Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes
Abstract
:1. Introduction
2. General Aspects of DNAm
3. DNAm in GDM
3.1. Potential Clinical Applications of DNAm in GDM
3.2. DNAm and Fetal Growth
3.2.1. DNAm in the Placenta
3.2.2. DNAm in CB
3.2.3. DNAm in AT
3.2.4. DNAm in Maternal Blood
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar] [CrossRef]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.; Powe, C.; Immanuel, J.; Karuranga, S.; et al. IDF diabetes atlas: Estimation of global and regional gestational diabetes mellitus prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef]
- Berkowitz, G.S.; Lapinski, R.H.; Wein, R.; Lee, D. Race/ethnicity and other risk factors for gestational diabetes. Am. J. Epidemiol. 1992, 135, 965–973. [Google Scholar] [CrossRef]
- Buchanan, T.A. Pancreatic B cell defects in gestational diabetes: Implications for the pathogenesis and prevention of type 2 diabetes. J. Clin. Endocrinol. Metab. 2001, 86, 989–993. [Google Scholar] [CrossRef]
- Kim, C. Gestational diabetes: Risks, management, and treatment options. Int. J. Womens Health 2010, 2, 339–351. [Google Scholar] [CrossRef]
- Farrar, D.; Simmonds, M.; Bryant, M.; Sheldon, T.A.; Tuffnell, D.; Golder, S.; Dunne, F.; Lawlor, D.A. Hyperglycaemia and risk of adverse perinatal outcomes: Systematic review and meta-analysis. BMJ 2016, 354, i4694. [Google Scholar] [CrossRef]
- Vounzoulaki, E.; Khunti, K.; Abner, S.C.; Tan, B.K.; Davies, M.J.; Gillies, C.L. Progression to type 2 diabetes in women with a known history of gestational diabetes: Systematic review and meta-analysis. BMJ 2020, 369, m1361. [Google Scholar] [CrossRef]
- Lee, S.M.; Shivakumar, M.; Park, J.W.; Jung, Y.M.; Choe, E.K.; Kwak, S.H.; Oh, S.; Park, J.S.; Jun, J.K.; Kim, D.; et al. Long-term cardiovascular outcomes of gestational diabetes mellitus: A prospective UK Biobank study. Cardiovasc. Diabetol. 2022, 21, 221. [Google Scholar] [CrossRef]
- West, N.A.; Crume, T.L.; Maligie, M.A.; Dabelea, D. Cardiovascular risk factors in children exposed to maternal diabetes in utero. Diabetologia 2011, 54, 504–507. [Google Scholar] [CrossRef]
- Michalopoulou, M.; Piernas, C.; Jebb, S.A.; Gao, M.; Astbury, N.M. Association of gestational diabetes with long-term risk of premature mortality, and cardiovascular outcomes and risk factors: A retrospective cohort analysis in the UK Biobank. Diabetes Obes. Metab. 2024, 26, 2915–2924. [Google Scholar] [CrossRef]
- Ornoy, A.; Becker, M.; Weinstein-Fudim, L.; Ergaz, Z. Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review. Int. J. Mol. Sci. 2021, 22, 2965. [Google Scholar] [CrossRef]
- Kc, K.; Shakya, S.; Zhang, H. Gestational Diabetes Mellitus and Macrosomia: A Literature Review. Ann. Nutr. Metab. 2015, 66 (Suppl. 2), 14–20. [Google Scholar] [CrossRef]
- Vieira, M.C.; Sankaran, S.; Pasupathy, D. Fetal macrosomia. Obstet. Gynaecol. Reprod. Med. 2020, 30, 146–151. [Google Scholar] [CrossRef]
- Henriksen, T. The macrosomic fetus: A challenge in current obstetrics. Acta Obstet. Gynecol. Scand. 2008, 87, 134–145. [Google Scholar] [CrossRef]
- Radaelli, T.; Lepercq, J.; Varastehpour, A.; Basu, S.; Catalano, P.M.; Hauguel-De, M.S. Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am. J. Obstet. Gynecol. 2009, 201, 209. [Google Scholar] [CrossRef]
- Díaz, M.; García, C.; Sebastiani, G.; de Zegher, F.; López-Bermejo, A.; Ibáñez, L. Placental and cord blood methylation of genes involved in energy homeostasis: Association with fetal growth and neonatal body composition. Diabetes 2017, 66, 779–784. [Google Scholar] [CrossRef]
- Kupers, L.K.; Monnereau, C.; Sharp, G.C.; Yousefi, P.; Salas, L.A.; Ghantous, A.; Page, C.M.; Reese, S.E.; Wilcox, A.J.; Czamara, D.; et al. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat. Commun. 2019, 10, 1893. [Google Scholar] [CrossRef]
- Bender, J. DNA methylation and epigenetics. Annu. Rev. Plant Biol. 2004, 55, 41–68. [Google Scholar] [CrossRef]
- Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, 245–254. [Google Scholar] [CrossRef]
- Lee, D.D.; Leão, R.; Komosa, M.; Gallo, M.; Zhang, C.H.; Lipman, T.; Remke, M.; Heidari, A.; Nunes, N.M.; Apolónio, J.D.; et al. DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. J. Clin. Investig. 2019, 129, 223–229. [Google Scholar] [CrossRef]
- Robertson, K.D. DNA methylation and human disease. Nat. Rev. Genet. 2005, 6, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Hatchwell, E.; Greally, J.M. The potential role of epigenomic dysregulation in complex human disease. Trends Genet. 2007, 23, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.S.; Hansen, L.L. PCR-Based Methods for Detecting Single-Locus DNA Methylation Biomarkers in Cancer Diag-nostics, Prognostics, and Response to Treatment. Clin. Chem. 2009, 55, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Frommer, M.; McDonald, L.E.; Millar, D.S.; Collis, C.M.; Watt, F.; Grigg, G.W.; Molloy, P.L.; Paul, C.L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 1992, 89, 1827–1831. [Google Scholar] [CrossRef] [PubMed]
- Zilberman, D.; Henikoff, S. Genome-wide analysis of DNA methylation patterns. Development 2007, 134, 3959–3965. [Google Scholar] [CrossRef] [PubMed]
- Ronaghi, M.; Uhlén, M.; Nyrén, P. A Sequencing Method Based on Real-Time Pyrophosphate. Science 1998, 281, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Ruchat, S.-M.; Houde, A.-A.; Voisin, G.; St-Pierre, J.; Perron, P.; Baillargeon, J.-P.; Gaudet, D.; Hivert, M.-F.; Brisson, D.; Bouchard, L. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics 2013, 8, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Lambertini, L.; Rialdi, A.; Lee, M.; Mystal, E.Y.; Grabie, M.; Manaster, I.; Huynh, N.; Finik, J.; Davey, M.; et al. Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod. Sci. 2014, 21, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Lesseur, C.; Armstrong, D.A.; Paquette, A.G.; Li, Z.; Padbury, J.F.; Marsit, C.J. Maternal obesity and gestational diabetes are associated with placental leptin DNA methylation. Am. J. Obstet. Gynecol. 2014, 211, 654. [Google Scholar] [CrossRef]
- Allard, C.; Desgagné, V.; Patenaude, J.; Guillemette, L.; Battista, M.C.; Doyon, M.; Ménard, J.; Ardilouze, J.L.; Perron, P.; Bouchard, L.; et al. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics 2015, 10, 342–351. [Google Scholar] [CrossRef]
- Su, R.; Wang, C.; Feng, H.; Lin, L.; Liu, A.; Wei, Y.; Yang, H. Alteration in Expression and Methylation of IGF2/H19 in Placenta and Umbilical Cord Blood Are Associated with Macrosomia Exposed to Intrauterine Hyperglycemia. PLoS ONE 2016, 11, e0148399. [Google Scholar] [CrossRef]
- Côté, S.; Gagné-Ouellet, V.; Guay, S.-P.; Allard, C.; Houde, A.-A.; Perron, P.; Baillargeon, J.-P.; Gaudet, D.; Guérin, R.; Brisson, D.; et al. PPARGC1α gene DNA methylation variations in human placenta mediate the link between maternal hyperglycemia and leptin levels in newborns. Clin. Epigenetics 2016, 8, 72. [Google Scholar] [CrossRef]
- Reichetzeder, C.; Dwi Putra, S.E.; Pfab, T.; Slowinski, T.; Neuber, C.; Kleuser, B.; Hocher, B. Increased global placental DNA methylation levels are associated with gestational diabetes. Clin. Epigenetics 2016, 8, 82. [Google Scholar] [CrossRef]
- Blazevic, S.; Horvaticek, M.; Kesic, M.; Zill, P.; Hranilovic, D.; Ivanisevic, M.; Desoye, G.; Stefulj, J. Epigenetic adaptation of the placental serotonin transporter gene (SLC6A4) to gestational diabetes mellitus. PLoS ONE 2017, 12, e0179934. [Google Scholar] [CrossRef]
- Gagné-Ouellet, V.; Houde, A.-A.; Guay, S.-P.; Perron, P.; Gaudet, D.; Guérin, R.; Jean-Patrice, B.; Hivert, M.-F.; Brisson, D.; Bouchard, L. Placental lipoprotein lipase DNA methylation alterations are associated with gestational diabetes and body composition at 5 years of age. Epigenetics 2017, 12, 616–625. [Google Scholar] [CrossRef]
- Ott, R.; Stupin, J.H.; Melchior, K.; Schellong, K.; Ziska, T.; Dudenhausen, J.W.; Henrich, W.; Rancourt, R.C.; Plagemann, A. Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome. Clin. Epigenetics 2018, 10, 131. [Google Scholar] [CrossRef]
- Steyn, A.; Crowther, N.J.; A Norris, S.; Rabionet, R.; Estivill, X.; Ramsay, M. Epigenetic modification of the pentose phosphate pathway and the IGF-axis in women with gestational diabetes mellitus. Epigenomics 2019, 11, 1371–1385. [Google Scholar] [CrossRef]
- Zhao, B.-H.; Jiang, Y.; Zhu, H.; Xi, F.-F.; Chen, Y.; Xu, Y.-T.; Liu, F.; Wang, Y.-Y.; Hu, W.-S.; Lv, W.-G.; et al. Placental Delta-Like 1 Gene DNA Methylation Levels Are Related to Mothers’ Blood Glucose Concentration. J. Diabetes Res. 2019, 2019, 9521510. [Google Scholar] [CrossRef]
- Mansell, T.; Ponsonby, A.-L.; Collier, F.; Burgner, D.; Vuillermin, P.; Lange, K.; Ryan, J.; Saffery, R.; Barwon Infant Study Investigator Team. Genetic variation, intrauterine growth, and adverse pregnancy conditions predict leptin gene DNA methylation in blood at birth and 12 months of age. Int. J. Obes. 2020, 44, 45–56. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, Y.; Yan, T.; Chen, Y.; Yang, M.; Lv, M.; Xi, F.; Lu, J.; Zhao, B.; Luo, Q. Placental maternally expressed gene 3 differentially methylated region methylation profile is associated with maternal glucose concentration and newborn birthweight. J. Diabetes Investig. 2021, 12, 1074–1082. [Google Scholar] [CrossRef]
- Yan, J.; Su, R.; Zhang, W.; Wei, Y.; Wang, C.; Lin, L.; Feng, H.; Yang, H. Epigenetic alteration of Rho guanine nucleotide exchange Factor 11 (ARHGEF11) in cord blood samples in macrosomia exposed to intrauterine hyperglycemia. J. Matern. Fetal Neonatal Med. 2021, 34, 422–431. [Google Scholar] [CrossRef]
- Song, J.Y.; Lee, K.E.; Byeon, E.J.; Choi, J.; Kim, S.J.; Shin, J.E. Maternal Gestational Diabetes Influences DNA Methylation in the Serotonin System in the Human Placenta. Life 2022, 12, 1869. [Google Scholar] [CrossRef]
- Wang, W.-J.; Huang, R.; Zheng, T.; Du, Q.; Yang, M.-N.; Xu, Y.-J.; Liu, X.; Tao, M.-Y.; He, H.; Fang, F.; et al. Genome-Wide Placental Gene Methylations in Gestational Diabetes Mellitus, Fetal Growth and Metabolic Health Biomarkers in Cord Blood. Front. Endocrinol. (Lausanne) 2022, 13, 875180. [Google Scholar] [CrossRef]
- Horvatiček, M.; Perić, M.; Bečeheli, I.; Klasić, M.; Žutić, M.; Kesić, M.; Desoye, G.; Radoš, S.N.; Ivanišević, M.; Hranilovic, D.; et al. Maternal Metabolic State and Fetal Sex and Genotype Modulate Methylation of the Serotonin Receptor Type 2A Gene (HTR2A) in the Human Placenta. Biomedicines 2022, 10, 467. [Google Scholar] [CrossRef]
- Linares-Pineda, T.M.; Gutiérrez-Repiso, C.; Peña-Montero, N.; Molina-Vega, M.; Rubio, F.L.; Arana, M.S.; Tinahones, F.J.; Picón-César, M.J.; Morcillo, S. Higher β cell death in pregnant women, measured by DNA methylation patterns of cell-free DNA, compared to new-onset type 1 and type 2 diabetes subjects: A cross-sectional study. Diabetol. Metab. Syndr. 2023, 15, 115. [Google Scholar] [CrossRef]
- Xu, P.; Dong, S.; Wu, L.; Bai, Y.; Bi, X.; Li, Y.; Shu, C. Maternal and Placental DNA Methylation Changes Associated with the Pathogenesis of Gestational Diabetes Mellitus. Nutrients 2022, 15, 70. [Google Scholar] [CrossRef]
- Franzago, M.; Fraticelli, F.; Stuppia, L.; Vitacolonna, E. Nutrigenetics, epigenetics and gestational diabetes: Consequences inmother and child. Epigenetics 2019, 14, 215–235. [Google Scholar] [CrossRef]
- Dalfrà, M.G.; Burlina, S.; Del Vescovo, G.G.; Lapolla, A. Genetics and Epigenetics: New Insight on Gestational Diabetes Mellitus. Front. Endocrinol. 2020, 11, 602477. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Zheng, Y.; Long, S.; Lin, H.; Zhang, N.; Tian, M.; Wu, X.; An, R.; Ma, S.; et al. Study on the relationship between DNA methylation of target CpG sites in peripheral blood and gestational diabetes during early pregnancy. Sci. Rep. 2021, 11, 20455. [Google Scholar] [CrossRef]
- Wei, D.; Loeken, M.R. Increased DNA methyltransferase 3b (Dnmt3b)-mediated CpG island methylation stimulated by oxidative stress inhibits expression of a gene required for neural tube and neural crest development in diabetic pregnancy. Diabetes 2014, 63, 3512–3522. [Google Scholar] [CrossRef]
- Wu, P.; Farrell, W.E.; Haworth, K.E.; Emes, R.D.; Kitchen, M.O.; Glossop, J.R.; Hanna, F.W.; Fryer, A.A. Maternal genome-wide DNA methylation profiling in gestational diabetes shows distinctive disease-associated changes relative to matched healthy pregnancies. Epigenetics 2018, 13, 122–128. [Google Scholar] [CrossRef]
- Enquobahrie, D.A.; Moore, A.; Muhie, S.; Tadesse, M.G.; Lin, S.; Williams, M.A. Early Pregnancy Maternal Blood DNA Methylation in Repeat Pregnancies and Change in Gestational Diabetes Mellitus Status—A Pilot Study. Reprod. Sci. 2015, 22, 904–910. [Google Scholar] [CrossRef]
- Ballesteros, M.; Gil-Lluís, P.; Ejarque, M.; Diaz-Perdigones, C.; Martinez-Guasch, L.; Fernández-Veledo, S.; Vendrell, J.; Megía, A. DNA Methylation in Gestational Diabetes and its Predictive Value for Postpartum Glucose Disturbances. J. Clin. Endocrinol. Metab. 2022, 107, 2748–2757. [Google Scholar] [CrossRef]
- Chen, Z.; Fillmore, C.M.; Hammerman, P.S.; Kim, C.F.; Wong, K.K. Non-small-cell Lung Cancers: A Heterogeneous Set of Diseases. Nat. Rev. Cancer 2014, 14, 535–546. [Google Scholar] [CrossRef]
- Deming, Y.; Xia, J.; Cai, Y.; Lord, J.; Holmans, P.; Bertelsen, S.; Holtzman, D.; Morris, J.C.; Bales, K.; Pickering, E.H.; et al. A Potential Endophenotype for Alzheimer’s Disease: Cerebrospinal Fluid Clusterin. Neurobiol. Aging 2016, 37, 208.e1–208.e9. [Google Scholar] [CrossRef]
- Comuzzie, A.G.; Cole, S.A.; Laston, S.L.; Voruganti, V.S.; Haack, K.; Gibbs, R.A.; Butte, N.F. Novel genetic loci identified for the pathophysiology of childhood obesity in the hispanic population. PLoS ONE 2012, 7, e51954. [Google Scholar] [CrossRef]
- Linares-Pineda, T.M.; Fragoso-Bargas, N.; Picón, M.J.; Molina-Vega, M.; Jenum, A.K.; Sletner, L.; Lee-Ødegård, S.; Opsahl, J.O.; Moen, G.-H.; Qvigstad, E.; et al. DNA methylation risk score for type 2 diabetes is associated with gestational diabetes. Cardiovasc. Diabetol. 2024, 23, 68. [Google Scholar] [CrossRef]
- Wallace, J.M.; Horgan, G.W.; Bhattacharya, S. Placental weight and efficiency in relation to maternal body mass index and the risk of pregnancy complications in women delivering singleton babies. Placenta 2012, 33, 611–618. [Google Scholar] [CrossRef]
- Hasenhuetl, P.S.; Freissmuth, M.; Sandtner, W. Electrogenic Binding of Intracellular Cations Defines a Kinetic Decision Point in the Transport Cycle of the Human Serotonin Transporter. J. Biol. Chem. 2016, 291, 25864–25876. [Google Scholar] [CrossRef]
- Yabut, J.M.; Crane, J.D.; Green, A.E.; Keating, D.J.; Khan, W.I.; Steinberg, G.R. Emerging roles for serotonin in regulating metabolism: New implications for an ancient molecule. Endocr. Rev. 2019, 40, 1092–1107. [Google Scholar] [CrossRef]
- Muller, C.L.; Anacker, A.M.J.; Veenstra-VanderWeele, J. The serotonin system in autism spectrum disorder: From biomarker toanimal models. Neuroscience 2016, 321, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.L.; Anacker, A.M.; Rogers, T.D.; Goeden, N.; Keller, E.H.; Forsberg, C.G.; Kerr, T.M.; Wender, C.L.A.; Anderson, G.M.; Stanwood, G.D.; et al. Impact of maternal serotonin transporter genotype on placental serotonin, fetal forebrain serotonin, and neurodevelopment. Neuropsychopharmacology 2017, 42, 427–436. [Google Scholar] [CrossRef]
- Nomura, Y.; Marks, D.; Grossman, B.; Yoon, M.; Loudon, H.; Stone, J.; Halperin, J.M. Exposure to gestational diabetes mellitus and low socioeconomic status: Effects on neurocognitive development and risk of attention-deficit/hyperactivity disorder in offspring. Arch. Pediatr. Adolesc. Med. 2012, 166, 337–343. [Google Scholar]
- Xiang, A.H.; Wang, X.; Martinez, M.P.; Walthall, J.C.; Curry, E.S.; Page, K.; Buchanan, T.A.; Coleman, K.J.; Getahun, D. Association of maternal diabetes with autism in offspring. JAMA 2015, 313, 1425–1434. [Google Scholar] [CrossRef]
- Sacks, K.N.; Friger, M.; Shoham-Vardi, I.; Abokaf, H.; Spiegel, E.; Sergienko, R.; Landau, D.; Sheiner, E. Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring. Am. J. Obstet. Gynecol. 2016, 215, 380.e1–380.e7. [Google Scholar] [CrossRef]
- Persson, B.; Bengtsson-Olivecrona, G.; Enerbäck, S.; Olivecrona, T.; Jörnvall, H. Structural features of lipoprotein lipase. Lipase family relationships, binding interactions, non-equivalence of lipase cofactors, vitellogenin similarities and functional subdivision of lipoprotein lipase. Eur. J. Biochem. 1989, 179, 39–45. [Google Scholar] [CrossRef]
- Magnusson-Olsson, A.L.; Hamark, B.; Ericsson, A.; Wennergren, M.; Jansson, T.; Powell, T.L. Gestational and hormonal regulation of human placental lipoprotein lipase. J. Lipid Res. 2006, 47, 2551–2561. [Google Scholar] [CrossRef]
- Kotaka, M.; Gover, S.; Vandeputte-Rutten, L.; Au, S.W.N.; Lam, V.M.S.; Adams, M.J. Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Acta Crystallogr. Sect. D Struct. Biol. 2005, 61, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Apse, K.; Pang, J.; Stanton, R.C. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J. Biol. Chem. 2000, 275, 40042–40047. [Google Scholar] [CrossRef] [PubMed]
- Saucedo, R.; Ortega-Camarillo, C.; Ferreira-Hermosillo, A.; Díaz-Velázquez, M.F.; Meixueiro-Calderón, C.; Valencia-Ortega, J. Role of Oxidative Stress and Inflammation in Gestational Diabetes Mellitus. Antioxidants 2023, 12, 1812. [Google Scholar] [CrossRef]
- Kadakia, R.; Ma, M.; Josefson, J.L. Neonatal adiposity increases with rising cord blood IGF-1 levels. Clin. Endocrinol. 2016, 85, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.G.; Cunha-Silva, M.; Crespo, R.P.; Ramos, C.O.; Montenegro, L.R.; Canton, A.; Lees, M.; Spodeas, H.; Dauber, A.; Macedo, D.B.; et al. DLK1 is a novel link between reproduction and metabolism. J. Clin. Endocrinol. Metab. 2019, 104, 2112–2120. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.H.; Kosmina, R.; Rydén, M.; Baun, C.; Hvidsten, S.; Andersen, M.S.; Christensen, L.L.; Gastaldelli, A.; Marraccini, P.; Arner, P.; et al. The imprinted gene delta like non-canonical Notch ligand 1 (Dlk1) associates with obesity and triggers insulin resistance through inhibition of skeletal muscle glucose uptake. EBioMedicine 2019, 46, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, N.; Wagatsuma, H.; Wakana, S.; Shiroishi, T.; Nomura, M.; Aisaka, K.; Kohda, T.; Surani, M.A.; Kaneko-Ishino, T.; Ishino, F. Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 2000, 5, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-P.; Coan, P.; da Rocha, S.T.; Seitz, H.; Cavaille, J.; Teng, P.-W.; Takada, S.; Ferguson-Smith, A.C. Differential regulation of imprinting in the murine embryo and placenta by the Dlk1-Dio3 imprinting control region. Development 2007, 134, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Kameswaran, V.; Golson, M.L.; Ramos-Rodríguez, M.; Ou, K.; Wang, Y.J.; Zhang, J.; Pasquali, L.; Kaestner, K.H. The dysregulation of the DLK1-MEG3 locus in islets from patients with type 2 diabetes is mimicked by targeted epimutation of its promoter with TALE-DNMT constructs. Diabetes 2018, 67, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.C.; Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000, 405, 482–485. [Google Scholar] [CrossRef]
- Hoyo, C.; Fortner, K.; Murtha, A.P.; Schildkraut, J.M.; Soubry, A.; Demark-Wahnefried, W.; Jirtle, R.L.; Kurtzberg, J.; Forman, M.R.; Overcash, F.; et al. Association of cord blood methylation fractions at imprinted insulin-like growth factor 2 (IGF2), plasma IGF2, and birth weight. Cancer Causes Control 2012, 23, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Brochu-Gaudreau, K.; Rehfeldt, C.; Blouin, R.; Bordignon, V.; Murphy, B.D.; Palin, M.F. Adiponectin action from head to toe. Endocrine 2010, 37, 11–32. [Google Scholar] [CrossRef]
- Chang, Y.J.; Pownall, S.; Jensen, T.E.; Mouaaz, S.; Foltz, W.; Zhou, L.; Liadis, N.; Woo, M.; Hao, Z.; Dutt, P.; et al. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes. eLife 2015, 4, e06011. [Google Scholar] [CrossRef]
- Hinkle, S.N.; Rawal, S.; Liu, D.; Chen, J.; Tsai, M.Y.; Zhang, C. Maternal adipokines longitudinally measured across pregnancy and their associations with neonatal size, length, and adiposity. Int. J. Obes. 2019, 43, 1422–1434. [Google Scholar] [CrossRef] [PubMed]
- Ong, G.K.B.; Hamilton, J.K.; Sermer, M.; Connelly, P.W.; Maguire, G.; Zinman, B.; Hanley, A.J.G.; Retnakaran, R. Maternal serum adiponectin and infant birthweight: The role of adiponectin isoform distribution. Clin. Endocrinol. 2007, 67, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Lowe, L.P.; Metzger, B.E.; Lowe, W.L.; Dyer, A.R.; McDade, T.W.; McIntyre, H.D. HAPO Study Cooperative Research Group. In-flammatory mediators and glucose in pregnancy: Results from a subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. J. Clin. Endocrinol. Metab. 2010, 95, 5427–5434. [Google Scholar] [CrossRef] [PubMed]
- Speake, C.; Ylescupidez, A.; Neiman, D.; Shemer, R.; Glaser, B.; Tersey, S.A.; Usmani-Brown, S.; Clark, P.; Wilhelm, J.J.; Bellin, M.D.; et al. Circulating unmethylated insulin DNA as a biomarker of human beta cell death: A multi-laboratory assay comparison. J. Clin. Endocrinol. Metab. 2020, 105, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.A.; Kenna, L.A.; Spelios, M.G.; Hessner, M.J.; Akirav, E.M. Circulating differentially methylated amylin dna as a biomarker of β-cell loss in type 1 diabetes. PLoS ONE 2016, 11, e0152662. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Petres, E.R.; Sferruzzi-Perri, A.N. Pregnancy-Induced Changes in β-Cell Function: What Are the Key Players? J. Physiol. 2022, 600, 1089–1117. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Zhang, X.; Aouizerat, B.E.; Xu, K. Comparison of methylation capture sequencing and Infinium MethylationEPIC array in peripheral blood mononuclear cells. Epigenetics Chromatin 2020, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Dedeurwaerder, S.; Defrance, M.; Bizet, M.; Calonne, E.; Bontempi, G.; Fuks, F. A comprehensive overview of Infinium HumanMethylation450 data processing. Brief. Bioinform. 2013, 15, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Pidsley, R.; Zotenko, E.; Peters, T.J.; Lawrence, M.G.; Risbridger, G.P.; Molloy, P.; Djik, S.V.; Muhlhausler, B.; Stirzaker, C.; Clark, S.J. Critical evaluation of the Illumina MethylationEPI BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016, 17, 1–17. [Google Scholar] [CrossRef]
- Sun, R.; Zhu, P. Advances in measuring DNA methylation. Blood Sci. 2021, 4, 8–15. [Google Scholar] [CrossRef]
- Lu, T.; Cardenas, A.; Perron, P.; Hivert, M.-F.; Bouchard, L.; Greenwood, C.M.T. Detecting cord blood cell type-specific epigenetic associations with gestational diabetes mellitus and early childhood growth. Clin. Epigenetics 2021, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Yang, H. Gestational diabetes mellitus, programing and epigenetics. J. Matern. Fetal Neonatal Med. 2014, 27, 1266–1269. [Google Scholar] [CrossRef] [PubMed]
- Antoun, E.; Kitaba, N.T.; Titcombe, P.; Dalrymple, K.V.; Garratt, E.S.; Barton, S.J.; Murray, R.; Seed, P.T.; Holbrook, J.D.; Kobor, M.S.; et al. Maternal dysglycaemia, changes in the infant’s epigenome modified with a diet and physical activity intervention in pregnancy: Secondary analysis of a randomised control trial. PLoS Med. 2020, 17, e1003229. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Salas, P.; Moore, S.E.; Baker, M.S.; Bergen, A.W.; Cox, S.E.; Dyer, R.A.; Fulford, A.J.; Guan, Y.; Laritsky, E.; Silver, M.J.; et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 2014, 5, 3746. [Google Scholar] [CrossRef] [PubMed]
- Alfano, R.; Guida, F.; Galobardes, B.; Chadeau-Hyam, M.; Delpierre, C.; Ghantous, A.; Henderson, J.; Herceg, Z.; Jain, P.; Nawrot, T.S.; et al. Socioeconomic position during pregnancy and DNA methylation signatures at three stages across early life: Epigenome-wide association studies in the ALSPAC birth cohort. Int. J. Epidemiol. 2019, 48, 30–44. [Google Scholar] [CrossRef]
- Socha, M.W.; Flis, W.; Wartęga, M. Epigenetic Genome Modifications during Pregnancy: The Impact of Essential Nutritional Supplements on DNA Methylation. Nutrients 2024, 16, 678. [Google Scholar] [CrossRef]
Author, Year [Reference] | Case/Control | Biological Source | Approach to Identify DNAm | Method | Main Finding |
---|---|---|---|---|---|
Ruchat, 2013 [27] | 30/14 | Placenta and CB | Genome-wide approach | Infinium Human Methylation 450 Beadchips | A total of 3271 and 3758 genes in the placenta and CB were differentially methylated between those exposed and those not exposed to GDM. A total of 326 methylated genes in the placenta and 117 in CB were associated with newborn weight. |
Nomura, 2014 [28] | 7/21 | Placenta and CB | Global | Luminometric Methylation Assay | GDM was associated with placental hypomethylation. Suggestive negative associations were found between placental global methylation and infant body length and head circumference. |
Lesseur, 2014 [29] | 47/432 | Placenta | LEP promoter region | Quantitative bisulfite pyrosequencing | Placentas from infants exposed to GDM had higher DNAm compared to those from the non-GDM group. LEP methylation was not associated with infant birth weight. |
Allard, 2015 [30] | 173 | CB | LEP genomic region | Human Methylation 450 BeadChips at LEP locus | Increased maternal glycemia associated with lower methylation levels at LEP locus. Lower DNAm at LEP locus associated with higher leptin levels in CB and higher birth weight. |
Su, 2016 [31] | 55/60 | CB | IGF-2 and H19 | Sequenom massARRAY | Decreased methylation of IGF-2 and increased methylation of H19 in the GDM group compared to NGT group. Increased methylation of H19 and decreased methylation of IGF-2 were closely related to birth weight. An increase in IGF2 and decrease in H19 expression in the placenta and CB were observed in the GDM group compared to the NGT group. |
Côté, 2016 [32] | 33/100 in silico: 172 | Fetal placenta | PRDM16, BMP7, CTBP2, PPARGC1 | Bisulfite pyrosequencing, array, and an in silico replication study using data from HumanMethylation450 BeadChip Arrays | BMP7 and PRDM16 DNAm levels were lower and PPARGC1α was higher in GDM-exposed placentas vs. those not exposed. DNAm was not associated with birth weight. Leptin CB levels correlated with PRDM16 and PPARGC1 DNAm levels. Higher CB leptin levels were correlated with higher birth weight and chest circumference. |
Reichetzeder, 2016 [33] | 56/974 | Placenta | Global | LC-MS/MS | Mothers with GDM displayed a significantly increased global placental DNAm. LGA was associated with increased placental DNAm compared to SGA and AGA. |
Blazevic, 2017 [34] | 18/32 | Fetal side of the placenta | SLC6A4 | Direct bisulfite sequencing | DNAm was lower in the GDM as compared to the NGT group and showed a negative correlation with maternal plasma glucose levels. Placental SLC6A4 mRNA levels were inversely correlated with average DNAm. SLC6A4 methylation levels did not correlate with birth weight; however, placental SLC6A4 mRNA levels showed a negative correlation with infant birth weight. |
Gagné, 2017 [35] | 24/42 | Fetal side of the placenta | LPL | Bisulfite pyrosequencing | DNAm levels were lower when the placenta had been exposed to GDM, compared with those with no GDM exposure. LPL DNAm was inversely correlated with LPL mRNA levels. LPL DNAm levels were positively correlated with birth weight. |
Ott, 2018 [36] | 25/30 | Maternal SAT, VAT, and CB | ADIPOQ | Pyrosequencing | Fat tissue DNAm was slightly altered in patients with GDM. Methylation was inversely associated with ADIPOQ gene expression in SAT and VAT. ADIPOQ DNAm was significantly altered in offspring CB, and methylation was associated with birth weight. |
Steyn, 2019 [37] | 6/ 6 | Placenta and maternal blood | G6PD, TKT, IGFBP-1, IGFBP-2, IGFBP-6 | EpiTect Methyl II PCR assay | Decreased mRNA expression and increased promoter methylation were noted for G6PD in GDM women and for genes encoding IGF-BPs proteins in GDM-exposed placentas. MB methylation of IGFBPs did not correlate with birth weight. However, placental methylation of IGFBP-1, IGFBP-2, and IGFBP-6 correlated positively with birth weight. |
Zhao, 2019 [38] | 15/15 | Maternal and fetal sides of the placenta | DLK1 | MethylTargetTM | Hypermethylation of DLK1 promoter region caused decreased DLK1 expression in both maternal and fetal sides of the placenta in the GDM group compared with the control group. The DNAm of DLK1 in the fetal side of the placenta was closely related to fetal birth weight. |
Mansell, 2019 [39] | 35/? | CB | LEP | Bisulphite conversion using the MagPrep Lightning Conversion Kit | There was some evidence of a relationship between GDM and LEP methylation, with a negative relationship between CpG7 LEP methylation and birth weight. |
Chen, 2021 [40] | 23/23 | Maternal and fetal sides of the placenta | MEG3 | MethylTargetTM | DNAm in MEG3 was higher in the maternal side of the placenta in the GDM vs. control group, while the mRNA expression of MEG3 was significantly reduced. Placental DNAm showed a positive correlation with both maternal fasting glucose concentrations and offspring birth weight. |
Yan, 2021 [41] | 6/6 | CB | Global Whole genome | Infinitum Human Methylation 450 BeadChip array and DNAm validation using SEQUENOM MassARRAY | A total of 1251 genes were methylated differently in GDM subjects vs. controls. Macrosomic GDM infants showed hypomethylated ARHGEF11. ARHGEF11 gene expression was downregulated when neonatal birth weight was ≥4000 g, regardless of GDM. Altered DNAm levels of ARHGEF11 showed negative correlation with both glucose concentrations and neonatal birth weight. |
Song, 2022 [42] | 30/60 | Fetal side of the placenta | SLC6A4, HTR2A | Pyrosequencing | The average DNAm of SLC6A4 was higher in the GDM group than in the control group, while the DNAm of HTR2A showed no difference. SLC6A4 methylation correlated positively with placental SLC6A4 mRNA levels. SLC6A4 methylation demonstrated a positive correlation with maternal plasma glucose level and neonatal birth weight percentile but correlated negatively with neonatal head circumference percentile. |
Wang, 2022 [43] | 30/30 | Fetal side of the placenta | Global | Infinium MethylationEPIC Beadchip and Bisulfite-pyrosequencing validation | A total of 256 DMPs (130 hypermethylated and 126 hypomethylated) were reported between the GDM and control groups. Methylations in PCDHB15, DKK2, ERG, CADM2, CYP2D7P1, SIRPB1, and KCNAB2 positively correlated with birth weight, while methylations in RAPGEF5, CACNA2D4, PCSK9, and TSNARE1 showed a negative correlation. No gene methylation correlated with metabolic biomarkers (fetal growth factors, leptin, and adiponectin) in CB after correcting for multiple tests. |
Horvatiček, 2022 [44] | 80/119 | Fetal side of the placenta | HTR2A | Bisulfite pyrosequencing quantification | GDM was associated with reduced HTR2A DNAm in female but not male placentas. Birth weight was not a significant predictor of methylation in either female or male placentas. |
Linares, 2023 [45] | 25/25 | Maternal plasma | Insulin, amylin | qPCR | The demethylation indexes of insulin and amylin were decreased. The insulin methylation index was associated with insulin resistance and with newborn birth weight. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saucedo, R.; Ferreira-Hermosillo, A.; Robledo-Clemente, M.; Díaz-Velázquez, M.F.; Valencia-Ortega, J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites 2024, 14, 361. https://doi.org/10.3390/metabo14070361
Saucedo R, Ferreira-Hermosillo A, Robledo-Clemente M, Díaz-Velázquez MF, Valencia-Ortega J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites. 2024; 14(7):361. https://doi.org/10.3390/metabo14070361
Chicago/Turabian StyleSaucedo, Renata, Aldo Ferreira-Hermosillo, Magalhi Robledo-Clemente, Mary Flor Díaz-Velázquez, and Jorge Valencia-Ortega. 2024. "Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes" Metabolites 14, no. 7: 361. https://doi.org/10.3390/metabo14070361
APA StyleSaucedo, R., Ferreira-Hermosillo, A., Robledo-Clemente, M., Díaz-Velázquez, M. F., & Valencia-Ortega, J. (2024). Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites, 14(7), 361. https://doi.org/10.3390/metabo14070361