Characterization and Metabolism of Drug Products Containing the Cocaine-Like New Psychoactive Substances Indatraline and Troparil †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. In Vitro Incubations Using pHLS9
2.3. Rat Urine Samples for Toxicological Detectability
2.4. Urine Sample Preparation
2.5. HPLC-HRMS/MS Apparatus
3. Results
3.1. Drug Product Analysis
3.2. Tentative Identification of Metabolites
3.3. Proposed Metabolic Pathways of Indatraline and Troparil Drug Product in Rat and pHLS9
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNODC. World Drug Report 2023; UNODC: Vienna, Austria, 2023; Volume 2. [Google Scholar]
- UNODC. World Drug Report 2023; UNODC: Vienna, Austria, 2023; Volume 1. [Google Scholar]
- Pérez-Mañá, C.; Papaseit, E.; Fonseca, F.; Farré, A.; Torrens, M.; Farré, M. Drug Interactions With New Synthetic Opioids. Front. Pharmacol. 2018, 9, 1145. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Yen, C.N.; Shim, J.S.; Kang, D.H.; Kang, S.W.; Liu, J.O.; Kwon, H.J. Antidepressant indatraline induces autophagy and inhibits restenosis via suppression of mTOR/S6 kinase signaling pathway. Sci. Rep. 2016, 6, 34655. [Google Scholar] [CrossRef] [PubMed]
- Negus, S.S.; Brandt, M.R.; Mello, N.K. Effects of the long-acting monoamine reuptake inhibitor indatraline on cocaine self-administration in rhesus monkeys. J. Pharmacol. Exp. Ther. 1999, 291, 60–69. [Google Scholar]
- Clarke, R.; Daum, S.; Gambino, A.; Aceto, M.; Pearl, J.; Levitt, M.; Cuminskey, W.; Bogado, E. Compounds Affecting the Central Nervous System. 4. 3.beta.-Phenyltropane-2-carboxylic Esters and Analogs. J. Med. Chem. 2003, 16, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Carroll, F.I.; Kotian, P.; Dehghani, A.; Gray, J.L.; Kuzemko, M.A.; Parham, K.A.; Abraham, P.; Lewin, A.H.; Boja, J.W.; Kuhar, M.J. Cocaine and 3.beta.-(4′-Substituted phenyl)tropane-2.beta.-carboxylic Acid Ester and Amide Analogs. New High-Affinity and Selective Compounds for the Dopamine Transporter. J. Med. Chem. 2002, 38, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Lomenzo, S.A.; Izenwasser, S.; Katz, J.L.; Terry, P.D.; Zhu, N.; Klein, C.L.; Trudell, M.L. Synthesis, Structure, Dopamine Transporter Affinity, and Dopamine Uptake Inhibition of 6-Alkyl-3-benzyl-2-[(methoxycarbonyl)methyl]tropane Derivatives. J. Med. Chem. 1997, 40, 4406–4414. [Google Scholar] [CrossRef]
- Popławska, M.; Bednarek, E.; Naumczuk, B.; Błażewicz, A. Identification and structural characterization of three psychoactive substances, phenylpiperazines (pBPP and 3,4-CFPP) and a cocaine analogue (troparil), in collected samples. Forensic Toxicol. 2021, 40, 132–143. [Google Scholar] [CrossRef]
- Maurer, H.H. Demands on scientific studies in clinical toxicology. Forensic Sci. Int. 2007, 165, 194–198. [Google Scholar] [CrossRef]
- Richter, L.H.J.; Flockerzi, V.; Maurer, H.H.; Meyer, M.R. Pooled human liver preparations, HepaRG, or HepG2 cell lines for metabolism studies of new psychoactive substances? A study using MDMA, MDBD, butylone, MDPPP, MDPV, MDPB, 5-MAPB, and 5-API as examples. J. Pharm. Biomed. Anal. 2017, 143, 32–42. [Google Scholar] [CrossRef]
- Richter, L.H.J.; Maurer, H.H.; Meyer, M.R. New psychoactive substances: Studies on the metabolism of XLR-11, AB-PINACA, FUB-PB-22, 4-methoxy-alpha-PVP, 25-I-NBOMe, and meclonazepam using human liver preparations in comparison to primary human hepatocytes, and human urine. Toxicol. Lett. 2017, 280, 142–150. [Google Scholar] [CrossRef]
- Boutron, I.; Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef] [PubMed]
- Maurer, H.H.; Pfleger, K.; Weber, A.A. Mass Spectral Library of Drugs, Poisons, Pesticides, Pollutants, and Their Metabolites, 5th ed.; Wiley-VCH: Weinheim, Germany, 2016; p. 2. [Google Scholar]
- Michely, J.A.; Manier, S.K.; Caspar, A.T.; Brandt, S.D.; Wallach, J.; Maurer, H.H. New Psychoactive Substances 3-Methoxyphencyclidine (3-MeO-PCP) and 3-Methoxyrolicyclidine (3-MeO-PCPy): Metabolic Fate Elucidated with Rat Urine and Human Liver Preparations and their Detectability in Urine by GC-MS, “LC-(High Resolution)-MSn” and “LC-(High Resolution)-MS/MS”. Curr. Neuropharmacol. 2017, 15, 692–712. [Google Scholar] [CrossRef] [PubMed]
- “Troparil Erfahrungsbericht” of user “Todestrieb” on eve&rave. Available online: https://www.eve-rave.ch/Forum/viewtopic.php?t=70400 (accessed on 12 April 2024).
- “Meine Indatraline Erfahrung” of user “u/11312” on reddit. Available online: https://www.reddit.com/r/drogen/comments/x7ante/meine_indatraline_erfahrung/ (accessed on 12 April 2024).
- Sharma, V.; McNeill, J.H. To scale or not to scale: The principles of dose extrapolation. Br. J. Pharmacol. 2009, 157, 907–921. [Google Scholar] [CrossRef] [PubMed]
- Wissenbach, D.K.; Meyer, M.R.; Remane, D.; Philipp, A.A.; Weber, A.A.; Maurer, H.H. Drugs of abuse screening in urine as part of a metabolite-based LC-MSn screening concept. Anal. Bioanal. Chem. 2011, 400, 3481–3489. [Google Scholar] [CrossRef] [PubMed]
- Helfer, A.G.; Michely, J.A.; Weber, A.A.; Meyer, M.R.; Maurer, H.H. Orbitrap technology for comprehensive metabolite-based liquid chromatographic-high resolution-tandem mass spectrometric urine drug screening-exemplified for cardiovascular drugs. Anal. Chim. Acta. 2015, 891, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.K.; Schwermer, F.; Wagmann, L.; Eckstein, N.; Meyer, M.R. Liquid Chromatography-High-Resolution Mass Spectrometry-Based In Vitro Toxicometabolomics of the Synthetic Cathinones 4-MPD and 4-MEAP in Pooled Human Liver Microsomes. Metabolites 2020, 11, 3. [Google Scholar] [CrossRef]
- Kraemer, T.; Maurer, H. Toxicokinetics of amphetamines: Metabolism and toxicokinetic data of designer drugs, amphetamine, methamphetamine, and their N-alkyl derivatives. Ther. Drug Monit. 2002, 24, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Mesihää, S.; Rasanen, I.; Ojanperä, I. Purity estimation of seized stimulant-type new psychoactive substances without reference standards by nitrogen chemiluminescence detection combined with GC-APCI-QTOFMS. Forensic Sci. Int. 2020, 312, 110304. [Google Scholar] [CrossRef] [PubMed]
- van der Gouwe, D.; Brunt, T.M.; van Laar, M.; van der Pol, P. Purity, adulteration and price of drugs bought on-line versus off-line in the Netherlands. Addiction 2017, 112, 640–648. [Google Scholar] [CrossRef]
- Di Trana, A.; Berardinelli, D.; Montanari, E.; Berretta, P.; Basile, G.; Huestis, M.A.; Busardò, F.P. Molecular Insights and Clinical Outcomes of Drugs of Abuse Adulteration: New Trends and New Psychoactive Substances. Int. J. Mol. Sci. 2022, 23, 14619. [Google Scholar] [CrossRef]
- Caspar, A.T.; Gaab, J.B.; Michely, J.A.; Brandt, S.D.; Meyer, M.R.; Maurer, H.H. Metabolism of the tryptamine-derived new psychoactive substances 5-MeO-2-Me-DALT, 5-MeO-2-Me-ALCHT, and 5-MeO-2-Me-DIPT and their detectability in urine studied by GC-MS, LC-MS(n), and LC-HR-MS/MS. Drug Test. Anal. 2018, 10, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Caspar, A.T.; Westphal, F.; Meyer, M.R.; Maurer, H.H. LC-high resolution-MS/MS for identification of 69 metabolites of the new psychoactive substance 1-(4-ethylphenyl-)-N-[(2-methoxyphenyl)methyl] propane-2-amine (4-EA-NBOMe) in rat urine and human liver S9 incubates and comparison of its screening power with further MS techniques. Anal. Bioanal. Chem. 2018, 410, 897–912. [Google Scholar] [CrossRef] [PubMed]
- Michely, J.A.; Helfer, A.G.; Brandt, S.D.; Meyer, M.R.; Maurer, H.H. Metabolism of the new psychoactive substances N,N-diallyltryptamine (DALT) and 5-methoxy-DALT and their detectability in urine by GC-MS, LC-MSn, and LC-HR-MS-MS. Anal. Bioanal. Chem. 2015, 407, 7831–7842. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.K.; Niedermeier, S.; Schaper, J.; Meyer, M.R. Use of UPLC-HRMS/MS for In Vitro and In Vivo Metabolite Identification of Three Methylphenidate-derived New Psychoactive Substances. J. Anal. Toxicol. 2020, 44, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Brandon, E.F.; Raap, C.D.; Meijerman, I.; Beijnen, J.H.; Schellens, J.H. An update on in vitro test methods in human hepatic drug biotransformation research: Pros and cons. Toxicol. Appl. Pharmacol. 2003, 189, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Maurer, H.H.; Meyer, M.R.; Pfleger, K.; Weber, A.A. GC-MS Library of Drugs, Poisons, and Their Metabolites, 6th ed.; Wiley-VCH: Weinheim, Germany, 2023. [Google Scholar]
- Tremaine, L.M.; Welch, W.M.; Ronfeld, R.A. Metabolism and disposition of the 5-hydroxytryptamine uptake blocker sertraline in the rat and dog. Drug Metab. Dispos. 1989, 17, 542–550. [Google Scholar]
- Warrington, S.J. Clinical implications of the pharmacology of sertraline. Int. Clin. Psychopharmacol. 1991, 6 (Suppl. 2), 11–21. [Google Scholar] [CrossRef]
- DeVane, C.L.; Liston, H.L.; Markowitz, J.S. Clinical pharmacokinetics of sertraline. Clin. Pharmacokinet. 2002, 41, 1247–1266. [Google Scholar] [CrossRef]
- Liu, X.; Jia, L. The conduct of drug metabolism studies considered good practice (I): Analytical systems and in vivo studies. Curr. Drug. Metab. 2007, 8, 815–821. [Google Scholar] [CrossRef]
- Sinz, M.A. In VitroandIn VivoModels of Drug Metabolism. In Encyclopedia of Drug Metabolism and Interactions; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kanayama, N.; Kanari, C.; Masuda, Y.; Ohmori, S.; Ooie, T. Drug-drug interactions in the metabolism of imidafenacin: Role of the human cytochrome P450 enzymes and UDP-glucuronic acid transferases, and potential of imidafenacin to inhibit human cytochrome P450 enzymes. Xenobiotica 2007, 37, 139–154. [Google Scholar] [CrossRef]
- Roque Bravo, R.; Faria, A.C.; Brito-da-Costa, A.M.; Carmo, H.; Mladenka, P.; Dias da Silva, D.; Remiao, F.; On Behalf Of The Oemonom, R. Cocaine: An Updated Overview on Chemistry, Detection, Biokinetics, and Pharmacotoxicological Aspects including Abuse Pattern. Toxins 2022, 14, 278. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, H.-K. Efficient kinetic resolution in the asymmetric transfer hydrogenation of 3-aryl-indanones: Applications to a short synthesis of (+)-indatraline and a formal synthesis of (R)-tolterodine. RSC Adv. 2021, 11, 23161–23183. [Google Scholar] [CrossRef] [PubMed]
- Malz, F. Quantitative NMR-Spektroskopie als Referenzverfahren in der Analytischen Chemie. Ph.D. Dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Berlin, Germany, 2003. [Google Scholar]
Analyte | [M + H], m/z | Retention Time, min | Chemical Formula | ΔMass, ppm |
---|---|---|---|---|
Indatraline | 292.0647 | 6.41 | C16H16NCl2 | −2.4 |
Indatraline-M (HO-) Isomer 1 | 308.0600 | 5.04 | C16H16NOCl2 | −1.0 |
Indatraline-M (HO-) Isomer 2 | 308.0607 | 5.64 | C16H16NOCl2 | 1.3 |
Indatraline-M (Demethyl-HO-) Glucuronide Isomer 1 | 470.0776 | 3.54 | C21H22NO7Cl2 | −1.7 |
Indatraline-M (Demethyl-HO-) Glucuronide Isomer 2 | 470.0758 | 4.79 | C21H22NO7Cl2 | −2.0 |
Indatraline-M (HO-) Glucuronide Isomer 1 | 484.0927 | 4.02 | C22H24NO7Cl2 | −0.6 |
Indatraline-M (HO-) Glucuronide Isomer 2 | 484.0918 | 4.87 | C22H24NO7Cl2 | −1.4 |
Analyte | [M + H], m/z | Retention Time, min | Chemical Formula | ΔMass, ppm |
---|---|---|---|---|
Troparil | 260.1638 | 4.25 | C16H22NO2 | −2.6 |
Troparil-M (Demethyl-) | 246.1481 | 3.78 | C15H20NO2 | −3.0 |
Troparil-M (Demethyl-HO-) Isomer 1 | 262.1433 | 2.30 | C15H20NO3 | −1.6 |
Troparil-M (Demethyl-HO-) Isomer 2 | 262.1429 | 3.02 | C15H20NO3 | −3.3 |
Troparil-M (HO-) | 276.1585 | 3.40 | C16H22NO3 | −3.3 |
Troparil-M (Demethyl-HO-) Glucuronide Isomer 1 | 438.1747 | 0.63 | C21H28NO9 | −2.8 |
Troparil-M (Demethyl-HO-) Glucuronide Isomer 1 | 438.1751 | 1.76 | C21H28NO9 | −1.8 |
Troparil-M (HO-) Glucuronide | 452.1919 | 2.01 | C22H30NO9 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manier, S.K.; Mumber, P.; Zapp, J.; Eckstein, N.; Meyer, M.R. Characterization and Metabolism of Drug Products Containing the Cocaine-Like New Psychoactive Substances Indatraline and Troparil. Metabolites 2024, 14, 342. https://doi.org/10.3390/metabo14060342
Manier SK, Mumber P, Zapp J, Eckstein N, Meyer MR. Characterization and Metabolism of Drug Products Containing the Cocaine-Like New Psychoactive Substances Indatraline and Troparil. Metabolites. 2024; 14(6):342. https://doi.org/10.3390/metabo14060342
Chicago/Turabian StyleManier, Sascha K., Paula Mumber, Josef Zapp, Niels Eckstein, and Markus R. Meyer. 2024. "Characterization and Metabolism of Drug Products Containing the Cocaine-Like New Psychoactive Substances Indatraline and Troparil" Metabolites 14, no. 6: 342. https://doi.org/10.3390/metabo14060342
APA StyleManier, S. K., Mumber, P., Zapp, J., Eckstein, N., & Meyer, M. R. (2024). Characterization and Metabolism of Drug Products Containing the Cocaine-Like New Psychoactive Substances Indatraline and Troparil. Metabolites, 14(6), 342. https://doi.org/10.3390/metabo14060342