Amino Acid Profile Alterations in Phenylketonuria: Implications for Clinical Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. LC-MS-Based Determination of Amino Acid Serum Levels
2.2. Minimum Sample Size
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scriver, C.R. The PAH Gene, Phenylketonuria, and a Paradigm Shift. Hum. Mutat. 2007, 28, 831–845. [Google Scholar] [CrossRef] [PubMed]
- Flydal, M.I.; Martinez, A. Phenylalanine Hydroxylase: Function, Structure, and Regulation. IUBMB Life 2013, 65, 341–349. [Google Scholar] [CrossRef]
- Blau, N.; Van Spronsen, F.J.; Levy, H.L. Phenylketonuria. Lancet 2010, 376, 1417–1427. [Google Scholar] [CrossRef]
- BIOPKU:: International Database of Patients and Mutations Causing BH4-Responsive HPA/PKU. Available online: http://www.biopku.org/home/home.asp (accessed on 5 May 2024).
- van Spronsen, F.J.; Blau, N.; Harding, C.; Burlina, A.; Longo, N.; Bosch, A.M. Phenylketonuria. Nat. Rev. Dis. Primers 2021, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Hillert, A.; Anikster, Y.; Belanger-Quintana, A.; Burlina, A.; Burton, B.K.; Carducci, C.; Chiesa, A.E.; Christodoulou, J.; Đorđević, M.; Desviat, L.R.; et al. The Genetic Landscape and Epidemiology of Phenylketonuria. Am. J. Hum. Genet. 2020, 107, 234–250. [Google Scholar] [CrossRef]
- Van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The Complete European Guidelines on Phenylketonuria: Diagnosis and Treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef]
- Daly, A.; Evans, S.; Pinto, A.; Ashmore, C.; Macdonald, A. Protein Substitutes in PKU. Their Historical Evolution. Nutrients 2021, 13, 484. [Google Scholar] [CrossRef]
- Lilleväli, H.; Reinson, K.; Muru, K.; Saarsalu, S.; Künnapas, K.; Kahre, T.; Murumets, Ü.; Õunap, K. The Evaluation of Phenylalanine Levels in Estonian Phenylketonuria Patients during Eight Years by Electronic Laboratory Records. Mol. Genet. Metab. Rep. 2019, 19, 100467. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, D.; Bukowska-Posadzy, A.; Kałuzny, Ł.; Ołtarzewski, M.; Staszewski, R.; Musielak, M.; Walkowiak, J. Therapy Compliance in Children with Phenylketonuria Younger than 5 Years: A Cohort Study. Adv. Clin. Exp. Med. 2019, 28, 1385–1391. [Google Scholar] [CrossRef]
- Jahja, R.; van Spronsen, F.J.; de Sonneville, L.M.J.; van der Meere, J.J.; Bosch, A.M.; Hollak, C.E.M.; Rubio-Gozalbo, M.E.; Brouwers, M.C.G.J.; Hofstede, F.C.; de Vries, M.C.; et al. Social-Cognitive Functioning and Social Skills in Patients with Early Treated Phenylketonuria: A PKU-COBESO Study. J. Inherit. Metab. Dis. 2016, 39, 355–362. [Google Scholar] [CrossRef]
- Bilder, D.A.; Kobori, J.A.; Cohen-Pfeffer, J.L.; Johnson, E.M.; Jurecki, E.R.; Grant, M.L. Neuropsychiatric Comorbidities in Adults with Phenylketonuria: A Retrospective Cohort Study. Mol. Genet. Metab. 2017, 121, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Trefz, K.F.; Muntau, A.C.; Kohlscheen, K.M.; Altevers, J.; Jacob, C.; Braun, S.; Greiner, W.; Jha, A.; Jain, M.; Alvarez, I.; et al. Clinical Burden of Illness in Patients with Phenylketonuria (PKU) and Associated Comorbidities—A Retrospective Study of German Health Insurance Claims Data. Orphanet J. Rare Dis. 2019, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Pietz, J.; Fätkenheuer, B.; Burgard, P.; Armbruster, M.; Esser, G.; Schmidt, H. Psychiatric Disorders in Adult Patients with Early-Treated Phenylketonuria. Pediatrics 1997, 99, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Burton, B.K.; Jones, K.B.; Cederbaum, S.; Rohr, F.; Waisbren, S.; Irwin, D.E.; Kim, G.; Lilienstein, J.; Alvarez, I.; Jurecki, E.; et al. Prevalence of Comorbid Conditions among Adult Patients Diagnosed with Phenylketonuria. Mol. Genet. Metab. 2018, 125, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Palermo, L.; MacDonald, A.; Limback, E.; Robertson, L.; Howe, S.; Geberhiwot, T.; Romani, C. Emotional Health in Early-Treated Adults with Phenylketonuria (PKU): Relationship with Cognitive Abilities and Blood Phenylalanine. J. Clin. Exp. Neuropsychol. 2020, 42, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Ford, S.; O’Driscoll, M.; MacDonald, A. Living with Phenylketonuria: Lessons from the PKU Community. Mol. Genet. Metab. Rep. 2018, 17, 57–63. [Google Scholar] [CrossRef]
- Darbà, J. Characteristics, Comorbidities, and Use of Healthcare Resources of Patients with Phenylketonuria: A Population-Based Study. J. Med. Econ. 2019, 22, 1025–1029. [Google Scholar] [CrossRef]
- Walkowiak, D.; Kaluzny, L.; Bukowska-Posadzy, A.; Oltarzewski, M.; Staszewski, R.; Moczko, J.A.; Musielak, M.; Walkowiak, J. Overweight in Classical Phenylketonuria Children: A Retrospective Cohort Study. Adv. Med. Sci. 2019, 64, 409–414. [Google Scholar] [CrossRef]
- Burrage, L.C.; McConnell, J.; Haesler, R.; O’Riordan, M.A.; Sutton, V.R.; Kerr, D.S.; McCandless, S.E. High Prevalence of Overweight and Obesity in Females with Phenylketonuria. Mol. Genet. Metab. 2012, 107, 43–48. [Google Scholar] [CrossRef]
- Grisch-Chan, H.M.; Schwank, G.; Harding, C.O.; Thöny, B. State-of-the-Art 2019 on Gene Therapy for Phenylketonuria. Hum. Gene Ther. 2019, 30, 1274–1283. [Google Scholar] [CrossRef]
- Perez-Garcia, C.G.; Diaz-Trelles, R.; Vega, J.B.; Bao, Y.; Sablad, M.; Limphong, P.; Chikamatsu, S.; Yu, H.; Taylor, W.; Karmali, P.P.; et al. Development of an MRNA Replacement Therapy for Phenylketonuria. Mol. Ther. Nucleic Acids 2022, 28, 87–98. [Google Scholar] [CrossRef]
- Lichter-Konecki, U.; Vockley, J. Phenylketonuria: Current Treatments and Future Developments. Drugs 2019, 79, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.K.; Walkowiak, J. Study Designs in Medical Research and Their Key Characteristics. JMS 2023, 92, e928. [Google Scholar] [CrossRef]
- Güttler, F. Hyperphenylalaninemia: Diagnosis and Classification of the Various Types of Phenylalanine Hydroxylase Deficiency in Childhood. Acta Paediatr. Scand. Suppl. 1980, 280, 1–80. [Google Scholar]
- Sawicka-Gutaj, N.; Gruszczyński, D.; Guzik, P.; Mostowska, A.; Walkowiak, J. Publication Ethics of Human Studies in the Light of the Declaration of Helsinki—A Mini-Review. J. Med. Sci. 2022, 91, e700. [Google Scholar] [CrossRef]
- Plewa, S.; Dereziński, P.; Florczak-Wyspiańska, J.; Popławska-Domaszewicz, K.; Kozubski, W.; Sokół, B.; Jankowski, R.; Matysiak, J.; Kokot, Z.J. LC-MS/MS Based Targeted Metabolomics Method for Analysis of Serum and Cerebrospinal Fluid. J. Med. Sci. 2019, 88, 12–20. [Google Scholar] [CrossRef]
- Cannet, C.; Pilotto, A.; Rocha, J.C.; Schäfer, H.; Spraul, M.; Berg, D.; Nawroth, P.; Kasperk, C.; Gramer, G.; Haas, D.; et al. Lower Plasma Cholesterol, LDL-Cholesterol and LDL-Lipoprotein Subclasses in Adult Phenylketonuria (PKU) Patients Compared to Healthy Controls: Results of NMR Metabolomics Investigation. Orphanet J. Rare Dis. 2020, 15, 61. [Google Scholar] [CrossRef]
- Guzik, P.; Więckowska, B. Data Distribution Analysis—A Preliminary Approach to Quantitative Data in Biomedical Research. J. Med. Sci. 2023, 92, e869. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- van Karnebeek, C.D.M.; Wortmann, S.B.; Tarailo-Graovac, M.; Langeveld, M.; Ferreira, C.R.; van de Kamp, J.M.; Hollak, C.E.; Wasserman, W.W.; Waterham, H.R.; Wevers, R.A.; et al. The Role of the Clinician in the Multi-Omics Era: Are You Ready? J. Inherit. Metab. Dis. 2018, 41, 571–582. [Google Scholar] [CrossRef]
- Guerra, I.M.S.; Diogo, L.; Pinho, M.; Melo, T.; Domingues, P.; Domingues, M.R.; Moreira, A.S.P. Plasma Phospholipidomic Profile Differs between Children with Phenylketonuria and Healthy Children. J. Proteome Res. 2021, 20, 2651–2661. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.; Rocha, J.C.; van Rijn, M.; Ahring, K.; Bélanger-Quintana, A.; MacDonald, A.; Dokoupil, K.; Gokmen Ozel, H.; Lammardo, A.M.; Goyens, P.; et al. Micronutrient Status in Phenylketonuria. Mol. Genet. Metab. 2013, 110, S6–S17. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.; Daly, A.; MacDonald, J.; Anne Preece, M.; Santra, S.; Vijay, S.; Chakrapani, A.; MacDonald, A. The Micronutrient Status of Patients with Phenylketonuria on Dietary Treatment: An Ongoing Challenge. Ann. Nutr. Metab. 2014, 65, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Wiig, I.; Motzfeldt, K.; Løken, E.B.; Kase, B.F. Nutritional Consequences of Adhering to a Low Phenylalanine Diet for Late-Treated Adults with PKU: Low Phe Diet for Adults with PKU. JIMD Rep. 2013, 7, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, M.; Fiori, L.; Casero, D.; Lammardo, A.M.; Bertolotti, D.; Bonza, M.; Salvatici, E.; Riva, E. Effects of Six Month-Supplementation of a New Phe-Free Powdered Aminoacid Preparation on Blood Aminoacid Profile and Levels of Albumin, Protein and Trasferrin in PKU Patients. J. Inherit. Metab. Dis. 1665, 29, 52. [Google Scholar]
- Firman, S.J.; Ramachandran, R.; Whelan, K.; Witard, O.C.; O’Keeffe, M. Protein Status in Phenylketonuria: A Scoping Review. Clin. Nutr. 2022, 41, 894–922. [Google Scholar] [CrossRef]
- Yano, S.; Moseley, K.; Bottiglieri, T.; Arning, E.; Azen, C. Maternal Phenylketonuria International Collaborative Study revisited: Evaluation of Maternal Nutritional Risk Factors Besides Phenylalanine for Fetal Congenital Heart Defects. J. Inherit. Metab. Dis. 2014, 37, 39–42. [Google Scholar] [CrossRef]
- Matalon, R.; Michals-Matalon, K.; Bhatia, G.; Burlina, A.B.; Burlina, A.P.; Braga, C.; Fiori, L.; Giovannini, M.; Grechanina, E.; Novikov, P.; et al. Double Blind Placebo Control Trial of Large Neutral Amino Acids in Treatment of PKU: Effect on Blood Phenylalanine. J. Inherit. Metab. Dis. 2007, 30, 153–158. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; McKenzie, G.; Witting, P.K.; Stasch, J.P.; Hahn, M.; Changsirivathanathamrong, D.; Wu, B.J.; Ball, H.J.; Thomas, S.R.; et al. Kynurenine Is an Endothelium-Derived Relaxing Factor Produced during Inflammation. Nat. Med. 2010, 16, 279–285. [Google Scholar] [CrossRef]
- Bartoli, F.; Misiak, B.; Callovini, T.; Cavaleri, D.; Cioni, R.M.; Crocamo, C.; Savitz, J.B.; Carrà, G. The Kynurenine Pathway in Bipolar Disorder: A Meta-Analysis on the Peripheral Blood Levels of Tryptophan and Related Metabolites. Mol. Psychiatry 2021, 26, 3419–3429. [Google Scholar] [CrossRef]
- Ney, D.M.; Blank, R.D.; Hansen, K.E. Advances in the Nutritional and Pharmacological Management of Phenylketonuria. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Bassot, A.; Bulteau, A.L.; Pirola, L.; Morio, B. Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
- Zafra, F.; Giménez, C. Glycine Transporters and Synaptic Function. IUBMB Life 2008, 60, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Salceda, R. Glycine Neurotransmission: Its Role in Development. Front. Neurosci. 2022, 16, 947563. [Google Scholar] [CrossRef] [PubMed]
- Cummings, K.A.; Popescu, G.K. Glycine-Dependent Activation of NMDA Receptors. J. Gen. Physiol. 2015, 145, 513–527. [Google Scholar] [CrossRef]
- PubChem. Glycine and Serine Metabolism. Available online: https://pubchem.ncbi.nlm.nih.gov/pathway/PathBank:SMP0000004#section=Diagram (accessed on 9 July 2024).
- Charrière, S.; Maillot, F.; Bouée, S.; Douillard, C.; Jacob, C.; Schneider, K.M.; Theil, J.; Arnoux, J.B. Health Status and Comorbidities of Adult Patients with Phenylketonuria (PKU) in France with a Focus on Early-Diagnosed Patients—A Nationwide Study of Health Insurance Claims Data. Mol. Genet. Metab. 2023, 139, 107625. [Google Scholar] [CrossRef] [PubMed]
- Hennermann, J.B.; Roloff, S.; Gellermann, J.; Vollmer, I.; Windt, E.; Vetter, B.; Plöckinger, U.; Mönch, E.; Querfeld, U. Chronic Kidney Disease in Adolescent and Adult Patients with Phenylketonuria. J. Inherit. Metab. Dis. 2013, 36, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Hermida-Ameijeiras, A.; Crujeiras, V.; Roca, I.; Calvo, C.; Leis, R.; Couce, M.L. Arterial Stiffness Assessment in Patients with Phenylketonuria. Medicine 2017, 96, e9322. [Google Scholar] [CrossRef] [PubMed]
- Giret, C.; Dos Santos, Y.; Blasco, H.; Paget, C.; Gonzalez, L.; Tressel, N.; Dieu, M.; Bigot, A.; Gissot, V.; Audemard-Verger, A.; et al. No Evidence for Systemic Low-Grade Inflammation in Adult Patients with Early-Treated Phenylketonuria: The INGRAPH Study. JIMD Rep. 2023, 64, 446–452. [Google Scholar] [CrossRef]
- Kanzelmeyer, N.; Tsikas, D.; Chobanyan-Jürgens, K.; Beckmann, B.; Vaske, B.; Illsinger, S.; Das, A.M.; Lücke, T. Asymmetric Dimethylarginine in Children with Homocystinuria or Phenylketonuria. Amino Acids 2012, 42, 1765–1772. [Google Scholar] [CrossRef]
- Verduci, E.; Banderali, G.; Moretti, F.; Lassandro, C.; Cefalo, G.; Radaelli, G.; Salvatici, E.; Giovannini, M. Diet in Children with Phenylketonuria and Risk of Cardiovascular Disease: A Narrative Overview. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 171–177. [Google Scholar] [CrossRef] [PubMed]
PKU Group | Control Group | p Value 1 | ||||
---|---|---|---|---|---|---|
N (%) | N (%) | |||||
Sex | female | 11 (55.0) | 31 (60.8) | 0.789400 | ||
male | 9 (45.0) | 20 (39.2) | ||||
Median (Q1–Q3) | Mean ± SD (95%CI) | Median (Q1–Q3) | Mean ± SD (95%CI) | p value 2 | ||
Age (years) | 24.5 (20.2–28.5) | 24.6 ± 5.8 (22.0–27.1) | 24.1 (21.7–28.0) | 25.1 ± 4.5 (23.8–26.3) | 0.715628 | |
BMI (kg/m2) | 21.3 (20.6–23.7) | 22.0 ± 2.4 (21.0–23.1) | 21.6 (19.8–23.4) | 21.7 ± 3.1 (20.9–22.5) | 0.649982 | |
Annual median Phe concentration (mg/dL) | 9.05 (5.75–13.72) | 10.16 ± 5.70 (7.66–12.66) | - | - | - | |
Preceding year abnormal Phe results (%) | 48.4 (6.23–100) | 48.4 ± 41.9 (30.1–66.8) | - | - | - |
Analyte Name | PKU Group (n = 20) | Control Group (n = 51) | p Value 1 | ||
---|---|---|---|---|---|
Median (Q1–Q3) | Mean ± SD (95%CI) | Median (Q1–Q3) | Mean ± SD (95%CI) | ||
Acetylcarnitine | 5.93 (4.99–8.06) | 6.59 ± 2.57 (5.38–7.79) | 5.60 (4.47–7.26) | 6.06 ± 2.11 (5.47–6.65) | 0.462324 |
Alanine | 357 (300–440) | 367 ± 94 (323–411) | 339 (277–376) | 338 ± 70 (319–358) | 0.194422 |
Arginine | 92.2 (73.4–108.5) | 94.5 ± 28.9 (80.9–108.0) | 84.4 (71.8–104.0) | 86.1 ± 20.8 (80.2–91.9) | 0.364063 |
Asparagine | 43.4 (35.7–47.3) | 40.7 ± 9.3 (36.4–45.1) | 48.7 (44.0–52.7) | 49.0 ± 7.1 (47.0–51.0) | 0.000995 |
Aspartate | 16.90 (13.85–20.05) | 19.55 ± 8.94 (15.37–23.74) | 19.10 (15.50–24.40) | 20.38 ± 6.82 (18.46–22.30) | 0.224560 |
Asymmetric dimethylarginine | 0.517 (0.468–0.577) | 0.521 ± 0.076 (0.485–0.556) | 0.476 (0.410–0.495) | 0.471 ± 0.079 (0.448–0.493) | 0.009996 |
Carnitine | 32.8 (28.2–40.10) | 34.5 ± 8.6 (30.5–38.5) | 30.0 (25.5–36.1) | 31.3 ± 7.5 (29.2–33.4) | 0.093998 |
Citrulline | 31.1 (25.2–36.0) | 30.9 ± 7.1 (27.6–34.3) | 27.6 (24.2–32.7) | 28.6 ± 6.2 (26.8–30.3) | 0.139789 |
Creatinine | 72.5 (65.5–83.2) | 74.2 ± 13.7 (67.8–80.6) | 62.9 (59.4–75.4) | 68.1 ± 12.2 (64.7–71.6) | 0.034920 |
Glutamate | 50.5 (35.4–74.9) | 66.00 ± 46.85 (44.08–87.93) | 48.4 (37.2–67.8) | 58.70 ± 31.00 (55.00–67.50) | 0.974506 |
Glutamine | 559 (491–653) | 562 ± 128 (502–622) | 582 (528–636) | 582 ± 82 (559–606) | 0.489986 |
Glycine | 350 (329–451) | 381 ± 110 (329–433) | 263 (243–309) | 282 ± 72 (262–302) | 0.000012 |
Hexoses (including glucose) | 4033 (3783–4493) | 4061 ± 441 (3855–4268) | 3883 (3487–4198) | 3903 ± 507 (3760–4045) | 0.169394 |
Histidine | 84.2 (76.5–88.1) | 83.9 ± 11.3 (78.7–89.2) | 84.2 (76.3–93.4) | 85.4 ± 12.2 (82.0–88.8) | 0.691897 |
Isoleucine | 69.7 (60.2–77.8) | 68.9 ± 12.5 (63.1–74.8) | 70.1 (62.0–83.3) | 72.6 ± 16.8 (67.9–77.3) | 0.522713 |
Kynurenine | 1.200 (0.997–1.470) | 1.309 ± 0.456 (1.096–1.522) | 1.990 (1.690–2.390) | 2.073 ± 0.502 (1.932–2.215) | 0.000001 |
Leucine | 134.5 (125.0–152.0) | 137.4 ± 22.3 (127.0–147.9) | 136.0 (115.0–160.0) | 138.5 ± 36.4 (128.2–148.7) | 0.832913 |
Lysine | 158.0 (151.0–178.5) | 165.2 ± 22.7 (154.6–175.9) | 159.0 (139.0–186.0) | 162.1 ± 32.6 (153.0–171.3) | 0.547870 |
Methionine | 21.6 (19.1–24.8) | 21.8 ± 3.5 (20.2–23.4) | 20.4 (18.8–23.9) | 21.3 ± 4.25 (20.1–22.5) | 0.398804 |
Ornithine | 68.7 (68.7–50.1) | 69.8 ± 23.8 (58.7–81.0) | 74.1 (63.9–92.9) | 81.3 ± 26.5 (73.9–88.7) | 0.161583 |
Proline | 143.5 (123.0–158.5) | 149.6 ± 35.3 (133.1–166.2) | 167.0 (142.0–200.0) | 175.8 ± 51.8 (161.2–190.3) | 0.011777 |
Putrescine | 0.225 (0.165–0.295) | 0.223 ± 0.086 (0.183–0.264) | 0.161 (0.130–0.196) | 0.166 ± 0.043 (0.154–0.178) | 0.005532 |
Serine | 123.0 (115.5–148.5) | 129.3 ± 28.4 (116.0–142.7) | 137.0 (118.0–158.0) | 139.0 ± 25.1 (131.9–146.0) | 0.214815 |
Serotonin | 0.487 (0.277–0.588) | 0.476 ± 0.276 (0.347–0.605) | 0.557(0.364–0.729) | 0.580 ± 0.273 (0.504–0.657) | 0.159681 |
Threonine | 109.0 (96.2–126.0) | 117.0 ± 31.7 (102.1–131.8) | 122.0 (101.0–139.0) | 122.6 ± 27.6 (114.8–130.4) | 0.205605 |
Tryptophan | 62.4 (59.9–65.6) | 63.0 ± 9.5 (58.6–67.5) | 65.1 (58.0–70.6) | 65.6 ± 10.3 (62.8–68.5) | 0.435505 |
Tyrosine | 44.8 (39.7–51.1) | 47.4 ± 14.6 (40.5–54.2) | 59.7 (50.2–65.8) | 60.4 ± 14.5 (56.3–64.5) | 0.000199 |
Valine | 194 (180–220) | 198.1 ± 28.9 (184.6–211.7) | 202 (165–233) | 201.0 ± 48.1 (187.5–214.6) | 0.984700 |
Acetylcarnitine/Carnitine | 0.175 (0.132–0.241) | 0.198 ± 0.085 (0.159–0.238) | 0.190 (0.144–0.244) | 0.202 ± 0.081 (0.180–0.225) | 0.739593 |
Asymmetric dimethylarginine/Arginine | 0.006 (0.004–0.007) | 0.006 ± 0.002 (0.005–0.007) | 0.006 (0.004–0.006) | 0.006 ± 0.002 (0.005–0.006) | 0.348066 |
Branched-chain amino acids | 399 (363–450) | 405 ± 60 (377–433) | 405 (353–463) | 412 ± 98 (384–440) | 0.974506 |
Citrulline/Ornithine | 0.463 (0.375–0.585) | 0.482 ± 0.159 (0.407–0.556) | 0.358 (0.300–0.420) | 0.374 ± 0.107 (0.343–0.404) | 0.004274 |
Citrulline/Arginine | 0.368 (0.274–0.439) | 0.358 ± 0.126 (0.299–0.417) | 0.352 (0.268–0.413) | 0.348 ± 0.096 (0.321–0.375) | 0.649968 |
Glucogenic amino acids | 871 (805–974) | 877 ± 182 (792–962) | 730 (676–812) | 759 ± 127 (724–795) | 0.001776 |
Kynurenine/Tryptophan | 0.021 (0.018–0.023) | 0.021 ± 0.005 (0.018–0.023) | 0.032 (0.027–0.036) | 0.032 ± 0.006 (0.030–0.033) | <0.000001 |
Ornithine/Arginine | 0.727 (0.546–0.934) | 0.841 ± 0.485 (0.614–1.068) | 0.879 (0.687–1.180) | 1.017 ± 0.475 (0.883–1.150) | 0.053576 |
Putrescine/Ornithine | 0.003 (0.002–0.004) | 0.003 ± 0.002 (0.003–0.004) | 0.002 (0.002–0.003) | 0.002 ± 0.001 (0.002–0.002) | 0.003077 |
Serotonin/Tryptophan | 0.007 (0.006–0.011) | 0.008 ± 0.004 (0.006–0.010) | 0.008 (0.006–0.011) | 0.009 ± 0.005 (0.008–0.010) | 0.403974 |
Analyte Name | AUC Value | p Value | Optimal Cut-Off | Sensitivity | Specificity |
---|---|---|---|---|---|
Kynurenine/Tryptophan | 0.919 | <0.000001 | 0.026 | 0.90 | 0.84 |
Kynurenine | 0.885 | 0.000001 | 1.505 | 0.80 | 0.90 |
Glycine | 0.840 | 0.000012 | 320 | 0.85 | 0.80 |
Tyrosine | 0.786 | 0.000199 | 47.8 | 0.70 | 0.84 |
Asparagine | 0.756 | 0.000995 | 47.9 | 0.80 | 0.61 |
Glucogenic amino acids | 0.749 | 0.001776 | 802 | 0.8 | 0.75 |
Citrulline/Ornithine | 0.717 | 0.004274 | 0.419 | 0.65 | 0.75 |
Putrescine/Ornithine | 0.715 | 0.003077 | 0.0025 | 0.65 | 0.67 |
Putrescine | 0.724 | 0.005532 | 0.209 | 0.65 | 0.86 |
Asymmetric dimethylarginine | 0.701 | 0.009996 | 0.5 | 0.65 | 0.78 |
Proline | 0.689 | 0.011777 | 154 | 0.7 | 0.71 |
Creatinine | 0.663 | 0.034920 | 64.2 | 0.8 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuszewska, E.; Matysiak, J.; Kałużny, Ł.; Walkowiak, D.; Plewa, S.; Duś-Żuchowska, M.; Rzetecka, N.; Jamka, M.; Klupczyńska-Gabryszak, A.; Piorunek, M.; et al. Amino Acid Profile Alterations in Phenylketonuria: Implications for Clinical Practice. Metabolites 2024, 14, 397. https://doi.org/10.3390/metabo14070397
Matuszewska E, Matysiak J, Kałużny Ł, Walkowiak D, Plewa S, Duś-Żuchowska M, Rzetecka N, Jamka M, Klupczyńska-Gabryszak A, Piorunek M, et al. Amino Acid Profile Alterations in Phenylketonuria: Implications for Clinical Practice. Metabolites. 2024; 14(7):397. https://doi.org/10.3390/metabo14070397
Chicago/Turabian StyleMatuszewska, Eliza, Joanna Matysiak, Łukasz Kałużny, Dariusz Walkowiak, Szymon Plewa, Monika Duś-Żuchowska, Natalia Rzetecka, Małgorzata Jamka, Agnieszka Klupczyńska-Gabryszak, Marcin Piorunek, and et al. 2024. "Amino Acid Profile Alterations in Phenylketonuria: Implications for Clinical Practice" Metabolites 14, no. 7: 397. https://doi.org/10.3390/metabo14070397
APA StyleMatuszewska, E., Matysiak, J., Kałużny, Ł., Walkowiak, D., Plewa, S., Duś-Żuchowska, M., Rzetecka, N., Jamka, M., Klupczyńska-Gabryszak, A., Piorunek, M., Matysiak, J., & Walkowiak, J. (2024). Amino Acid Profile Alterations in Phenylketonuria: Implications for Clinical Practice. Metabolites, 14(7), 397. https://doi.org/10.3390/metabo14070397