miR-21/SMAD2 Is Involved in the Decrease in Progesterone Synthesis Caused by Lipopolysaccharide Exposure in Follicular Granulosa Cells of Laying Goose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Treatments
2.3. Sample Collection and RNA Isolation
2.4. miRNA and mRNA Sequencing
2.5. Cell Culture and Transfection
2.6. Quantitative Real-Time PCR
2.7. ELISA
2.8. Statistical Analysis
3. Results
3.1. Morphological Observation and Reproductive Hormone Levels
3.2. miRNA RNA-Seq Profiling
3.3. Differentially Expressed miRNAs between HF and DF
3.4. Functional Analysis of DEMs
3.5. LPS Up-Regulated miR-21 Expression and P4 Synthesis in GCs
3.6. miR-21 Was Involved in LPS Regulation of P4 Synthesis in GCs
3.7. miR-21 Was Involved in LPS Regulation of P4 Synthesis in GCs by Down-Regulating SMAD2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LPS | Lipopolysaccharide |
P4 | Progesterone |
GCs | Granulosa Cells |
SMAD2 | SMAD family member 2 |
STAR | steroidogenic acute regulatory protein |
CYP11A1 | cytochrome P450 family 11 subfamily A member 1 |
HSD3B1 | 3β-hydroxysteroid dehydrogenase |
HF | GCs of the control group hierarchical follicles |
DF | GCs of the LPS treated denatured hierarchical follicles |
References
- Robinson, F.E.; Etches, R.J. Ovarian Steroidogenesis during Follicular Maturation in the Domestic Fowl (Gallus Domesticus). Biol. Reprod. 1986, 35, 1096–1105. [Google Scholar] [CrossRef]
- Liu, S.; Jia, Y.; Meng, S.; Luo, Y.; Yang, Q.; Pan, Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. Int. J. Mol. Sci. 2023, 24, 9205. [Google Scholar] [CrossRef]
- Heath, T.J. Dukes' Physiology of Domestic Animals. Aust. Vet. J. 1994, 71, 719–724. [Google Scholar] [CrossRef]
- Ying, S.; Qin, J.; Dai, Z.; An, H.; Zhu, H.; Chen, R.; Yang, X.; Wu, W.; Shi, Z. Effects of LPS on the Secretion of Gonadotrophin Hormones and Expression of Genes in the Hypothalamus-Pituitary-Ovary (HPG) Axis in Laying Yangzhou Geese. Animals 2020, 10, 2259. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Z.; Yao, Y.; Cao, Z.F.; Gu, T.T.; Xu, Q.; Chen, G.H. Histological characteristics of follicles and reproductive hormone secretion during ovarian follicle development in laying geese. Poult. Sci. 2019, 98, 6063–6070. [Google Scholar] [CrossRef] [PubMed]
- Jing, R.; Gu, L.; Li, J.; Gong, Y. A transcriptomic comparison of theca and granulosa cells in chicken and cattle follicles reveals ESR2 as a potential regulator of CYP19A1 expression in the theca cells of chicken follicles. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2018, 27, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.L. The avian ovary and follicle development: Some comparative and practical insights. Turk. J. Vet. Anim. Sci. 2014, 38, 660–669. [Google Scholar] [CrossRef]
- Nitta, H.; Ian Mason, J.; Bahr, J.M. Localization of 3β-Hydroxysteroid Dehydrogenase in the Chicken Ovarian Follicle Shifts from the Theca Layer to Granulosa Layer with Follicular Maturation1. Biol. Reprod. 1993, 48, 110–116. [Google Scholar] [CrossRef] [PubMed]
- King, S.R.; LaVoie, H.A. Gonadal transactivation of STARD1, CYP11A1 and HSD3B. Front. Biosci. 2012, 17, 824–846. [Google Scholar] [CrossRef]
- Horlock, A.D.; Ormsby, T.J.R.; Clift, M.J.D.; Santos, J.E.P.; Bromfield, J.J.; Sheldon, I.M. Cholesterol supports bovine granulosa cell inflammatory responses to lipopolysaccharide. Reproduction 2022, 164, 109–123. [Google Scholar] [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Ji, S.; Li, X.; Yang, Q.; Xu, B.; Wong, C.K.C.; Wang, L.; Li, L. LPS-Induced Systemic Inflammation Caused mPOA-FSH/LH Disturbance and Impaired Testicular Function. Front. Endocrinol. 2022, 13, 886085. [Google Scholar] [CrossRef]
- Bidne, K.L.; Dickson, M.J.; Ross, J.W.; Baumgard, L.H.; Keating, A.F. Disruption of female reproductive function by endotoxins. Reproduction 2018, 155, R169–R181. [Google Scholar] [CrossRef]
- Lüttgenau, J.; Lingemann, B.; Wellnitz, O.; Hankele, A.K.; Schmicke, M.; Ulbrich, S.E.; Bruckmaier, R.M.; Bollwein, H. Repeated intrauterine infusions of lipopolysaccharide alter gene expression and lifespan of the bovine corpus luteum. J. Dairy Sci. 2016, 99, 6639–6653. [Google Scholar] [CrossRef]
- Wang, D.; Weng, Y.; Zhang, Y.; Wang, R.; Wang, T.; Zhou, J.; Shen, S.; Wang, H.; Wang, Y. Exposure to hyperandrogen drives ovarian dysfunction and fibrosis by activating the NLRP3 inflammasome in mice. Sci. Total Environ. 2020, 745, 141049. [Google Scholar] [CrossRef]
- Yang, X.-W.; Liu, L.; Jiang, D.-L.; Wang, C.-L.; Sun, A.-D.; Shi, Z.-D. Improving Geese Production Performance in “Goose-Fish” Production System by Competitive Reduction of Pathogenic Bacteria in Pond Water. J. Integr. Agric. 2012, 11, 993–1001. [Google Scholar] [CrossRef]
- Zhu, H.; Shao, X.; Chen, Z.; Wei, C.; Lei, M.; Ying, S.; Yu, J.; Shi, Z. Induction of out-of-season egg laying by artificial photoperiod in Yangzhou geese and the associated endocrine and molecular regulation mechanisms. Anim. Reprod. Sci. 2017, 180, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.; Guo, J.; Dai, Z.; Zhu, H.; Yu, J.; Ma, W.; Li, J.; Akhtar, M.F.; Shi, Z. Time course effect of lipopolysaccharide on Toll-like receptors expression and steroidogenesis in the Chinese goose ovary. Reproduction 2017, 153, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Yan, L.; Guo, R.; Li, H.; Shi, Z. ROS-Induced GATA4 and GATA6 Downregulation Inhibits StAR Expression in LPS-Treated Porcine Granulosa-Lutein Cells. Oxidative Med. Cell. Longev. 2019, 2019, 5432792. [Google Scholar] [CrossRef]
- Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs' Action through miRNA Editing. Int. J. Mol. Sci. 2019, 20, 6249. [Google Scholar] [CrossRef]
- Backes, C.; Meese, E.; Keller, A. Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol. Diagn. Ther. 2016, 20, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Donadeu, F.X.; Sanchez, J.M.; Mohammed, B.T.; Ioannidis, J.; Stenhouse, C.; Maioli, M.A.; Esteves, C.L.; Lonergan, P. Relationships between size, steroidogenesis and miRNA expression of the bovine corpus luteum. Theriogenology 2020, 145, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-L.; Wang, H.; Yan, C.-Y.; Gao, X.-F.; Ling, X.-J. Deregulation of RUNX2 by miR-320a deficiency impairs steroidogenesis in cumulus granulosa cells from polycystic ovary syndrome (PCOS) patients. Biochem. Biophys. Res. Commun. 2017, 482, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, Y.; Lv, M.; Xing, Q.; Zhang, Z.; He, X.; Xu, Y.; Wei, Z.; Cao, Y. miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1. Gene 2019, 683, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Lü, M.; Yao, G.; Tian, H.; Lian, J.; Liu, L.; Liang, M.; Wang, Y.; Sun, F. Transactivation of microRNA-383 by Steroidogenic Factor-1 Promotes Estradiol Release from Mouse Ovarian Granulosa Cells by Targeting RBMS1. Mol. Endocrinol. 2012, 26, 1129–1143. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xu, H.; Li, Y.; Liu, H.; Zhao, J.; Lu, W.; Wang, J. Kisspeptin-10 Promotes Progesterone Synthesis in Bovine Ovarian Granulosa Cells via Downregulation of microRNA-1246. Genes 2022, 13, 298. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhao, J.; Xu, Q.; Guo, Y.; Liu, M.; Zhang, C.; Schinckel, A.P.; Zhou, B. MiR-31 targets HSD17B14 and FSHR, and miR-20b targets HSD17B14 to affect apoptosis and steroid hormone metabolism of porcine ovarian granulosa cells. Theriogenology 2022, 180, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Mo, Y.; Liu, Y.; Deng, Y.; Hu, S.; Li, L.; Hu, J.; Hu, B.; He, H.; Wang, J. MiR-181a-5p inhibits goose granulosa cell viability by targeting SIRT1. Br. Poult. Sci. 2021, 62, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, H.; Chen, X.; Wu, Y.; Wang, L.; Li, J. Long non-coding RNA MSTRG.5970.28 regulates proliferation and apoptosis of goose follicle granulosa cells via the miR-133a-3p/ANOS1 pathway. Poult. Sci. 2023, 102, 102451. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, K.; Zhao, X.; Wang, Y.; Li, J.; Xie, Y.; Zhong, H.; Wang, Q. miR-199-3p suppresses cellular migration and viability and promotes progesterone production in goose ovarian follicles before selection through regulating ITGB8 and other ECM-related genes. Br. Poult. Sci. 2023, 64, 275–282. [Google Scholar] [CrossRef]
- Silva, L.P.; Lorenzi, P.L.; Purwaha, P.; Yong, V.; Hawke, D.H.; Weinstein, J.N. Measurement of DNA concentration as a normalization strategy for metabolomic data from adherent cell lines. Anal. Chem. 2013, 85, 9536–9542. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.-L.; Liu, L.; Wang, C.-L.; Chen, F.; Sun, A.-D.; Shi, Z.-D. Raising on Water Stocking Density Reduces Geese Reproductive Performances via Water Bacteria and Lipopolysaccharide Contaminations in “Geese-Fish” Production System. Agric. Sci. China 2011, 10, 1459–1466. [Google Scholar] [CrossRef]
- Zhao, F.-Q.; Zhao, Y.; Liu, J.-Y.; Gou, Y.-J.; Yang, Y.-Q. Effects of berberine on LPS /NF-κB and MAPK signaling pathways in PCOS model rats. Chin. J. Appl. Physiol. 2022, 38, 181–186. [Google Scholar] [CrossRef]
- Li, L.; Tang, J.; Sun, Y.; Wu, J.; Yu, P.; Wang, G. Upregulation of HO-1 Attenuates LPS-Stimulated Proinflammatory Responses Through Downregulation of p38 Signaling Pathways in Rat Ovary. Inflammation 2015, 38, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Wang, Y.; Li, L.; Han, Z.; Wang, G. UFL1 Alleviates LPS-Induced Apoptosis by Regulating the NF-κB Signaling Pathway in Bovine Ovarian Granulosa Cells. Biomolecules 2020, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Haldar, C.; Verma, R. Melatonin attenuates LPS-induced ovarian toxicity via modulation of SIRT-1, PI3K/pAkt, pErk1/2 and NFĸB/COX-2 expressions. Toxicol. Appl. Pharmacol. 2022, 451, 116173. [Google Scholar] [CrossRef]
- Banaszewska, B.; Siakowska, M.; Chudzicka-Strugala, I.; Chang, R.J.; Pawelczyk, L.; Zwozdziak, B.; Spaczynski, R.; Duleba, A.J. Elevation of markers of endotoxemia in women with polycystic ovary syndrome. Hum. Reprod. 2020, 35, 2303–2311. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Z.; Zhang, Y.; Wang, H.; Li, Y. MiR-873-5p regulated LPS-induced oxidative stress via targeting heme oxygenase-1 (HO-1) in KGN cells. RSC Adv. 2018, 8, 39098–39105. [Google Scholar] [CrossRef]
- Wen, X.; Li, D.; Tozer, A.J.; Docherty, S.M.; Iles, R.K. Estradiol, progesterone, testosterone profiles in human follicular fluid and cultured granulosa cells from luteinized pre-ovulatory follicles. Reprod. Biol. Endocrinol. 2010, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Hsu, H.J.; Guo, I.C.; Chung, B.C. Function of Cyp11a1 in animal models. Mol. Cell. Endocrinol. 2004, 215, 95–100. [Google Scholar] [CrossRef]
- Sechman, A.; Pawlowska, K.; Hrabia, A. Effect of 3,3′,5-triiodothyronine and 3,5-diiodothyronine on progesterone production, cAMP synthesis, and mRNA expression of STAR, CYP11A1, and HSD3B genes in granulosa layer of chicken preovulatory follicles. Domest. Anim. Endocrinol. 2011, 41, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.T.; Bahr, J.M. Inhibition of the Activities of P450 Cholesterol Side-Chain Cleavage and 3β-Hydroxysteroid Dehydrogenase and the Amount of P450 Cholesterol Side-Chain Cleavage by Testosterone and Estradiol-17β in Hen Granulosa Cells*. Endocrinology 1990, 126, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, L.; He, Z.; Chen, M.; Ding, Y.; Yao, Y.; Duan, Y.; Zixuan, L.; Qi, C.; Zheng, L.; et al. Andrographolide Suppresses the Growth and Metastasis of Luminal-Like Breast Cancer by Inhibiting the NF-κB/miR-21-5p/PDCD4 Signaling Pathway. Front. Cell Dev. Biol. 2021, 9, 643525. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhang, Y.; Mu, J.; Yang, D.; Gu, X.; Zhang, J. Exosomal miR-21-5p contributes to ovarian cancer progression by regulating CDK6. Hum. Cell 2021, 34, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-C.; Li, W.-N.; Lin, S.-C.; Hou, H.-T.; Tsai, Y.-C.; Lin, T.-C.; Wu, M.-H.; Tsai, S.-J. Targeting YAP1 ameliorates progesterone resistance in endometriosis. Hum. Reprod. 2023, 38, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.-H.; Sun, Y.-T.; Bao, S. HucMSCs-exosomes containing miR-21 promoted estrogen production in ovarian granulosa cells via LATS1-mediated phosphorylation of LOXL2 and YAP. Gen. Comp. Endocrinol. 2022, 321–322, 114015. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Wang, J.; Shuai, R.; Qu, C.; Qin, M.; Cong, Y.; Shan, L. Downregulation of miR-21 is Involved in the Pathogenesis of Infection-Induced Preterm Birth by Targeting NF-κB. Reprod. Sci. 2022, 29, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Y.; Zhou, Z.; He, X.; Tao, L.; Jiang, Y.; Lan, R.; Hong, Q.; Chu, M. chi-miR-324-3p Regulates Goat Granulosa Cell Proliferation by Targeting DENND1A. Front. Vet. Sci. 2021, 8, 732440. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.H.; Truong, V.B.; Sabry, R.; Acosta, J.E.; McCahill, K.; Favetta, L.A. SMAD signaling pathway is disrupted by BPA via the AMH receptor in bovine granulosa cells†. Biol. Reprod. 2023, 109, 994–1008. [Google Scholar] [CrossRef]
- Liu, J.; Qi, N.; Xing, W.; Li, M.; Qian, Y.; Luo, G.; Yu, S. The TGF-β/SMAD Signaling Pathway Prevents Follicular Atresia by Upregulating MORC2. Int. J. Mol. Sci. 2022, 23, 657. [Google Scholar] [CrossRef]
- Gomart, A.; Vallée, A.; Lecarpentier, Y. Necrotizing Enterocolitis: LPS/TLR4-Induced Crosstalk Between Canonical TGF-β/Wnt/β-Catenin Pathways and PPARγ. Front. Pediatr. 2021, 9, 713344. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Yuan, Y.; Lu, Z.; Ma, Y.; Xie, Y.; Wang, M.; Liu, F.; Zhu, C.; Lin, C. Effects of Nervilia fordii Extract on Pulmonary Fibrosis through TGF-β/Smad Signaling Pathway. Front. Pharmacol. 2021, 12, 659627. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Li, Z.; Cao, J.; Kong, X.; Gong, G. A TGFBR2/SMAD2/DNMT1/miR-145 negative regulatory loop is responsible for LPS-induced sepsis. Biomed. Pharmacother. 2019, 112, 108626. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Jia, Q.; Liu, B.; Yan, Y.; Han, X.; Guo, Y.; Cheng, J.-C.; Sun, Y.-P. BMP-9 downregulates StAR expression and progesterone production by activating both SMAD1/5/8 and SMAD2/3 signaling pathways in human granulosa-lutein cells obtained from gonadotropins induced ovarian cycles. Cell Signal. 2021, 86, 110089. [Google Scholar] [CrossRef]
- An, X.; Cao, H.; Liu, S.; Cao, B. Effects of TG interaction factor 1 on synthesis of estradiol and progesterone in granulosa cells of goats through SMAD2/3-SP1 signaling pathway. Anim. Reprod. Sci. 2021, 229, 106750. [Google Scholar] [CrossRef]
#ID | HF (Mean TPM) | DF (Mean TPM) | p Value | Log2FC | Regulated |
---|---|---|---|---|---|
aca-miR-145-5p | 4.69 | 1533.23 | <0.001 | 8.147 | up |
aca-miR-375-3p | 500.16 | 2.4 | <0.001 | −7.954 | down |
aca-miR-145-3p | 2.29 | 330.66 | <0.001 | 6.963 | up |
aca-miR-143-3p | 237.78 | 33,591.19 | <0.001 | 6.947 | up |
aca-miR-199a-5p | 19.68 | 1249.16 | <0.001 | 5.7 | up |
aca-miR-21 | 1242.66 | 46,442.46 | <0.001 | 4.986 | up |
aca-miR-1388-5p | 14.67 | 522.74 | <0.001 | 4.913 | up |
aca-miR-204a-5p | 228.54 | 9.11 | <0.001 | −4.886 | down |
aca-miR-205a | 6.03 | 173.2 | <0.001 | 4.637 | up |
aca-miR-122-5p | 570.11 | 33.26 | <0.001 | −4.24 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Ying, S.; Xiao, H.; An, H.; Guo, R.; Dai, Z.; Wu, W. miR-21/SMAD2 Is Involved in the Decrease in Progesterone Synthesis Caused by Lipopolysaccharide Exposure in Follicular Granulosa Cells of Laying Goose. Metabolites 2024, 14, 362. https://doi.org/10.3390/metabo14070362
Guo X, Ying S, Xiao H, An H, Guo R, Dai Z, Wu W. miR-21/SMAD2 Is Involved in the Decrease in Progesterone Synthesis Caused by Lipopolysaccharide Exposure in Follicular Granulosa Cells of Laying Goose. Metabolites. 2024; 14(7):362. https://doi.org/10.3390/metabo14070362
Chicago/Turabian StyleGuo, Xinyi, Shijia Ying, Huiping Xiao, Hao An, Rihong Guo, Zichun Dai, and Wenda Wu. 2024. "miR-21/SMAD2 Is Involved in the Decrease in Progesterone Synthesis Caused by Lipopolysaccharide Exposure in Follicular Granulosa Cells of Laying Goose" Metabolites 14, no. 7: 362. https://doi.org/10.3390/metabo14070362
APA StyleGuo, X., Ying, S., Xiao, H., An, H., Guo, R., Dai, Z., & Wu, W. (2024). miR-21/SMAD2 Is Involved in the Decrease in Progesterone Synthesis Caused by Lipopolysaccharide Exposure in Follicular Granulosa Cells of Laying Goose. Metabolites, 14(7), 362. https://doi.org/10.3390/metabo14070362