mortality in the COPDGene Study. Radiology 2018, 288, 859–866. [Google Scholar] [CrossRef]
- Centers for Disease, C. Prevention. Cigarette smoking among adults—United States, 2000. MMWR Morb. Mortal Wkly. Rep. 2002, 51, 642–645. [Google Scholar]
- Gillenwater, L.A.; Pratte, K.A.; Hobbs, B.D.; Cho, M.H.; Zhuang, Y.; Halper-Stromberg, E.; Cruickshank-Quinn, C.; Reisdorph, N.; Petrache, I.; Labaki, W.W.; et al. Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules. Netw. Syst. Med. 2020, 3, 159–181. [Google Scholar] [CrossRef]
- Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 1990, 9, 811–818. [Google Scholar] [CrossRef]
- Ito, K.; Barnes, P.J. COPD as a disease of accelerated lung aging. Chest 2009, 135, 173–180. [Google Scholar] [CrossRef]
- Li, S.; Kim, H.E. Implications of Sphingolipids on Aging and Age-Related Diseases. Front. Aging 2021, 2, 797320. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Houben, J.M.; Mercken, E.M.; Ketelslegers, H.B.; Bast, A.; Wouters, E.F.; Hageman, G.J.; Schols, A.M. Telomere shortening in chronic obstructive pulmonary disease. Respir. Med. 2009, 103, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Aoshiba, K.; Zhou, F.; Tsuji, T.; Nagai, A. DNA damage as a molecular link in the pathogenesis of COPD in smokers. Eur. Respir. J. 2012, 39, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Caramori, G.; Adcock, I.M.; Casolari, P.; Ito, K.; Jazrawi, E.; Tsaprouni, L.; Villetti, G.; Civelli, M.; Carnini, C.; Chung, K.F.; et al. Unbalanced oxidant-induced DNA damage and repair in COPD: A link towards lung cancer. Thorax 2011, 66, 521–527. [Google Scholar] [CrossRef]
- Johnson, S.C.; Rabinovitch, P.S.; Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 2013, 493, 338–345. [Google Scholar] [CrossRef]
- Yao, Y.; Gu, Y.; Yang, M.; Cao, D.; Wu, F. The Gene Expression Biomarkers for Chronic Obstructive Pulmonary Disease and Interstitial Lung Disease. Front. Genet. 2019, 10, 1154. [Google Scholar] [CrossRef]
- Nourian, Y.H.; Salimian, J.; Ahmadi, A.; Salehi, Z.; Karimi, M.; Emamvirdizadeh, A.; Azimzadeh Jamalkandi, S.; Ghanei, M. cAMP-PDE signaling in COPD: Review of cellular, molecular and clinical features. Biochem. Biophys. Rep. 2023, 34, 101438. [Google Scholar] [CrossRef]
- Fukuda, M.; Hata, A.; Niwa, S.; Hiramatsu, K.; Honda, H.; Nakagome, K.; Iwanami, A. Plasma vanillylmandelic acid level as an index of psychological stress response in normal subjects. Psychiatry Res. 1996, 63, 7–16. [Google Scholar] [CrossRef]
- Aydin, M.; Altintas, N.; Cem Mutlu, L.; Bilir, B.; Oran, M.; Tulubas, F.; Topcu, B.; Tayfur, I.; Kucukyalcin, V.; Kaplan, G.; et al. Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with COPD. Clin. Respir. J. 2017, 11, 318–327. [Google Scholar] [CrossRef]
- Scott, J.A.; Duongh, M.; Young, A.W.; Subbarao, P.; Gauvreau, G.M.; Grasemann, H. Asymmetric dimethylarginine in chronic obstructive pulmonary disease (ADMA in COPD). Int. J. Mol. Sci. 2014, 15, 6062–6071. [Google Scholar] [CrossRef] [PubMed]
- Ruzsics, I.; Nagy, L.; Keki, S.; Sarosi, V.; Illes, B.; Illes, Z.; Horvath, I.; Bogar, L.; Molnar, T. L-Arginine Pathway in COPD Patients with Acute Exacerbation: A New Potential Biomarker. COPD 2016, 13, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Jonker, R.; Deutz, N.E.; Erbland, M.L.; Anderson, P.J.; Engelen, M.P. Alterations in whole-body arginine metabolism in chronic obstructive pulmonary disease. Am. J. Clin. Nutr. 2016, 103, 1458–1464. [Google Scholar] [CrossRef] [PubMed]
- Valenca, S.S.; Rueff-Barroso, C.R.; Pimenta, W.A.; Melo, A.C.; Nesi, R.T.; Silva, M.A.; Porto, L.C. L-NAME and L-arginine differentially ameliorate cigarette smoke-induced emphysema in mice. Pulm. Pharmacol. Ther. 2011, 24, 587–594. [Google Scholar] [CrossRef]
- Ubhi, B.K.; Riley, J.H.; Shaw, P.A.; Lomas, D.A.; Tal-Singer, R.; MacNee, W.; Griffin, J.L.; Connor, S.C. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur. Respir. J. 2012, 40, 345–355. [Google Scholar] [CrossRef]
Never/Former Smokers Without COPD or Emphysema | Current Smokers Without COPD or Emphysema | Former/Current Smokers with COPD or Emphysema | p-Value | ||||
---|---|---|---|---|---|---|---|
COPDGene (N = 1346) | SPIROMICS (N = 413) | COPDGene (N = 818) | SPIROMICS (N = 323) | COPDGene (N = 3540) | SPIROMICS (N = 1681) | ||
Age (years), mean (SD) | 65.4 (9.25) | 62.9 (9.51) | 59.1 (6.33) | 55.2 (8.82) | 66.2 (8.56) | 65.0 (8.05) | <0.001 |
Race White/Black/other, % | 87.4/12.6/0 | 81.8/12.3/5.9 | 42.7/57.3/0 | 55.7/38.7/5.6 | 71.3/28.7/0 | 80.5/15.2/4.3 | <0.001 |
Gender, male, n (%) | 582 (43.2%) | 181 (43.8%) | 387 (47.3%) | 154 (47.7%) | 1888 (53.3%) | 945 (56.2%) | <0.001 |
Smoking Status Never/former/current, % | 29.3/70.7/0 | 40/60/0 | 0/0/100 | 0/0/100 | 0/65.2/34.8 | 0/67.3/32.7 | NA |
Num. recent exacerbations | 0 (0, 1.00) | 0 (0, 1.00) | 0 (0, 1.00) | 0 (0, 2.00) | 0 (0, 2.00) | 0 (0, 2.00) | <0.001 |
GOLD stage, n (%) | NA | ||||||
GOLD 0 | 951 (70.7%) | 248 (60.0%) | 818 (100%) | 323 (100%) | 514 (14.5%) | 130 (7.7%) | |
GOLD 1 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 507 (14.3%) | 334 (19.9%) | |
GOLD 2 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1063 (30.0%) | 667 (39.7%) | |
GOLD 3 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 565 (16.0%) | 347 (20.6%) | |
GOLD 4 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 235 (6.6%) | 142 (8.4%) | |
PRISm | 12 (0.9%) | 0 (0%) | 0 (0%) | 0 (0%) | 656 (18.5%) | 61 (3.6%) | |
Never smoker | 383 (28.5%) | 165 (40.0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |
FEV1 (liters) | 2.71 (0.700) | 2.85 (0.697) | 2.69 (0.671) | 2.89 (0.704) | 1.86 (0.792) | 1.86 (0.823) | NA |
Emphysema, % | 1.59 (1.85) | 1.64 (1.39) | 0.883 (1.06) | 0.997 (0.903) | 8.01 (10.6) | 10.4 (11.2) | NA |
FVC (liters) | 3.45 (0.876) | 3.62 (0.882) | 3.45 (0.884) | 3.71 (0.908) | 2.98 (0.967) | 3.38 (1.06) | NA |
FEV1/FVC | 0.787 (0.0493) | 0.788 (0.0505) | 0.784 (0.0487) | 0.782 (0.0487) | 0.616 (0.151) | 0.542 (0.147) | NA |
History of diabetes, n (%) | 169 (12.6%) | 54 (13.1%) | 125 (15.3%) | 25 (7.7%) | 670 (18.9%) | 231 (13.7%) | <0.001 |
History of stroke, n (%) | 20 (1.5%) | 14 (3.4%) | 28 (3.4%) | 10 (3.1%) | 130 (3.7%) | 66 (3.9%) | 0.00323 |
History of heart attack, n (%) | 56 (4.2%) | 17 (4.1%) | 32 (3.9%) | 5 (1.5%) | 244 (6.9%) | 123 (7.3%) | <0.001 |
History of coronary artery disease, n (%) | 86 (6.4%) | 24 (5.8%) | 32 (3.9%) | 7 (2.2%) | 346 (9.8%) | 172 (10.2%) | <0.001 |
Chronic bronchitis, n (%) | 46 (3.4%) | 30 (7.3%) | 116 (14.2%) | 74 (22.9%) | 643 (18.2%) | 367 (21.8%) | <0.001 |
Decelerated (N = 277) | Accelerated (N = 400) | p-Value | |
---|---|---|---|
Chronologic age (years), mean (SD) | 67.9 (8.32) | 65.3 (8.56) | <0.001 |
Metabolomic age (years) | 58.3 (5.79) | 75.2 (6.18) | NA |
Race: White/Black/other, % | 45.1/53.4/1.5 | 88.3/10.5/1.4 | <0.001 |
Gender, male, n (%) | 197 (71.1%) | 172 (43.0%) | <0.001 |
Smoking Status: Former/current, % | 57.8/42.2 | 75.0/25.0 | <0.001 |
Exacerbations | 0 (0, 2.00) | 0 (0, 2.00) | 0.0178 |
GOLD stage, n (%) | |||
GOLD 0 | 38 (13.7%) | 27 (6.8%) | <0.001 |
GOLD 1 | 65 (23.5%) | 45 (11.3%) | |
GOLD 2 | 90 (32.5%) | 131 (32.8%) | |
GOLD 3 | 41 (14.8%) | 93 (23.3%) | |
GOLD 4 | 10 (3.6%) | 50 (12.5%) | |
PRISm | 33 (11.9%) | 54 (13.5%) | |
FEV1 (liters) | 2.00 (0.801) | 1.60 (0.724) | <0.001 |
Emphysema, % | 7.16 (9.45) | 10.8 (12.4) | <0.001 |
FVC | 3.21 (0.967) | 2.87 (0.938) | <0.001 |
FEV1/FVC | 0.613 (0.136) | 0.554 (0.160) | <0.001 |
History of diabetes, n (%) | 43 (15.5%) | 96 (24.0%) | 0.00879 |
History of stroke, n (%) | 12 (4.3%) | 29 (7.3%) | 0.157 |
History of heart attack, n (%) | 7 (2.5%) | 59 (14.8%) | <0.001 |
History of coronary artery disease, n (%) | 11 (4.0%) | 79 (19.8%) | <0.001 |
Chronic bronchitis, n (%) | 52 (18.8%) | 87 (21.8%) | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.J.; Godbole, S.; Labaki, W.W.; Pratte, K.A.; Curtis, J.L.; Paine, R.; Hoffman, E.; Han, M.; Ohar, J.; Cooper, C.; et al. Metabolic Aging as an Increased Risk for Chronic Obstructive Pulmonary Disease. Metabolites 2024, 14, 647. https://doi.org/10.3390/metabo14120647
Guo CJ, Godbole S, Labaki WW, Pratte KA, Curtis JL, Paine R, Hoffman E, Han M, Ohar J, Cooper C, et al. Metabolic Aging as an Increased Risk for Chronic Obstructive Pulmonary Disease. Metabolites. 2024; 14(12):647. https://doi.org/10.3390/metabo14120647
Chicago/Turabian StyleGuo, Claire J., Suneeta Godbole, Wassim W. Labaki, Katherine A. Pratte, Jeffrey L. Curtis, Robert Paine, Eric Hoffman, Meilan Han, Jill Ohar, Christopher Cooper, and et al. 2024. "Metabolic Aging as an Increased Risk for Chronic Obstructive Pulmonary Disease" Metabolites 14, no. 12: 647. https://doi.org/10.3390/metabo14120647
APA StyleGuo, C. J., Godbole, S., Labaki, W. W., Pratte, K. A., Curtis, J. L., Paine, R., Hoffman, E., Han, M., Ohar, J., Cooper, C., Kechris, K. J., DeMeo, D. L., & Bowler, R. P. (2024). Metabolic Aging as an Increased Risk for Chronic Obstructive Pulmonary Disease. Metabolites, 14(12), 647. https://doi.org/10.3390/metabo14120647