Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications
Abstract
:1. Introduction
2. NAD+ Biosynthesis Pathways
3. Impact of Metabolism on Supplementation
3.1. Gastrointestinal Tract
3.1.1. Interaction with Gut Microbiome
3.1.2. Uptake Mechanisms
3.2. Portal Delivery
3.3. Hepatic First-Pass Metabolism
3.4. Bloodstream Dynamics and Tissue Distribution
4. Functional Diversity of NAD+ Precursors
4.1. Efficacy and Therapeutic Applications of NAD+ Boosting Strategies
4.2. Physiological Context and Precursor Efficacy
5. Human Studies Discussion
5.1. Modulation of NAD+ Levels
5.2. Sleep Regulation and Quality
5.3. Physical Performance
5.4. Cardiometabolic Health
5.5. Glucose Metabolism and Regulation
5.6. Overall Well-Being and Quality of Life
5.7. Telomere Lengthening
5.8. Side Effects and Safety Considerations
Group Treated | NMN Dose | Duration | Sample Type | NAD+ Metabolome Levels | Functional Outcomes | Reference |
---|---|---|---|---|---|---|
Healthy Middle-Aged Japanese Men (40–60) | Placebo n = 13 | 8 Weeks | PMBCs (pmol/mg) HPLC | NAD: 26.83 | ↑ NAD+ in PBMCs Modest ↓ postprandial hyperinsulinemia | [95] |
250 mg daily | NAD: 41.43 | |||||
Healthy Adults (40–59) | Placebo 2× Daily n = 18 | 12 Weeks | Blood Serum (ng/mL) HPLC Tandem MS | NAM: 10.9 ± 4.8 NMN: <2 NAD: <5 | ↑ NAM in PBMCs ↓ CVD risk | [89] |
125 mg NMN 2× Daily n = 18 | NAM: 16.5 ± 6.3 NMN: <2 NAD: <5 | |||||
Overweight Adults (45+) | Placebo 2× Daily n = 9 | 28 Days | Whole Blood (ng/mL) HPLC Tandem MS | NAM: 21.2 ± 7.77 NMN: 0.6 ± 0.08 NAD: 17.8 ± 2.77 1-MeNAM: 18.7 ± 7.42 2-PY: 394.7 ± 248 | ↑ Circulating NAD+ ↓ Weight, Cholesterol, BP | [93] |
1 g NMN 2× Daily n = 21 | NAM: 19.7 ± 9.73 NMN: 0.7 ± 0.11 NAD: 19.4 ± 2.62 1-MeNAM: 17.9 ± 7.2 2-PY: 357.8 ± 151 | |||||
Patients Diagnosed with Mild Essential Hypertension (18–80) | LM Group n = 10 | 6 Weeks | PMBCs (pmol/mg) HPLC-MS | NMN: ~4.5 NAD: ~15 | ↑ NAD+ PBMCs (43%) ↑ ATP | [94] |
800 mg NMN + LM n = 9 | NMN: ~6 NAD: ~20 | |||||
Healthy Adults (20–80) | Placebo n = 25 | 30 Days | Whole Blood (µM) Custom BRET NAD Sensor Assay and HPLC-MS | NAD: 23.8 ± 5.5 | ↑ Blood NAD+ Dose-dependent ↑ 2/4-PY (esp. 1000 mg NMN) | [92] |
500 mg NMN Daily n = 25 | NAD: 41.7 ± 13.0 | |||||
1000 mg NMN Daily n = 25 | NAD: 58.8 ± 21.1 | |||||
Healthy Adults (20–80) | Placebo + Exercise n = 21 | 30 Days | Whole Blood (µM) Custom BRET NAD Sensor Assay and HPLC-MS | NAD: 33.18 ± 7.2 | Exercise & NMN: ↑ NAD+ PBMCs (similar to 1000 mg NMN) | [92] |
500 mg NMN + Exercise n = 21 | NAD: 55.48 ± 21.4 | |||||
Healthy Adults (20–65) | 250 mg NMN Daily n = 11 | 12 Weeks | Blood Plasma (µM) HPLC-MS | NMN Month 1: ~0.15 Month 4: ~0.5 NAD Month 1: ~0.055 Month 4: ~0.01 | ↑ NMN & NAD in plasma Transient ↑ insulin (2 mo) NMN ↑ (3 mo) NAD peak (1 mo) | [91] |
Males with Diabetes and Reduced Grip Strength of Walking Speed (65+) | Placebo n = 8 | 24 Weeks | - | Not Measured | NMN: ↓ Frailty | [98] |
250 mg NMN Daily n = 8 | ||||||
Healthy Adults (20–65) | Placebo n = 15 | 4 Weeks | - | Not Measured | Safe & Well-Tolerated | [69] |
1250 mg NMN Daily n = 16 | ||||||
Healthy Adults (40–65) BMI (18.5–35 kg/m2) | Placebo n = 31 | 60 Days | Serum NAD/NADH (pmol/mL) Colorimetric Quantitation Kit | NAD: 8.14 ± 4.86 | ↑ Serum NAD (11.3%) ↓ HOMA-IR ↑ Walking Endurance Improved Well-being | [90] |
300 mg NMN Daily n = 31 | NAD: 9.07 ± 5.65 | |||||
Healthy Men (65+) | Placebo n = 21 | 12 Weeks | Whole Blood (µM) LC-Tandem MS | NAM: 10.6 ± 1.6 NMN: 0.105 ± 0.013 NAD: 0.53 ± 0.12 NAMN: 0.05 ± 0.03 NR: 0.0308 ± 0.0088 NA: 0.00684 ± 0.00168 | ↑ NMN, NAD+, NR, NAMN Improved Gait, Walk, Grip (nominal) | [66] |
250 mg NMN Daily n = 21 | NAM: 13.4 ± 2.4 NMN: 0.127 ± 0.019 NAD: 1.07 ± 0.16 NAMN: 3.51 ± 1.86 NR: 0.0549 ± 0.0241 NA: 0.00974 ± 0.00129 | |||||
Adults (65+) | Placebo-AM n = 27 | 12 Weeks | - | Not Measured | Afternoon NMN: ↑ Limb Function ↓ Drowsiness (Older Adults) | [97] |
Placebo-PM n = 27 | ||||||
250 mg NMN-AM n = 27 | ||||||
250 mg NMN-PM n = 27 | ||||||
Healthy Individuals (20–70) | Intravenous administration 300 mg NMN in saline (3 mg/mL) Daily n = 10 | 5 h | Whole Blood NAD/NADH Assay Kit | 1.2-fold increase in Total NAD | IV NMN: Safe, ↑ Blood NAD+ ↓ Triglycerides | [58] |
Post-Menopausal Women (50–80) | 300 mg NMN Daily n = 16 | 8 Weeks | Whole Blood (ng/mL) HPLC-MS | NAM: 164.7 ± 20 NMN: 1.28 ± 0.2 NAD: 13.7 ± 2 | NAM ↑; NAD ↓; NMN ↔ | [100] |
Healthy Adults (22–64) | Placebo n = 15 | 12 Weeks | Whole Blood (µM) HPLC-MS | NAM: 19 ± 3 NMN: 0.055 ± 0.01 NAD: 22 ± 2 NAMN (8 Wks): 0 NR: 0.04 ± 0.025 NA: 0.25 ± 0.06 | Blood NAD+ ↑, NAMN ↑, (NMN, NA, NAR, NAAD, MNAM) ↔ | [56] |
125 mg NMN 2× Daily n = 15 | NAM: 17 ± 8 NMN: 0.054 ± 0.016 NAD: 45 ± 20 NAMN: 2.0 ± 1.5 NR: 0.045 ± 0.005 NA: 0.26 ± 0.04 | |||||
Overweight Adults (55–80) | Placebo 2× Daily n = 8 | 14 Days | Whole Blood (ng or µg/mL) HPLC Tandem-MS | NMN: 0.0326 (µg) NAD: 1.36 (µg) NAM: 10.2 1-MeNAM: 7.57 2-PY: 103 NR: 0.406 | ↑ Blood NAD Metabolites ↓ Body Weight, Systolic BP, ↓ Diastolic BP | [110] |
1000 mg NMN 1× Daily n = 12 | NMN: 0.0882 (µg) NAD: 23.0 (µg) NAM: 65.2 1-MeNAM: 146 2-PY: 2150 NR: 1.30 | |||||
1000 mg NMN 2× Daily n = 12 | NMN: 0.148 (µg) NAD: 40.4 (µg) NAM: 140 1-MeNAM: 276 2-PY: 4230 NR: 1.48 | |||||
Healthy Adults (37–50) | Placebo n = 20 | 60 Days | Blood Serum (nM) Colorimetric Quantitation Kit | Day 0: 8.11 ± 5.16 Day 30: 9.83 ± 8.43 Day 60: 11.8 ± 9.4 | Blood NAD: ↑ (all NMN groups, days 30 & 60) | [88] |
300 mg NMN n = 20 | Day 0: 11.8 ± 11.7 Day 30: 29.8 ± 20.1 Day 60: 32.6 ±17.9 | |||||
600 mg NMN n = 20 | Day 0: 7.95 ± 3.29 Day 30: 39.0 ±12.6 Day 60: 45.3 ±11.8 | |||||
900 mg NMN n = 20 | Day 0: 10.5 ± 6.8 Day 30: 43.1 ± 14.3 Day 60: 48.5 ±19.8 | |||||
Young and Middle-Aged Recreational Runners | Placebo n = 12 | 6 Weeks | - | Not Measured | Exercise Capacity ↑ (likely ↑ O2 utilization in skeletal muscle) | [99] |
300 mg NMN n = 12 | ||||||
600 mg NMN n = 12 | ||||||
1200 mg NMN n = 12 | ||||||
Overweight Post-Menopausal Women BMI (25.3–39.1 kg/m2) | Placebo n = 12 | 10 Weeks | PMBCs (pmol/mg) | NAD: ~25 | ↑ 2-PY & 4-PY; ↑ PBMC NAD+ (43% vs placebo); ↑ Muscle NAD+ turnover & ↑ Muscle Insulin Sensitivity (25%) | [55] |
250 mg NMN n = 13 | NAD: ~40 | |||||
Healthy Men (40–60) | 100 mg NMN n = 10 | 12 Weeks | Blood Plasma (nM) HPLC Tandem MS | 2-PY: ~2000 4-PY: ~350 1-MeNAM: ~225 | ↑ Bilirubin (51.3%) ↓ Glucose (11.7%), Creatinine (5.1%), Chloride (2.3%) | [57] |
250 mg NMN n = 10 | 2-PY: ~2500 4-PY: ~400 1-MeNAM: ~250 | |||||
500 mg NMN n = 10 | 2-PY: ~4000 4-PY: ~750 1-MeNAM: ~300 |
6. Remaining Questions and Future Directions
6.1. Sex-Specific Differences in Response to Supplementation
6.2. Individual Variability in Supplementation Effects
6.3. Precursor-Independent Regulatory Functions
6.4. Influence of Gut Microbiota
6.5. Optimizing Bioavailability
6.6. Refining Strategies for Clinical Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harden, A.; Young, W.J. The Alcoholic Ferment of Yeast-Juice. Proc. R. Soc. Lond. B 1906, 77, 405–420. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, R.-S.; Handy, D.E.; Loscalzo, J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid. Redox Signal. 2018, 28, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Iyanagi, T. Molecular Mechanism of Metabolic NAD(P)H-Dependent Electron-Transfer Systems: The Role of Redox Cofactors. BBA-Bioenergetics 2019, 1860, 233–258. [Google Scholar] [CrossRef] [PubMed]
- Melkonian, E.A.; Schury, M.P. Biochemistry, Anaerobic Glycolysis; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Leary, S.C.; Moyes, C.D. Chapter 15—The Effects of Bioenergetic Stress and Redox Balance on the Expression of Genes Critical to Mitochondrial Function. In Cell and Molecular Response to Stress; Storey, K.B., Storey, J.M., Eds.; Environmental Stressors and Gene Responses; Elsevier: Amsterdam, The Netherlands, 2000; Volume 1, pp. 209–229. [Google Scholar]
- Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD+ Metabolism: Pathophysiologic Mechanisms and Therapeutic Potential. Signal Transduct. Target. Ther. 2020, 5, 227. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Paneni, F.; Stein, S.; Matter, C.M. Modulating Sirtuin Biology and Nicotinamide Adenine Diphosphate Metabolism in Cardiovascular Disease—From Bench to Bedside. Front. Physiol. 2021, 12, 755060. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Bagès, S.; Knobloch, G.; Ladurner, A.G.; Buschbeck, M. The Taming of PARP1 and Its Impact on NAD+ Metabolism. Mol. Metab. 2020, 38, 100950. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Pereira, J.; Tarragó, M.G.; Chini, C.C.S.; Nin, V.; Escande, C.; Warner, G.M.; Puranik, A.S.; Schoon, R.A.; Reid, J.M.; Galina, A.; et al. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism. Cell Metab. 2016, 23, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Chini, E.N. CD38 as a Regulator of Cellular NAD: A Novel Potential Pharmacological Target for Metabolic Conditions. Curr. Pharm. Design 2009, 15, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.M.; Kong, X.; Moncada, E.; Chen, Y.; Imamura, H.; Wang, P.; Berns, M.W.; Yokomori, K.; Digman, M.A. NAD+ Consumption by PARP1 in Response to DNA Damage Triggers Metabolic Shift Critical for Damaged Cell Survival. MBoC 2019, 30, 2584–2597. [Google Scholar] [CrossRef]
- Lautrup, S.; Sinclair, D.A.; Mattson, M.P.; Fang, E.F. NAD+ in Brain Aging and Neurodegenerative Disorders. Cell Metab. 2019, 30, 630–655. [Google Scholar] [CrossRef]
- Nacarelli, T.; Lau, L.; Fukumoto, T.; Zundell, J.; Fatkhutdinov, N.; Wu, S.; Aird, K.M.; Iwasaki, O.; Kossenkov, A.V.; Schultz, D.; et al. NAD+ Metabolism Governs the Proinflammatory Senescence-Associated Secretome. Nat. Cell Biol. 2019, 21, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zuo, W.; Liu, Y.; Wu, K.; Liu, Q. NAD+ and Cardiovascular Diseases. Clin. Chim. Acta 2021, 515, 104–110. [Google Scholar] [CrossRef]
- Massudi, H.; Grant, R.; Braidy, N.; Guest, J.; Farnsworth, B.; Guillemin, G.J. Age-Associated Changes In Oxidative Stress and NAD+ Metabolism In Human Tissue. PLoS ONE 2012, 7, e42357. [Google Scholar] [CrossRef] [PubMed]
- Bagga, P.; Hariharan, H.; Wilson, N.E.; Beer, J.C.; Shinohara, R.T.; Elliott, M.A.; Baur, J.A.; Marincola, F.M.; Witschey, W.R.; Haris, M.; et al. Single-Voxel 1H MR Spectroscopy of Cerebral Nicotinamide Adenine Dinucleotide (NAD+) in Humans at 7T Using a 32-Channel Volume Coil. Magn. Reson. Med. 2020, 83, 806–814. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Lu, M.; Lee, B.-Y.; Ugurbil, K.; Chen, W. In Vivo NAD Assay Reveals the Intracellular NAD Contents and Redox State in Healthy Human Brain and Their Age Dependences. Proc. Natl. Acad. Sci. USA 2015, 112, 2876–2881. [Google Scholar] [CrossRef]
- Poljsak, B.; Kovač, V.; Milisav, I. Healthy Lifestyle Recommendations: Do the Beneficial Effects Originate from NAD+ Amount at the Cellular Level? Oxidative Med. Cell. Longev. 2020, 2020, 8819627. [Google Scholar] [CrossRef]
- Cambronne, X.A.; Kraus, W.L. Location, Location, Location: Compartmentalization of NAD+ Synthesis and Functions in Mammalian Cells. Trends Biochem. Sci. 2020, 45, 858–873. [Google Scholar] [CrossRef]
- Chiarugi, A.; Dölle, C.; Felici, R.; Ziegler, M. The NAD Metabolome—A Key Determinant of Cancer Cell Biology. Nat. Rev. Cancer 2012, 12, 741–752. [Google Scholar] [CrossRef]
- Grozio, A.; Mills, K.F.; Yoshino, J.; Bruzzone, S.; Sociali, G.; Tokizane, K.; Lei, H.C.; Cunningham, R.; Sasaki, Y.; Migaud, M.E.; et al. Slc12a8 Is a Nicotinamide Mononucleotide Transporter. Nat. Metab. 2019, 1, 47–57. [Google Scholar] [CrossRef]
- Ratajczak, J.; Joffraud, M.; Trammell, S.A.J.; Ras, R.; Canela, N.; Boutant, M.; Kulkarni, S.S.; Rodrigues, M.; Redpath, P.; Migaud, M.E.; et al. NRK1 Controls Nicotinamide Mononucleotide and Nicotinamide Riboside Metabolism in Mammalian Cells. Nat. Commun. 2016, 7, 13103. [Google Scholar] [CrossRef]
- Preiss, J.; Handler, P. Biosynthesis of Diphosphopyridine Nucleotide: I. IDENTIFICATION OF INTERMEDIATES. J. Biol. Chem. 1958, 233, 488–492. [Google Scholar] [CrossRef]
- Marletta, A.S.; Massarotti, A.; Orsomando, G.; Magni, G.; Rizzi, M.; Garavaglia, S. Crystal Structure of Human Nicotinic Acid Phosphoribosyltransferase. FEBS Open Bio 2015, 5, 419. [Google Scholar] [CrossRef]
- Górska-Warsewicz, H.; Laskowski, W.; Kulykovets, O.; Kudlińska-Chylak, A.; Czeczotko, M.; Rejman, K. Food Products as Sources of Protein and Amino Acids—The Case of Poland. Nutrients 2018, 10, 1977. [Google Scholar] [CrossRef] [PubMed]
- Scalise, M.; Galluccio, M.; Console, L.; Pochini, L.; Indiveri, C. The Human SLC7A5 (LAT1): The Intriguing Histidine/Large Neutral Amino Acid Transporter and Its Relevance to Human Health. Front. Chem. 2018, 6, 243. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.M.; Meredith, D. SLC36A4 (hPAT4) Is a High Affinity Amino Acid Transporter When Expressed in Xenopus Laevis Oocytes. J. Biol. Chem. 2011, 286, 2455–2460. [Google Scholar] [CrossRef]
- Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ Metabolism and Its Roles in Cellular Processes during Ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 119–141. [Google Scholar] [CrossRef]
- Liu, L.; Su, X.; Quinn, W.J.; Hui, S.; Krukenberg, K.; Frederick, D.W.; Redpath, P.; Zhan, L.; Chellappa, K.; White, E.; et al. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab. 2018, 27, 1067–1080.e5. [Google Scholar] [CrossRef]
- Berven, H.; Kverneng, S.; Sheard, E.; Søgnen, M.; Af Geijerstam, S.A.; Haugarvoll, K.; Skeie, G.-O.; Dölle, C.; Tzoulis, C. NR-SAFE: A Randomized, Double-Blind Safety Trial of High Dose Nicotinamide Riboside in Parkinson’s Disease. Nat. Commun. 2023, 14, 7793. [Google Scholar] [CrossRef]
- Martens, C.R.; Denman, B.A.; Mazzo, M.R.; Armstrong, M.L.; Reisdorph, N.; McQueen, M.B.; Chonchol, M.; Seals, D.R. Chronic Nicotinamide Riboside Supplementation Is Well-Tolerated and Elevates NAD+ in Healthy Middle-Aged and Older Adults. Nat. Commun. 2018, 9, 1286. [Google Scholar] [CrossRef] [PubMed]
- Mehmel, M.; Jovanović, N.; Spitz, U. Nicotinamide Riboside—The Current State of Research and Therapeutic Uses. Nutrients 2020, 12, 1616. [Google Scholar] [CrossRef]
- Mills, K.F.; Yoshida, S.; Stein, L.R.; Grozio, A.; Kubota, S.; Sasaki, Y.; Redpath, P.; Migaud, M.E.; Apte, R.S.; Uchida, K.; et al. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metab. 2016, 24, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Shade, C. The Science Behind NMN—A Stable, Reliable NAD+ Activator and Anti-Aging Molecule. Integr. Med. 2020, 19, 12–14. [Google Scholar]
- Caton, P.W.; Kieswich, J.; Yaqoob, M.M.; Holness, M.J.; Sugden, M.C. Nicotinamide Mononucleotide Protects against Pro-Inflammatory Cytokine-Mediated Impairment of Mouse Islet Function. Diabetologia 2011, 54, 3083–3092. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Byun, J.; Zhai, P.; Ikeda, Y.; Oka, S.; Sadoshima, J. Nicotinamide Mononucleotide, an Intermediate of NAD+ Synthesis, Protects the Heart from Ischemia and Reperfusion. PLoS ONE 2014, 9, e98972. [Google Scholar] [CrossRef] [PubMed]
- Trammell, S.A.J.; Schmidt, M.S.; Weidemann, B.J.; Redpath, P.; Jaksch, F.; Dellinger, R.W.; Li, Z.; Abel, E.D.; Migaud, M.E.; Brenner, C. Nicotinamide Riboside Is Uniquely and Orally Bioavailable in Mice and Humans. Nat. Commun. 2016, 7, 12948. [Google Scholar] [CrossRef] [PubMed]
- Galeazzi, L.; Bocci, P.; Amici, A.; Brunetti, L.; Ruggieri, S.; Romine, M.; Reed, S.; Osterman, A.L.; Rodionov, D.A.; Sorci, L.; et al. Identification of Nicotinamide Mononucleotide Deamidase of the Bacterial Pyridine Nucleotide Cycle Reveals a Novel Broadly Conserved Amidohydrolase Family. J. Biol. Chem. 2011, 286, 40365–40375. [Google Scholar] [CrossRef] [PubMed]
- Shats, I.; Williams, J.G.; Liu, J.; Makarov, M.V.; Wu, X.; Lih, F.B.; Deterding, L.J.; Lim, C.; Xu, X.; Randall, T.A.; et al. Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway. Cell Metab. 2020, 31, 564–579.e7. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.-J.; Chalmers, T.J.; Madawala, R.; Smith, G.C.; Li, C.; Das, A.; Poon, E.W.K.; Wang, J.; Tucker, S.P.; Sinclair, D.A.; et al. Host–Microbiome Interactions in Nicotinamide Mononucleotide (NMN) Deamidation. FEBS Lett. 2023, 597, 2196–2220. [Google Scholar] [CrossRef]
- Yaku, K.; Palikhe, S.; Izumi, H.; Yoshida, T.; Hikosaka, K.; Hayat, F.; Karim, M.; Iqbal, T.; Nitta, Y.; Sato, A.; et al. BST1 Regulates Nicotinamide Riboside Metabolism via Its Glycohydrolase and Base-Exchange Activities. Nat. Commun. 2021, 12, 6767. [Google Scholar] [CrossRef]
- Grozio, A.; Sociali, G.; Sturla, L.; Caffa, I.; Soncini, D.; Salis, A.; Raffaelli, N.; Flora, A.D.; Nencioni, A.; Bruzzone, S. CD73 Protein as a Source of Extracellular Precursors for Sustained NAD+ Biosynthesis in FK866-Treated Tumor Cells. J. Biol. Chem. 2013, 288, 25938. [Google Scholar] [CrossRef]
- Chen, L.; Wang, P.; Huang, G.; Cheng, W.; Liu, K.; Yu, Q. Quantitative Dynamics of Intracellular NMN by Genetically Encoded Biosensor. bioRxiv 2023, 2023.10.23.563573. [Google Scholar]
- Unno, J.; Mills, K.F.; Ogura, T.; Nishimura, M.; Imai, S. Absolute Quantification of Nicotinamide Mononucleotide in Biological Samples by Double Isotope-Mediated Liquid Chromatography-Tandem Mass Spectrometry (dimeLC-MS/MS). NPJ Aging 2024, 10, 2. [Google Scholar] [CrossRef]
- Schmidt, M.S.; Brenner, C. Absence of Evidence That Slc12a8 Encodes a Nicotinamide Mononucleotide Transporter. Nat. Metab. 2019, 1, 660–661. [Google Scholar] [CrossRef]
- Sauve, A.A.; Wang, Q.; Zhang, N.; Kang, S.; Rathmann, A.; Yang, Y. Triple-Isotope Tracing for Pathway Discernment of NMN-Induced NAD+ Biosynthesis in Whole Mice. Int. J. Mol. Sci. 2023, 24, 11114. [Google Scholar] [CrossRef]
- Cao, T.; Ni, R.; Ding, W.; Ji, X.; Fan, G.-C.; Zhang, Z.; Peng, T. Nicotinamide Mononucleotide as a Therapeutic Agent to Alleviate Multi-Organ Failure in Sepsis. J.Transl. Med. 2023, 21, 883. [Google Scholar] [CrossRef]
- Karamanlidis, G.; Lee, C.F.; Garcia-Menendez, L.; Kolwicz, S.C.; Suthammarak, W.; Gong, G.; Sedensky, M.M.; Morgan, P.G.; Wang, W.; Tian, R. Mitochondrial Complex I Deficiency Increases Protein Acetylation and Accelerates Heart Failure. Cell Metab. 2013, 18, 239–250. [Google Scholar] [CrossRef]
- Stromsdorfer, K.L.; Yamaguchi, S.; Yoon, M.J.; Moseley, A.C.; Franczyk, M.P.; Kelly, S.C.; Qi, N.; Imai, S.; Yoshino, J. NAMPT-Mediated NAD+ Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-Organ Insulin Sensitivity in Mice. Cell Rep. 2016, 16, 1851–1860. [Google Scholar] [CrossRef]
- Yoshino, J.; Baur, J.A.; Imai, S. NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab. 2018, 27, 513–528. [Google Scholar] [CrossRef]
- Hara, N.; Yamada, K.; Shibata, T.; Osago, H.; Tsuchiya, M. Nicotinamide Phosphoribosyltransferase/Visfatin Does Not Catalyze Nicotinamide Mononucleotide Formation in Blood Plasma. PLoS ONE 2011, 6, e22781. [Google Scholar] [CrossRef]
- Stein, L.R.; Imai, S. Specific Ablation of Nampt in Adult Neural Stem Cells Recapitulates Their Functional Defects during Aging. EMBO J. 2014, 33, 1321–1340. [Google Scholar] [CrossRef]
- Yoon, M.J.; Yoshida, M.; Johnson, S.; Takikawa, A.; Usui, I.; Tobe, K.; Nakagawa, T.; Yoshino, J.; Imai, S. SIRT1-Mediated eNAMPT Secretion from Adipose Tissue Regulates Hypothalamic NAD+ and Function in Mice. Cell Metab. 2015, 21, 706–717. [Google Scholar] [CrossRef]
- Klimova, N.; Long, A.; Kristian, T. Nicotinamide Mononucleotide Alters Mitochondrial Dynamics by SIRT3-Dependent Mechanism in Male Mice. J. Neurosci. Res. 2019, 97, 975–990. [Google Scholar] [CrossRef]
- Yoshino, M.; Yoshino, J.; Kayser, B.D.; Patti, G.J.; Franczyk, M.P.; Mills, K.F.; Sindelar, M.; Pietka, T.; Patterson, B.W.; Imai, S.-I.; et al. Nicotinamide Mononucleotide Increases Muscle Insulin Sensitivity in Prediabetic Women. Science 2021, 372, 1224–1229. [Google Scholar] [CrossRef]
- Okabe, K.; Yaku, K.; Uchida, Y.; Fukamizu, Y.; Sato, T.; Sakurai, T.; Tobe, K.; Nakagawa, T. Oral Administration of Nicotinamide Mononucleotide Is Safe and Efficiently Increases Blood Nicotinamide Adenine Dinucleotide Levels in Healthy Subjects. Front. Nutr. 2022, 9, 868640. [Google Scholar] [CrossRef]
- Irie, J.; Inagaki, E.; Fujita, M.; Nakaya, H.; Mitsuishi, M.; Yamaguchi, S.; Yamashita, K.; Shigaki, S.; Ono, T.; Yukioka, H.; et al. Effect of Oral Administration of Nicotinamide Mononucleotide on Clinical Parameters and Nicotinamide Metabolite Levels in Healthy Japanese Men. Endocr. J. 2020, 67, 153–160. [Google Scholar] [CrossRef]
- Kimura, S.; Ichikawa, M.; Sugawara, S.; Katagiri, T.; Hirasawa, Y.; Ishikawa, T.; Matsunaga, W.; Gotoh, A. Nicotinamide Mononucleotide Is Safely Metabolized and Significantly Reduces Blood Triglyceride Levels in Healthy Individuals. Cureus 2022, 14, e28812. [Google Scholar] [CrossRef]
- Rymarchyk, S.; Kang, W.; Cen, Y. Substrate-Dependent Sensitivity of SIRT1 to Nicotinamide Inhibition. Biomolecules 2021, 11, 312. [Google Scholar] [CrossRef]
- Bitterman, K.J.; Anderson, R.M.; Cohen, H.Y.; Latorre-Esteves, M.; Sinclair, D.A. Inhibition of Silencing and Accelerated Aging by Nicotinamide, a Putative Negative Regulator of Yeast Sir2 and Human SIRT1. J. Biol. Chem. 2002, 277, 45099–45107. [Google Scholar] [CrossRef]
- Kang-Lee, Y.A.; McKee, R.W.; Wright, S.M.; Swendseid, M.E.; Jenden, D.J.; Jope, R.S. Metabolic Effects of Nicotinamide Administration in Rats. J. Nutr. 1983, 113, 215–221. [Google Scholar] [CrossRef]
- Minto, C.; Vecchio, M.G.; Lamprecht, M.; Gregori, D. Definition of a Tolerable Upper Intake Level of Niacin: A Systematic Review and Meta-Analysis of the Dose-Dependent Effects of Nicotinamide and Nicotinic Acid Supplementation. Nutr. Rev. 2017, 75, 471–490. [Google Scholar] [CrossRef]
- Tunaru, S.; Kero, J.; Schaub, A.; Wufka, C.; Blaukat, A.; Pfeffer, K.; Offermanns, S. PUMA-G and HM74 Are Receptors for Nicotinic Acid and Mediate Its Anti-Lipolytic Effect. Nat. Med. 2003, 9, 352–355. [Google Scholar] [CrossRef]
- Davidson, M.H. Niacin Use and Cutaneous Flushing: Mechanisms and Strategies for Prevention. Am. J. Cardiol. 2008, 101, S14–S19. [Google Scholar] [CrossRef]
- Airhart, S.E.; Shireman, L.M.; Risler, L.J.; Anderson, G.D.; Nagana Gowda, G.A.; Raftery, D.; Tian, R.; Shen, D.D.; O’Brien, K.D. An Open-Label, Non-Randomized Study of the Pharmacokinetics of the Nutritional Supplement Nicotinamide Riboside (NR) and Its Effects on Blood NAD+ Levels in Healthy Volunteers. PLoS ONE 2017, 12, e0186459. [Google Scholar] [CrossRef]
- Igarashi, M.; Nakagawa-Nagahama, Y.; Miura, M.; Kashiwabara, K.; Yaku, K.; Sawada, M.; Sekine, R.; Fukamizu, Y.; Sato, T.; Sakurai, T.; et al. Chronic Nicotinamide Mononucleotide Supplementation Elevates Blood Nicotinamide Adenine Dinucleotide Levels and Alters Muscle Function in Healthy Older Men. npj Aging 2022, 8, 5. [Google Scholar] [CrossRef]
- Yoshino, J.; Mills, K.F.; Yoon, M.J.; Imai, S. Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet- and Age-Induced Diabetes in Mice. Cell Metab. 2011, 14, 528–536. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, S.-R.; Huang, X.-Z.; Xie, Q.; Xu, Y.-Y.; Shang, D.; Hao, C.-M. Nicotinamide Mononucleotide, an NAD+ Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1–Dependent Manner. J. Am. Soc. Nephrol. 2017, 28, 2337–2352. [Google Scholar] [CrossRef]
- Fukamizu, Y.; Uchida, Y.; Shigekawa, A.; Sato, T.; Kosaka, H.; Sakurai, T. Safety Evaluation of β-Nicotinamide Mononucleotide Oral Administration in Healthy Adult Men and Women. Sci. Rep. 2022, 12, 14442. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, T.; Mori, N.; Shibata, K. β-Nicotinamide Mononucleotide, an Anti-Aging Candidate Compound, Is Retained in the Body for Longer than Nicotinamide in Rats. J. Nutr. Sci. Vitaminol. 2016, 62, 272–276. [Google Scholar] [CrossRef]
- Yoshino, J. ACMSD: A Novel Target for Modulating NAD+ Homeostasis. Trends Endocrinol. Metab. 2019, 30, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Katsyuba, E.; Mottis, A.; Zietak, M.; De Franco, F.; van der Velpen, V.; Gariani, K.; Ryu, D.; Cialabrini, L.; Matilainen, O.; Liscio, P.; et al. De Novo NAD+ Synthesis Enhances Mitochondrial Function and Improves Health. Nature 2018, 563, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Vannini, N.; Campos, V.; Girotra, M.; Trachsel, V.; Rojas-Sutterlin, S.; Tratwal, J.; Ragusa, S.; Stefanidis, E.; Ryu, D.; Rainer, P.Y.; et al. The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance. Cell Stem Cell 2019, 24, 405–418.e7. [Google Scholar] [CrossRef]
- Konieczna, I.M.; Panuganti, S.; DeLuca, T.A.; Papoutsakis, E.T.; Eklund, E.A.; Miller, W.M. Administration of Nicotinamide Does Not Increase Platelet Levels in Mice. Blood Cells Mol. Dis. 2013, 50, 171–176. [Google Scholar] [CrossRef]
- Dollerup, O.L.; Chubanava, S.; Agerholm, M.; Søndergård, S.D.; Altıntaş, A.; Møller, A.B.; Høyer, K.F.; Ringgaard, S.; Stødkilde-Jørgensen, H.; Lavery, G.G.; et al. Nicotinamide Riboside Does Not Alter Mitochondrial Respiration, Content or Morphology in Skeletal Muscle from Obese and Insulin-Resistant Men. J. Physiol. 2020, 598, 731–754. [Google Scholar] [CrossRef]
- Martin, A.S.; Abraham, D.M.; Hershberger, K.A.; Bhatt, D.P.; Mao, L.; Cui, H.; Liu, J.; Liu, X.; Muehlbauer, M.J.; Grimsrud, P.A.; et al. Nicotinamide Mononucleotide Requires SIRT3 to Improve Cardiac Function and Bioenergetics in a Friedreich’s Ataxia Cardiomyopathy Model. JCI Insight 2017, 2, e93885. [Google Scholar] [CrossRef]
- Stram, A.R.; Pride, P.M.; Payne, R.M. NAD+ Replacement Therapy with Nicotinamide Riboside Does Not Improve Cardiac Function in a Model of Mitochondrial Heart Disease. FASEB J. 2017, 31, 602.15. [Google Scholar] [CrossRef]
- Morigi, M.; Perico, L.; Rota, C.; Longaretti, L.; Conti, S.; Rottoli, D.; Novelli, R.; Remuzzi, G.; Benigni, A. Sirtuin 3–Dependent Mitochondrial Dynamic Improvements Protect against Acute Kidney Injury. J Clin. Investig. 2015, 125, 715–726. [Google Scholar] [CrossRef]
- Revollo, J.R.; Grimm, A.A.; Imai, S. The NAD Biosynthesis Pathway Mediated by Nicotinamide Phosphoribosyltransferase Regulates Sir2 Activity in Mammalian Cells. J. Biol. Chem. 2004, 279, 50754–50763. [Google Scholar] [CrossRef]
- Lin, J.B.; Kubota, S.; Ban, N.; Yoshida, M.; Santeford, A.; Sene, A.; Nakamura, R.; Zapata, N.; Kubota, M.; Tsubota, K.; et al. NAMPT-Mediated NAD+ Biosynthesis Is Essential for Vision in Mice. Cell Rep. 2016, 17, 69–85. [Google Scholar] [CrossRef]
- Revollo, J.R.; Körner, A.; Mills, K.F.; Satoh, A.; Wang, T.; Garten, A.; Dasgupta, B.; Sasaki, Y.; Wolberger, C.; Townsend, R.R.; et al. Nampt/PBEF/Visfatin Regulates Insulin Secretion in β Cells as a Systemic NAD Biosynthetic Enzyme. Cell Metab. 2007, 6, 363–375. [Google Scholar] [CrossRef]
- Sasaki, Y.; Araki, T.; Milbrandt, J. Stimulation of Nicotinamide Adenine Dinucleotide Biosynthetic Pathways Delays Axonal Degeneration after Axotomy. J. Neurosci. 2006, 26, 8484–8491. [Google Scholar] [CrossRef]
- Aguilar, C.A.; Shcherbina, A.; Ricke, D.O.; Pop, R.; Carrigan, C.T.; Gifford, C.A.; Urso, M.L.; Kottke, M.A.; Meissner, A. In Vivo Monitoring of Transcriptional Dynamics After Lower-Limb Muscle Injury Enables Quantitative Classification of Healing. Sci. Rep. 2015, 5, 13885. [Google Scholar] [CrossRef]
- Drew, J.E.; Farquharson, A.J.; Horgan, G.W.; Williams, L.M. Tissue-Specific Regulation of Sirtuin and Nicotinamide Adenine Dinucleotide Biosynthetic Pathways Identified in C57Bl/6 Mice in Response to High-Fat Feeding. J. Nutr. Biochem. 2016, 37, 20–29. [Google Scholar] [CrossRef]
- Ahmad, F.; Tomar, D.; Aryal, A.C.S.; Elmoselhi, A.B.; Thomas, M.; Elrod, J.W.; Tilley, D.G.; Force, T. Nicotinamide Riboside Kinase-2 Alleviates Ischemia-Induced Heart Failure through P38 Signaling. BBA-Mol. Basis Dis. 2020, 1866, 165609. [Google Scholar] [CrossRef]
- Xu, W.; Barrientos, T.; Mao, L.; Rockman, H.A.; Sauve, A.A.; Andrews, N.C. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Rep. 2015, 13, 533–545. [Google Scholar] [CrossRef]
- Diguet, N.; Trammell, S.A.J.; Tannous, C.; Deloux, R.; Piquereau, J.; Mougenot, N.; Gouge, A.; Gressette, M.; Manoury, B.; Blanc, J.; et al. Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy. Circulation 2018, 137, 2256–2273. [Google Scholar] [CrossRef]
- Yi, L.; Maier, A.B.; Tao, R.; Lin, Z.; Vaidya, A.; Pendse, S.; Thasma, S.; Andhalkar, N.; Avhad, G.; Kumbhar, V. The Efficacy and Safety of β-Nicotinamide Mononucleotide (NMN) Supplementation in Healthy Middle-Aged Adults: A Randomized, Multicenter, Double-Blind, Placebo-Controlled, Parallel-Group, Dose-Dependent Clinical Trial. GeroScience 2022, 45, 29–43. [Google Scholar] [CrossRef]
- Katayoshi, T.; Uehata, S.; Nakashima, N.; Nakajo, T.; Kitajima, N.; Kageyama, M.; Tsuji-Naito, K. Nicotinamide Adenine Dinucleotide Metabolism and Arterial Stiffness after Long-Term Nicotinamide Mononucleotide Supplementation: A Randomized, Double-Blind, Placebo-Controlled Trial. Sci. Rep. 2023, 13, 2786. [Google Scholar] [CrossRef]
- Huang, P.; Wang, X.; Wang, S.; Wu, Z.; Zhou, Z.; Shao, G.; Ren, C.; Kuang, M.; Zhou, Y.; Jiang, A.; et al. Treatment of Inflammatory Bowel Disease: Potential Effect of NMN on Intestinal Barrier and Gut Microbiota. Curr. Res. Food Sci. 2022, 5, 1403–1411. [Google Scholar] [CrossRef]
- Yamane, T.; Imai, M.; Bamba, T.; Uchiyama, S. Nicotinamide Mononucleotide (NMN) Intake Increases Plasma NMN and Insulin Levels in Healthy Subjects. Clin. Nutr. 2023, 56, 83–86. [Google Scholar] [CrossRef]
- Wang, P.; Chen, M.; Hou, Y.; Luan, J.; Liu, R.; Chen, L.; Hu, M.; Yu, Q. Fingerstick Blood Assay Maps Real-world NAD+ Disparity across Gender and Age. Aging Cell 2023, 22, e13965. [Google Scholar] [CrossRef]
- Pencina, K.M.; Valderrabano, R.; Wipper, B.; Orkaby, A.R.; Reid, K.F.; Storer, T.; Lin, A.P.; Merugumala, S.; Wilson, L.; Latham, N.; et al. Nicotinamide Adenine Dinucleotide Augmentation in Overweight or Obese Middle-Aged and Older Adults: A Physiologic Study. J. Clin. Endocrinol. Metab. 2023, 108, 1968–1980. [Google Scholar] [CrossRef]
- Qiu, Y.; Xu, S.; Chen, X.; Wu, X.; Zhou, Z.; Zhang, J.; Tu, Q.; Dong, B.; Liu, Z.; He, J.; et al. NAD+ Exhaustion by CD38 Upregulation Contributes to Blood Pressure Elevation and Vascular Damage in Hypertension. Signal Transduct. Target. Ther. 2023, 8, 353. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Irie, J.; Mitsuishi, M.; Uchino, Y.; Nakaya, H.; Takemura, R.; Inagaki, E.; Kosugi, S.; Okano, H.; Yasui, M.; et al. Safety and Efficacy of Long-Term Nicotinamide Mononucleotide Supplementation on Metabolism, Sleep, and Nicotinamide Adenine Dinucleotide Biosynthesis in Healthy, Middle-Aged Japanese Men. Endocr. J. 2024, 71, 153–169. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, C.; Qiang, L.; Liu, J.; Qiu, Z.; Zhang, Z.; Zhang, J.; Li, Y.; Zhang, M. Clinical Observation of the Effect of Nicotinamide Mononucleotide on the Improvement of Insomnia in Middle-Aged and Old Adults. Am. J. Trans. Med. 2022, 6, 167–176. [Google Scholar]
- Kim, M.; Seol, J.; Sato, T.; Fukamizu, Y.; Sakurai, T.; Okura, T. Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study. Nutrients 2022, 14, 755. [Google Scholar] [CrossRef]
- Akasaka, H.; Nakagami, H.; Sugimoto, K.; Yasunobe, Y.; Minami, T.; Fujimoto, T.; Yamamoto, K.; Hara, C.; Shiraki, A.; Nishida, K.; et al. Effects of Nicotinamide Mononucleotide on Older Patients with Diabetes and Impaired Physical Performance: A Prospective, Placebo-Controlled, Double-Blind Study. Geriatr. Gerontol. Int. 2023, 23, 38–43. [Google Scholar] [CrossRef]
- Liao, B.; Zhao, Y.; Wang, D.; Zhang, X.; Hao, X.; Hu, M. Nicotinamide Mononucleotide Supplementation Enhances Aerobic Capacity in Amateur Runners: A Randomized, Double-Blind Study. J. Int. Soc. Sport Nutr. 2021, 18, 54. [Google Scholar] [CrossRef]
- Morita, Y.; Izawa, H.; Hirano, A.; Mayumi, E.; Isozaki, S.; Yonei, Y. Clinical Evaluation of Changes in Biomarkers by Oral Intake of NMN. Glycative Stress Res. 2022, 9, 33–41. [Google Scholar] [CrossRef]
- Thota, R.N.; Moughan, P.J.; Singh, H.; Garg, M.L. Significance of Postprandial Insulin and Triglycerides to Evaluate the Metabolic Response of Composite Meals Differing in Nutrient Composition—A Randomized Cross-Over Trial. Front. Nutr. 2022, 9, 816755. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Deng, X.; Yang, F.; Zheng, J.; Zhou, T.; Xu, L.; Xie, X.; Ju, Z.; Wang, B.; et al. Association of NAD+ Levels with Metabolic Disease in a Community-Based Study. Front. Endocrinol. 2023, 14, 1164788. [Google Scholar] [CrossRef]
- Huang, H. A Multicentre, Randomised, Double Blind, Parallel Design, Placebo Controlled Study to Evaluate the Efficacy and Safety of Uthever (NMN Supplement), an Orally Administered Supplementation in Middle Aged and Older Adults. Front. Aging 2022, 3, 851698. [Google Scholar] [CrossRef]
- Niu, K.-M.; Bao, T.; Gao, L.; Ru, M.; Li, Y.; Jiang, L.; Ye, C.; Wang, S.; Wu, X. The Impacts of Short-Term NMN Supplementation on Serum Metabolism, Fecal Microbiota, and Telomere Length in Pre-Aging Phase. Front. Nutr. 2021, 8, 756243. [Google Scholar] [CrossRef]
- Amano, H.; Chaudhury, A.; Rodriguez-Aguayo, C.; Lu, L.; Akhanov, V.; Catic, A.; Popov, Y.V.; Verdin, E.; Johnson, H.; Stossi, F.; et al. Telomere Dysfunction Induces Sirtuin Repression That Drives Telomere-Dependent Disease. Cell Metab. 2019, 29, 1274–1290.e9. [Google Scholar] [CrossRef]
- Toth, B. Lack of Carcinogenicity of Nicotinamide and Isonicotinamide Following Lifelong Administration to Mice. Oncology 2009, 40, 72–75. [Google Scholar] [CrossRef]
- Zhang, H.; Ryu, D.; Wu, Y.; Gariani, K.; Wang, X.; Luan, P.; D’Amico, D.; Ropelle, E.R.; Lutolf, M.P.; Aebersold, R.; et al. NAD+ Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span in Mice. Science 2016, 352, 1436–1443. [Google Scholar] [CrossRef]
- Poljsak, B.; Milisav, I. The Role of Antioxidants in Cancer, Friends or Foes? Curr. Pharm. Des. 2018, 24, 5234–5244. [Google Scholar] [CrossRef]
- Poljsak, B. NAD+ in Cancer Prevention and Treatment: Pros and Cons. J. Clin. Exp. Oncol. 2016, 5, 4. [Google Scholar] [CrossRef]
- Pencina, K.M.; Lavu, S.; Dos Santos, M.; Beleva, Y.M.; Cheng, M.; Livingston, D.; Bhasin, S. MIB-626, an Oral Formulation of a Microcrystalline Unique Polymorph of β-Nicotinamide Mononucleotide, Increases Circulating Nicotinamide Adenine Dinucleotide and Its Metabolome in Middle-Aged and Older Adults. J. Gerontol. Ser. A 2023, 78, 90–96. [Google Scholar] [CrossRef]
- Yang, L.; Shen, J.; Liu, C.; Kuang, Z.; Tang, Y.; Qian, Z.; Guan, M.; Yang, Y.; Zhan, Y.; Li, N.; et al. Nicotine Rebalances NAD+ Homeostasis and Improves Aging-Related Symptoms in Male Mice by Enhancing NAMPT Activity. Nat. Commun. 2023, 14, 900. [Google Scholar] [CrossRef]
- Yan, W.; Kang, Y.; Ji, X.; Li, S.; Li, Y.; Zhang, G.; Cui, H.; Shi, G. Testosterone Upregulates the Expression of Mitochondrial ND1 and ND4 and Alleviates the Oxidative Damage to the Nigrostriatal Dopaminergic System in Orchiectomized Rats. Oxidative Med. Cell. Longev. 2017, 2017, 1202459. [Google Scholar] [CrossRef]
- Ramsey, K.M.; Mills, K.F.; Satoh, A.; Imai, S. Age-Associated Loss of Sirt1-Mediated Enhancement of Glucose-Stimulated Insulin Secretion in Beta Cell-Specific Sirt1-Overexpressing (BESTO) Mice. Aging Cell 2008, 7, 78–88. [Google Scholar] [CrossRef]
- Siegel, C.S.; McCullough, L.D. Nicotinamide Adenine Dinucleotide (NAD+) and Nicotinamide: Sex Differences in Cerebral Ischemia. Neuroscience 2013, 237, 223–231. [Google Scholar] [CrossRef]
- Yoshida, M.; Satoh, A.; Lin, J.B.; Mills, K.F.; Sasaki, Y.; Rensing, N.; Wong, M.; Apte, R.S.; Imai, S. Extracellular Vesicle-Contained eNAMPT Delays Aging and Extends Lifespan in Mice. Cell Metab. 2019, 30, 329–342.e5. [Google Scholar] [CrossRef]
- Meydani, S.N.; Das, S.K.; Pieper, C.F.; Lewis, M.R.; Klein, S.; Dixit, V.D.; Gupta, A.K.; Villareal, D.T.; Bhapkar, M.; Huang, M.; et al. Long-Term Moderate Calorie Restriction Inhibits Inflammation without Impairing Cell-Mediated Immunity: A Randomized Controlled Trial in Non-Obese Humans. Aging 2016, 8, 1416–1426. [Google Scholar] [CrossRef]
- Henderson, J.D.; Quigley, S.N.Z.; Chachra, S.S.; Conlon, N.; Ford, D. The Use of a Systems Approach to Increase NAD+ in Human Participants. NPJ Aging 2024, 10, 7. [Google Scholar] [CrossRef]
- Yang, L.; Lin, X.; Tang, H.; Fan, Y.; Zeng, S.; Jia, L.; Li, Y.; Shi, Y.; He, S.; Wang, H.; et al. Mitochondrial DNA Mutation Exacerbates Female Reproductive Aging via Impairment of the NADH/NAD+ Redox. Aging Cell 2020, 19, e13206. [Google Scholar] [CrossRef]
- Uddin, G.M.; Youngson, N.A.; Sinclair, D.A.; Morris, M.J. Head to Head Comparison of Short-Term Treatment with the NAD+ Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice. Front. Pharmacol. 2016, 7, 258. [Google Scholar] [CrossRef]
- Llobet Rosell, A.; Paglione, M.; Gilley, J.; Kocia, M.; Perillo, G.; Gasparrini, M.; Cialabrini, L.; Raffaelli, N.; Angeletti, C.; Orsomando, G.; et al. The NAD+ Precursor NMN Activates dSarm to Trigger Axon Degeneration in Drosophila. eLife 2022, 11, e80245. [Google Scholar] [CrossRef]
- Sambashivan, S.; Freeman, M.R. SARM1 Signaling Mechanisms in the Injured Nervous System. Curr. Opin. Neurobiol. 2021, 69, 247–255. [Google Scholar] [CrossRef]
- Sasaki, Y.; Zhu, J.; Shi, Y.; Gu, W.; Kobe, B.; Ve, T.; DiAntonio, A.; Milbrandt, J. Nicotinic Acid Mononucleotide Is an Allosteric SARM1 Inhibitor Promoting Axonal Protection. Exp. Neurol. 2021, 345, 113842. [Google Scholar] [CrossRef]
- Kiss, T.; Nyúl-Tóth, Á.; Balasubramanian, P.; Tarantini, S.; Ahire, C.; Yabluchanskiy, A.; Csipo, T.; Farkas, E.; Wren, J.D.; Garman, L.; et al. Nicotinamide Mononucleotide (NMN) Supplementation Promotes Neurovascular Rejuvenation in Aged Mice: Transcriptional Footprint of SIRT1 Activation, Mitochondrial Protection, Anti-Inflammatory, and Anti-Apoptotic Effects. GeroScience 2020, 42, 527–546. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, L.; Farokhi-Sisakht, F.; Badalzadeh, R.; Khabbaz, A.; Mahmoudi, J.; Sadigh-Eteghad, S. Nicotinamide Mononucleotide and Melatonin Alleviate Aging-Induced Cognitive Impairment via Modulation of Mitochondrial Function and Apoptosis in the Prefrontal Cortex and Hippocampus. Neuroscience 2019, 423, 29–37. [Google Scholar] [CrossRef]
- Tarantini, S.; Valcarcel-Ares, M.N.; Toth, P.; Yabluchanskiy, A.; Tucsek, Z.; Kiss, T.; Hertelendy, P.; Kinter, M.; Ballabh, P.; Süle, Z.; et al. Nicotinamide Mononucleotide (NMN) Supplementation Rescues Cerebromicrovascular Endothelial Function and Neurovascular Coupling Responses and Improves Cognitive Function in Aged Mice. Redox Biol. 2019, 24, 101192. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, X.; Xu, K.; Liu, S.; Zhu, X.; Yang, J. The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: An Update. Adv. Nutr. 2023, 14, 1416–1435. [Google Scholar] [CrossRef]
- Wei, C.-C.; Kong, Y.-Y.; Li, G.-Q.; Guan, Y.-F.; Wang, P.; Miao, C.-Y. Nicotinamide Mononucleotide Attenuates Brain Injury after Intracerebral Hemorrhage by Activating Nrf2/HO-1 Signaling Pathway. Sci. Rep. 2017, 7, 717. [Google Scholar] [CrossRef]
- Wei, C.-C.; Kong, Y.-Y.; Hua, X.; Li, G.-Q.; Zheng, S.-L.; Cheng, M.-H.; Wang, P.; Miao, C.-Y. NAD Replenishment with Nicotinamide Mononucleotide Protects Blood–Brain Barrier Integrity and Attenuates Delayed Tissue Plasminogen Activator-Induced Haemorrhagic Transformation after Cerebral Ischaemia. Br. J. Pharmacol 2017, 174, 3823–3836. [Google Scholar] [CrossRef]
- Park, J.H.; Long, A.; Owens, K.; Kristian, T. Nicotinamide Mononucleotide Inhibits Post-Ischemic NAD+ Degradation and Dramatically Ameliorates Brain Damage Following Global Cerebral Ischemia. Neurobiol. Dis. 2016, 95, 102–110. [Google Scholar] [CrossRef]
- Di Stefano, M.; Nascimento-Ferreira, I.; Orsomando, G.; Mori, V.; Gilley, J.; Brown, R.; Janeckova, L.; Vargas, M.E.; Worrell, L.A.; Loreto, A.; et al. A Rise in NAD Precursor Nicotinamide Mononucleotide (NMN) after Injury Promotes Axon Degeneration. Cell Death Differ. 2015, 22, 731–742. [Google Scholar] [CrossRef]
- Figley, M.D.; Gu, W.; Nanson, J.D.; Shi, Y.; Sasaki, Y.; Cunnea, K.; Malde, A.K.; Jia, X.; Luo, Z.; Saikot, F.K.; et al. SARM1 Is a Metabolic Sensor Activated by an Increased NMN/NAD+ Ratio to Trigger Axon Degeneration. Neuron 2021, 109, 1118–1136.e11. [Google Scholar] [CrossRef]
- Essuman, K.; Summers, D.W.; Sasaki, Y.; Mao, X.; DiAntonio, A.; Milbrandt, J. The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD+ Cleavage Activity That Promotes Pathological Axonal Degeneration. Neuron 2017, 93, 1334–1343.e5. [Google Scholar] [CrossRef]
- Ali, Y.O.; Allen, H.M.; Yu, L.; Li-Kroeger, D.; Bakhshizadehmahmoudi, D.; Hatcher, A.; McCabe, C.; Xu, J.; Bjorklund, N.; Taglialatela, G.; et al. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol. 2016, 14, e1002472. [Google Scholar] [CrossRef]
- Milde, S.; Adalbert, R.; Elaman, M.H.; Coleman, M.P. Axonal Transport Declines with Age in Two Distinct Phases Separated by a Period of Relative Stability. Neurobiol. Aging 2015, 36, 971–981. [Google Scholar] [CrossRef]
- Hui, F.; Tang, J.; Williams, P.A.; McGuinness, M.B.; Hadoux, X.; Casson, R.J.; Coote, M.; Trounce, I.A.; Martin, K.R.; van Wijngaarden, P.; et al. Improvement in Inner Retinal Function in Glaucoma with Nicotinamide (Vitamin B3) Supplementation: A Crossover Randomized Clinical Trial. Clin. Experiment. Opthalmol. 2020, 48, 903–914. [Google Scholar] [CrossRef]
- De Moraes, C.G.; John, S.W.M.; Williams, P.A.; Blumberg, D.M.; Cioffi, G.A.; Liebmann, J.M. Nicotinamide and Pyruvate for Neuroenhancement in Open-Angle Glaucoma: A Phase 2 Randomized Clinical Trial. JAMA Ophthalmol. 2022, 140, 11–18. [Google Scholar] [CrossRef]
- Nomiyama, T.; Setoyama, D.; Yasukawa, T.; Kang, D. Mitochondria Metabolomics Reveals a Role of β-Nicotinamide Mononucleotide Metabolism in Mitochondrial DNA Replication. J. Biochem. 2022, 171, 325–338. [Google Scholar] [CrossRef]
- Fan, M.; Chen, Z.; Huang, Y.; Xia, Y.; Chen, A.; Lu, D.; Wu, Y.; Zhang, N.; Zhang, P.; Li, S.; et al. Overexpression of the Histidine Triad Nucleotide-Binding Protein 2 Protects Cardiac Function in the Adult Mice after Acute Myocardial Infarction. Acta Physiol. 2020, 228, e13439. [Google Scholar] [CrossRef]
- Mengkang, F.; Huang, Y.I.N.; Qian, J. Histidine Triad Nucleotide-Binding Protein 2 Protects Cardiomyocytes via Maintaining NAD Homeostasis in Virto and in Vivo. Eur. Heart J. 2020, 41, ehaa946.0843. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Xie, X.J.; Li, W.H.; Liu, J.; Chen, Z.; Zhang, B.; Li, T.; Li, S.L.; Lu, J.G.; Zhang, L.; et al. A Cell-Permeant Mimetic of NMN Activates SARM1 to Produce Cyclic ADP-Ribose and Induce Non-Apoptotic Cell Death. iScience 2019, 15, 452–466. [Google Scholar] [CrossRef]
- Loreto, A.; Angeletti, C.; Gu, W.; Osborne, A.; Nieuwenhuis, B.; Gilley, J.; Merlini, E.; Arthur-Farraj, P.; Amici, A.; Luo, Z.; et al. Neurotoxin-Mediated Potent Activation of the Axon Degeneration Regulator SARM1. eLife 2021, 10, e72823. [Google Scholar] [CrossRef]
- Chellappa, K.; McReynolds, M.R.; Lu, W.; Zeng, X.; Makarov, M.; Hayat, F.; Mukherjee, S.; Bhat, Y.R.; Lingala, S.R.; Shima, R.T.; et al. NAD Precursors Cycle between Host Tissues and the Gut Microbiome. Cell Metab. 2022, 34, 1947–1959.e5. [Google Scholar] [CrossRef]
- Ingersoll, K.S.; Cohen, J. The Impact of Medication Regimen Factors on Adherence to Chronic Treatment: A Review of Literature. J. Behav. Med. 2008, 31, 213–224. [Google Scholar] [CrossRef]
- Homayun, B.; Lin, X.; Choi, H.-J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef]
- Moroz, E.; Matoori, S.; Leroux, J.-C. Oral Delivery of Macromolecular Drugs: Where We Are after Almost 100 Years of Attempts. Adv. Drug Deliv. Rev. 2016, 101, 108–121. [Google Scholar] [CrossRef]
- Pandya, J.D.; Musyaju, S.; Modi, H.R.; Okada-Rising, S.L.; Bailey, Z.S.; Scultetus, A.H.; Shear, D.A. Intranasal Delivery of Mitochondria Targeted Neuroprotective Compounds for Traumatic Brain Injury: Screening Based on Pharmacological and Physiological Properties. J. Trans. Med. 2024, 22, 167. [Google Scholar] [CrossRef]
- Giroud-Gerbetant, J.; Joffraud, M.; Giner, M.P.; Cercillieux, A.; Bartova, S.; Makarov, M.V.; Zapata-Pérez, R.; Sánchez-García, J.L.; Houtkooper, R.H.; Migaud, M.E.; et al. A Reduced Form of Nicotinamide Riboside Defines a New Path for NAD+ Biosynthesis and Acts as an Orally Bioavailable NAD+ Precursor. Mol. Metab. 2019, 30, 192–202. [Google Scholar] [CrossRef]
- Yang, Y.; Mohammed, F.S.; Zhang, N.; Sauve, A.A. Dihydronicotinamide Riboside Is a Potent NAD+ Concentration Enhancer in Vitro and in Vivo. J. Biol. Chem. 2019, 294, 9295–9307. [Google Scholar] [CrossRef]
- Zapata-Pérez, R.; Tammaro, A.; Schomakers, B.V.; Scantlebery, A.M.L.; Denis, S.; Elfrink, H.L.; Giroud-Gerbetant, J.; Cantó, C.; López-Leonardo, C.; McIntyre, R.L.; et al. Reduced Nicotinamide Mononucleotide Is a New and Potent NAD+ Precursor in Mammalian Cells and Mice. FASEB J. 2021, 35, e21456. [Google Scholar] [CrossRef]
- Sonavane, M.; Hayat, F.; Makarov, M.; Migaud, M.E.; Gassman, N.R. Dihydronicotinamide Riboside Promotes Cell-Specific Cytotoxicity by Tipping the Balance between Metabolic Regulation and Oxidative Stress. PLoS ONE 2020, 15, e0242174. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Qi, J.; Wu, W. An Update on Oral Drug Delivery via Intestinal Lymphatic Transport. Acta Pharm. Sin. B 2021, 11, 2449–2468. [Google Scholar] [CrossRef]
- Abdullah, F.; Whiteford, M.; Mathiak, G.; Ovadia, P.; Rudolph, A.; Neville, L.F.; Rabinovici, R. Effect of Liposome-Encapsulated Hemoglobin on Triglyceride, Total Cholesterol, Low-Density Lipoprotein, and High-Density Lipoprotein Cholesterol Measurements. Lipids 1997, 32, 377–381. [Google Scholar] [CrossRef]
- Zhang, D.; Yau, L.-F.; Bai, L.-B.; Tong, T.-T.; Cao, K.-Y.; Yan, T.-M.; Zeng, L.; Jiang, Z.-H. Hydroxyapatite-Based Nano-Drug Delivery System for Nicotinamide Mononucleotide (NMN): Significantly Enhancing NMN Bioavailability and Replenishing in Vivo Nicotinamide Adenine Dinucleotide (NAD+) Levels. J. Pharm. Pharmacol. 2023, 75, 1569–1580. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, H.; Ye, P.; Zhu, L.; Ren, Y.; Lei, J. Controlled Production of Liposomes with Novel Microfluidic Membrane Emulsification for Application of Entrapping Hydrophilic and Lipophilic Drugs. J. Ind. Eng. Chem. 2024, 131, 470–480. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, L.; Li, Y.; Su, W.; Abd El-Aty, A.M.; Tan, M. Design and Preparation of NMN Nanoparticles Based on Protein-Marine Polysaccharide with Increased NAD+ Level in D-Galactose Induced Aging Mice Model. Colloids Surf. B Biointerfaces 2024, 239, 113903. [Google Scholar] [CrossRef]
- Shi, W.; Hegeman, M.A.; van Dartel, D.A.M.; Tang, J.; Suarez, M.; Swarts, H.; van der Hee, B.; Arola, L.; Keijer, J. Effects of a Wide Range of Dietary Nicotinamide Riboside (NR) Concentrations on Metabolic Flexibility and White Adipose Tissue (WAT) of Mice Fed a Mildly Obesogenic Diet. Mol. Nutr. Food Res. 2017, 61, 1600878. [Google Scholar] [CrossRef]
- Breton, M.; Costemale-Lacoste, J.-F.; Li, Z.; Lafuente-Lafuente, C.; Belmin, J.; Mericskay, M. Blood NAD Levels Are Reduced in Very Old Patients Hospitalized for Heart Failure. Exp. Gerontol. 2020, 139, 111051. [Google Scholar] [CrossRef]
- Kuerec, A.H.; Wang, W.; Yi, L.; Tao, R.; Lin, Z.; Vaidya, A.; Pendse, S.; Thasma, S.; Andhalkar, N.; Avhad, G.; et al. Towards Personalized Nicotinamide Mononucleotide (NMN) Supplementation: Nicotinamide Adenine Dinucleotide (NAD) Concentration. Mech. Ageing Dev. 2024, 218, 111917. [Google Scholar] [CrossRef]
- Luongo, T.S.; Eller, J.M.; Lu, M.-J.; Niere, M.; Raith, F.; Perry, C.; Bornstein, M.R.; Oliphint, P.; Wang, L.; McReynolds, M.R.; et al. SLC25A51 Is a Mammalian Mitochondrial NAD+ Transporter. Nature 2020, 588, 174–179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benjamin, C.; Crews, R. Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications. Metabolites 2024, 14, 341. https://doi.org/10.3390/metabo14060341
Benjamin C, Crews R. Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications. Metabolites. 2024; 14(6):341. https://doi.org/10.3390/metabo14060341
Chicago/Turabian StyleBenjamin, Candace, and Rebecca Crews. 2024. "Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications" Metabolites 14, no. 6: 341. https://doi.org/10.3390/metabo14060341
APA StyleBenjamin, C., & Crews, R. (2024). Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications. Metabolites, 14(6), 341. https://doi.org/10.3390/metabo14060341