Impact of Babaco (Vasoncelea x pentagona (Heilborn) Mabb.) Fruit Ripening Stages on Phytochemical Composition and Biological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Extract Preparation
2.3. Extraction of Bioactive Compounds
2.4. Active Ingredients Determination
2.5. Antioxidant Capacity Determination
2.6. Screening of Bioactive Compounds by LC-MS
2.7. Statistical Test
3. Results
3.1. Active Ingredients Determination
3.2. Evaluation of the Antioxidant Capacity
3.3. Screening of Bioactive Compounds by Liquid Chromatography Coupled with Mass Spectrometry LC-MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.P.N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.K.S.; Oz, F. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Owolodun, O.A.; Kambizi, L.; Daştan, S.D.; Calina, D.; et al. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci. Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Dafermos, G.N.; Vivero Pol, J.L. The Open Agri-Food System 1 of Ecuador: A commons-based transition towards sustainability and equity to reach a Buen Vivir for all. Environ. Sci. Agric. Food Sci. Econ. 2014, 2, 1–21. Available online: https://api.semanticscholar.org/CorpusID:154283125 (accessed on 14 August 2024).
- Kyndt, T.; Romeijn-Peeters, E.; Van Droogenbroeck, B.; Romero-Motochi, J.P.; Gheysen, G.; Goetghebeur, P. Species relationships in the genus Vasconcellea (Caricaceae) based on molecular and morphological evidence. Am. J. Bot. 2005, 92, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Repositorio Digital del Instituto Nacional de Investigaciones Agropecuarias (INIAP). EGuía para el Cultivo de Babaco en el Ecuador. Available online: https://repositorio.iniap.gob.ec/handle/41000/515 (accessed on 11 October 2022).
- Aguirre-Rodríguez, A.; Duarte-Casar, R.; Rojas-Le-Fort, M.; Romero-Benavides, J.C. Food uses, functional activities, and bioactive compounds of three Ecuadorian Vasconcellea fruits: Bibliometric analysis and review. J. Agric. Food Res. 2024, 17, 101244. [Google Scholar] [CrossRef]
- Buelvas-Caro, S.D.; Assia-Ortiz, M.C.; Polo-Corrales, L. Non-thermal Treatments for Food Preservation. Indian J. Sci. Technol. 2018, 11, 132593. [Google Scholar] [CrossRef]
- Correa, Y. Capacidad Antioxidante y Contenido de Compuestos Fenólicos del Extracto Hidroalcohólico de la Pulpa de Vasconcellea x heilbornii (Babaco). Universidad César Vallejo, Facultad De Ciencias De La Salud Escuela De Nutrición. 2016. Licenciada en Nutrición. Available online: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/72178/Correa_TY-SD.pdf?sequence=1&isAllowed=y (accessed on 13 September 2023).
- Thaweesang, S. Antioxidant activity and total phenolic compounds of fresh and blanching banana blossom (Musa ABB CV. Kluai “Namwa”) in Thailand. IOP Conf. Series Mat. Sci. Eng. 2019, 639, 012047. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminum complexation reaction for flavonoid content assay. Food Anal. Met. 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Rajurkar, N.S.; Hande, S.M. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian J. Pharm. Sci. 2011, 73, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Sachett, A.; Gallas-Lopes, M.; Conterato, G.M.M.; Herrmann, A.; Piato, A. Antioxidant activity by DPPH assay: In vitro protocol. Protocols Io. 2021. Available online: https://www.protocols.io/view/antioxidant-activity-by-dpph-assay-in-vitro-protoc-btbpnimn (accessed on 3 September 2023).
- Kuskoski, E.M.; Asuero, A.G.; Troncoso, A.M.; Mancini-Filho, J.; Fett, R. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Sci. Technol. 2005, 25, 726–732. [Google Scholar] [CrossRef]
- Tohma, H.; Köksal, E.; Kılıç, Ö.; Alan, Y.; Yılmaz, M.A.; Gülçin, İ.; Bursal, E.; Alwasel, S.H. RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. species. Antioxidants 2016, 5, 38. [Google Scholar] [CrossRef]
- Irakli, M.; Skendi, A.; Bouloumpasi, E.; Chatzopoulou, P.; Biliaderis, C.G. LC-MS identification and quantification of phenolic compounds in solid residues from the essential oil industry. Antioxidants 2021, 10, 2016. [Google Scholar] [CrossRef]
- Luskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar]
- Munekata, P.; Pateiro, M.; Domínguez-Valencia, R.; Nieto, G.; Kumar, M.; Dhama, K.; Lorenzo, J.M. Bioactive Compounds from Fruits as Preservatives. Foods 2023, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Bisbal, J.J.S.; Lloret, J.M.; Lozano, G.M.; Fagoaga Garcia, C. Especies vegetales como antioxidantes de alimentos (Plant species as food antioxidants). NEREIS Rev. Iberoam. Interdiscip. Métodos Model. Simulación 2020, 12, 71–90. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Sales, R.P.; Pereira, M.C.T.; Mouco, M.A.C.; Ferreira, J.D.; Cano, R.N.; Kondo, M.K.; Santos, I.P.; Martins, R.S.; Pegoraro, R.F. Maturation and quality of ‘Palmer’ and ‘Espada Vermelha’ mango fruits in the Brazilian semi-arid. Acta Hortic 2019, 1244, 237–244. [Google Scholar] [CrossRef]
- Nemzer, B.V.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Bioactive Compounds, Antioxidant Activities, and Health Beneficial Effects of Selected Commercial Berry Fruits: A Review. J. Food Res. 2020, 9, 78–101. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. The effect of different maturity stages on phytochemical composition and antioxidant capacity of cranberry cultivars. Eur. Food Res. Technol. 2018, 244, 705–719. [Google Scholar] [CrossRef]
- Domínguez, C.R.; Domínguez Avila, J.A.; Pareek, S.; Villegas Ochoa, M.A.; Ayala Zavala, J.F.; Yahia, E.; González-Aguilar, G.A. Content of bioactive compounds and their contribution to antioxidant capacity during ripening of pineapple (Ananas comosus L.) cv. Esmeralda. J. Appl. Bot. Food Qual. 2018, 91, 61–68. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Muñoz, R.; de las Rivas, B.; López de Felipe, F.; Reverón, I.; Santamaría, L.; Esteban-Torres, M.; Curiel, J.A.; Rodríguez, H.; Landete, J.M. Chapter 4—Biotransformation of Phenolics by Lactobacillus plantarum in Fermented Foods. In Fermented Foods in Health and Disease Prevention; Frias, J., Cristina Martinez-Villaluenga, C., Elena Peñas, E., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 63–83. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Poblete, J.; Rojas-Carmona, R.; Uribe, E.; Pastén, A.; Goñi, M.G. Vacuum drying of Chilean papaya (Vasconcellea pubescens) fruit pulp: Effect of drying temperature on kinetics and quality parameters. J. Food Sci. Technol. 2021, 58, 3482–3492. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Mokhtar, R.A.M.; Sani, M.S.A.; Noor, N.Q.I.M. The Effect of Maturity and Extraction Solvents on Bioactive Compounds and Antioxidant Activity of Mulberry (Morus alba) Fruits and Leaves. Molecules 2022, 8, 2406. [Google Scholar] [CrossRef] [PubMed]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Auquinivin, S.; Aldo, E.; Menacho, P.; Luz, M. Comparative study of the physicochemical characteristics and shelf lifeof native papayas, “monte papayita” (Carica pubescens Lenné & K. Koch) and “babaco” (Carica pentagona Heilborn) (Caricaceae) dehydrated by lyophilization. Arnaldoa 2020, 27, 115–128. [Google Scholar]
- Mejia, A.; Fany, B. Caracterización fisicoquímica de la pulpa de babaco (Vasconcellea x heilbornii) en dos estados de madurez procedente de tres lugares de la región Amazonas. Bachelor’sThesis, Universidad Nacional Toribio Rodríguez de Mendoza de AmazonasGraduate, Chachapoyas, Peru, 2022. Available online: https://hdl.handle.net/20.500.14077/2875 (accessed on 10 October 2023).
- Oniszczuk, A.; Widelska, G.; Wójtowicz, A.; Oniszczuk, T.; Wojtunik-Kulesza, K.; Dib, A.; Matwijczuk, A. Content of Phenolic Compounds and Antioxidant Activity of New Gluten-Free Pasta with the Addition of Chestnut Flour. Molecules 2019, 24, 2623. [Google Scholar] [CrossRef] [PubMed]
- Zunjar, V.; Mammen, D.; Trivedi, B.M. Antioxidant activities and phenolics profiling of different parts of Carica papaya by LCMS-MS. Nat. Prod. Res. 2015, 29, 2097–2099. [Google Scholar] [CrossRef] [PubMed]
- Sucuzhanay, C.; Leon Zeas, R.L.; Patino, F.X.; Emperatriz, V. Evaluación del comportamiento del babaco (Vasconcella x heilbornii nm.pentagona) en tres tipos de alturas de podas en plantas de seis años de producción en la Parroquia Bulán, cantón Paute, Provincia del Azuay. Bachelor’s Thesis, Repositorio Institucional de la Universidad Politecnica Salesiana, Cuenca, Ecuador, 2010. Available online: https://dspace.ups.edu.ec/handle/123456789/4747 (accessed on 10 October 2023).
- Lino, F.M.A.; de Sá, L.Z.; Torres, I.M.S.; Rocha, M.L.; Dinis, T.C.P.; Ghedini, P.C.; Somerset, V.S.; Gil, E.S. Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochim. Acta 2014, 128, 25–31. [Google Scholar] [CrossRef]
- Chen, P.; Guo, Z.; Chen, F.; Wu, Y.; Zhou, B. Recent Advances and Perspectives on the Health Benefits of Urolithin B, A Bioactive Natural Product Derived From Ellagitannins. Front. Pharmacol. 2022, 13, 917266. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.; Sodagam, L. Gerontomodulatory and Youth-Preserving Effects of Zeatin on Human Skin Fibroblasts Undergoing Aging In Vitro. Rejuvenation Res. 2005, 8, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Martino, L.; Basilissi, L.; Hermes, F.; Ortenzi, M.; Zini, E.; Di Silvestro, G.; Scandola, M. Bio-based polyamide 11: Synthesis, rheology and solid-state properties of star structures. Eur. Polym. J. 2014, 59, 69–77. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Cervantes, J.; Sendón, R.; Sanches-Silva, A. Aloe vera: Ancient knowledge with new frontiers. Trends Food Sci. 2017, 61, 94–102. [Google Scholar] [CrossRef]
- Diwan, V.; Brown, L.; Gobe, G.C. The flavonoid rutin improves kidney and heart structure and function in an adenine-induced rat model of chronic kidney disease. J. Funct. Foods 2017, 33, 85–93. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Amoah, S.K.; Sandjo, L.P.; Kratz, J.M.; Biavatti, M.W. Rosmarinic acid—Pharmaceutical and clinical aspects. Planta Medica 2016, 82, 388–406. [Google Scholar] [CrossRef]
LC–MS Positive Ions | ||||
---|---|---|---|---|
ID | Proposed Compound Identity | Molecular Formula | Retention Time (Minutes) | Molecular Ion |
27 | Honokiol | C18H18O2 | 1.089 | M + H |
76 | Urolithin B | C13H8O3 | 1.082 | M + H |
129 | Zeatin-9-glucoside | C14H21N5O6 | 1.114 | M + H |
189 | Arginine | C6H14N4O2 | 1.22 | M + H |
215 | 11-Aminoundecanoic acid | C11H23NO2 | 1.239 | M + H |
305 | Pterosin B | C14H10O3 | 1.293 | M + H |
504 | Aloin A | C21H22O9 | 1.503 | M + H |
548 | Ureidopropionic acid | C4H8N2O3 | 1.54 | M + H |
640 | Isoliquiritigenin | C15H12O4 | 1.58 | M − H |
870 | (E)-Hexadec-7-enoylhomoserine | C19H35NO4 | 1.647 | M + H |
883 | N-Acetyl-alpha-D-glucosamine | C8H15NO6 | 1.655 | M + H |
908 | Rutin | C27H30O16 | 1.552 | M + H |
931 | Hecogenin | C27H42O4 | 1.685 | M + H |
948 | Rosmarinic acid | C18H16O8 | 1.783 | M + H |
1009 | N-Acetylhistidine | C8H13N3O3 | 3.191 | M+ |
1021 | Isoliquiritin | C21H22O9 | 9.356 | M + Na |
LC-MS Negative Ions | ||||
ID | Proposed compound identity | Molecular Formula | Retention Time (minutes) | Molecular Ion |
5 | 2-Benzylsuccinic acid | C11H12O4 | 398 | M − H |
52 | 8-hydroxy-2,7,7,11,15-pentamethyl-5,12,16-trioxapentacyclo [9.8.0]nonadec-13(18)-ene-3,17-dione | C20H28O3 | 1114 | M − H |
93 | 2-Isopropylmalate | C7H12O5 | 1216 | M − H |
99 | Glucose, fructose, mannose | C6H12O6 | 1.26 | M − H |
102 | alpha,alpha-Trehalose | C12H22O11 | 1238 | M − H |
154 | Citric acid | C6H8O7 | 1516 | M + H |
270 | Rutin | C27H30O16 | 1648 | M − H |
403 | (3S)-8-hydroxy-3-methyl-3,4-dihydro-2H-benzo[a]anthracene-1,7,12-trione | C19H14O4 | 16,729 | M − H |
405 | (S,E)-(2-(4,8-dimethylnona-3,7-dien-1-yl)-8-formyl-5-hydroxy-2-methyl-2H-chromen-7-yl)methyl acetate | C21H28O4 | 16,769 | M – Ac – H - |
440 | Ginsenoside | C42H72O14 | 17,439 | M + HCOO |
441 | 2-hydroxy-4-methoxy-3,5-bis(3-methylbut-2-enyl)-6-(2-phenylethyl)benzoic acid | C27H32O4 | 17,442 | M + H |
456 | 8,15-DiHETE | C20H32O4 | 18,022 | M − H |
514 | 2′,6′-Dihydroxy-4-methoxychalcone-4′-O-neohesperid | C23H24O11 | 19,838 | M + HCOO |
570 | 5Alpha-Cholestan-3Beta-Ol-6-One | C27H46O2 | 21,764 | M − H |
595 | 1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1,2-dihydronaphthalene-2,3-dicarboxylic acid | C18H12O6 | 22,049 | M + Na |
629 | (E)-5-[(1S,8aS)-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]-3-(hydroxymethyl)-2-oxopent-3-enoic acid | C20H28O3 | 22,361 | M + H |
652 | (Z)-5,8,11-trihydroxyoctadec-9-enoic acid | C18H32O5 | 22,704 | M − H |
696 | Aphyllic Acid | C16H18O2 | 28.29 | M + H |
726 | Hydroquinidine | C20H26N2O2 | 29,577 | M + H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, R.A.; Canchignia Guacollantes, M.G.; Vivanco Gonzaga, R.F.; Cubi-Insuaste, N.S.; Catana, R.D. Impact of Babaco (Vasoncelea x pentagona (Heilborn) Mabb.) Fruit Ripening Stages on Phytochemical Composition and Biological Properties. Metabolites 2024, 14, 718. https://doi.org/10.3390/metabo14120718
Mihai RA, Canchignia Guacollantes MG, Vivanco Gonzaga RF, Cubi-Insuaste NS, Catana RD. Impact of Babaco (Vasoncelea x pentagona (Heilborn) Mabb.) Fruit Ripening Stages on Phytochemical Composition and Biological Properties. Metabolites. 2024; 14(12):718. https://doi.org/10.3390/metabo14120718
Chicago/Turabian StyleMihai, Raluca A., Mauricio G. Canchignia Guacollantes, Ramiro F. Vivanco Gonzaga, Nelson S. Cubi-Insuaste, and Rodica D. Catana. 2024. "Impact of Babaco (Vasoncelea x pentagona (Heilborn) Mabb.) Fruit Ripening Stages on Phytochemical Composition and Biological Properties" Metabolites 14, no. 12: 718. https://doi.org/10.3390/metabo14120718
APA StyleMihai, R. A., Canchignia Guacollantes, M. G., Vivanco Gonzaga, R. F., Cubi-Insuaste, N. S., & Catana, R. D. (2024). Impact of Babaco (Vasoncelea x pentagona (Heilborn) Mabb.) Fruit Ripening Stages on Phytochemical Composition and Biological Properties. Metabolites, 14(12), 718. https://doi.org/10.3390/metabo14120718