Serum Metabolites as Potential Markers and Predictors of Depression-like Behavior and Effective Fluoxetine Treatment in Chronically Socially Isolated Rats
Abstract
:1. Introduction
2. Methods
2.1. Animals
2.2. Fluoxetine–Hydrochloride Administration
2.3. Experimental Design
2.4. Forced Swim Test
2.5. Metabolomics Analysis by LCH–RMS
2.5.1. Sample Preparation for LCH–RMS Analysis
2.5.2. Metabolic Profiles Analyzed by LC–HRMS
2.5.3. Metabolite Data Statistics and Analysis
2.6. Identification of Potential Metabolic Markers
2.7. SVML–K-Based Binary Classification
2.8. RF-Based Binary Classification
2.9. Statistical Analysis
3. Results
3.1. Behavioral Testing
3.2. Serum Metabolic Profiling Following CSIS with or without Flx Treatment
3.3. Multivariate Data Analysis
3.4. Identification of Potential Metabolic Markers
3.5. SVM–LK Classification and Predictive Features
3.6. RF Classification and Feature Importance
3.7. Correlation of Behavioral Phenotype with Serum Metabolomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Zhao, Y.; Wang, Y.; Liu, L.; Zhang, X.; Li, B.; Cui, R. The Effects of Psychological Stress on Depression. Curr. Neuropharmacol. 2015, 13, 494–504. [Google Scholar] [CrossRef]
- Leigh-Hunt, N.; Bagguley, D.; Bash, K.; Turner, V.; Turnbull, S.; Valtorta, N.; Caan, W. An Overview of Systematic Reviews on the Public Health Consequences of Social Isolation and Loneliness. Public Health 2017, 152, 157–171. [Google Scholar] [CrossRef]
- Santini, Z.I.; Koyanagi, A.; Tyrovolas, S.; Mason, C.; Haro, J.M. The Association between Social Relationships and Depression: A Systematic Review. J. Affect. Disord. 2015, 175, 53–65. [Google Scholar] [CrossRef]
- Ieraci, A.; Mallei, A.; Popoli, M. Social Isolation Stress Induces Anxious-Depressive-like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice. Neural Plast. 2016, 2016, 6212983. [Google Scholar] [CrossRef]
- Mumtaz, F.; Khan, M.I.; Zubair, M.; Dehpour, A.R. Neurobiology and Consequences of Social Isolation Stress in Animal Model-A Comprehensive Review. Biomed. Pharmacother. 2018, 105, 1205–1222. [Google Scholar] [CrossRef]
- Brenes, J.C.; Fornaguera, J. The Effect of Chronic Fluoxetine on Social Isolation-Induced Changes on Sucrose Consumption, Immobility Behavior, and on Serotonin and Dopamine Function in Hippocampus and Ventral Striatum. Behav. Brain Res. 2009, 198, 199–205. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Cacioppo, S.; Capitanio, J.P.; Cole, S.W. The Neuroendocrinology of Social Isolation. Annu. Rev. Psychol. 2015, 66, 733–767. [Google Scholar] [CrossRef]
- Filipović, D.; Todorović, N.; Bernardi, R.E.; Gass, P. Oxidative and Nitrosative Stress Pathways in the Brain of Socially Isolated Adult Male Rats Demonstrating Depressive- and Anxiety-like Symptoms. Brain Struct. Funct. 2017, 222, 1–20. [Google Scholar] [CrossRef]
- Filipović, D.; Inderhees, J.; Korda, A.; Tadić, P.; Schwaninger, M.; Inta, D.; Borgwardt, S. Metabolic Fingerprints of Effective Fluoxetine Treatment in the Prefrontal Cortex of Chronically Socially Isolated Rats: Marker Candidates and Predictive Metabolites. Int. J. Mol. Sci. 2023, 24, 10957. [Google Scholar] [CrossRef] [PubMed]
- Filipović, D.; Costina, V.; Findeisen, P.; Inta, D. Fluoxetine Enhances Synaptic Vesicle Trafficking and Energy Metabolism in the Hippocampus of Socially Isolated Rats. Int. J. Mol. Sci. 2022, 23, 15351. [Google Scholar] [CrossRef]
- Filipović, D.; Novak, B.; Xiao, J.; Yan, Y.; Yeoh, K.; Turck, C.W. Chronic Fluoxetine Treatment of Socially Isolated Rats Modulates Prefrontal Cortex Proteome. Neuroscience 2022, 501, 52–71. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, D.; Tang, G.; Zhou, C.; Cheng, K.; Zhou, J.; Wu, B.; Peng, Y.; Liu, C.; Zhan, Y.; et al. Proteomics Reveals Energy and Glutathione Metabolic Dysregulation in the Prefrontal Cortex of a Rat Model of Depression. Neuroscience 2013, 247, 191–200. [Google Scholar] [CrossRef]
- Allen, J.; Romay-Tallon, R.; Brymer, K.J.; Caruncho, H.J.; Kalynchuk, L.E. Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Front. Neurosci. 2018, 12, 386. [Google Scholar] [CrossRef]
- Moretti, A.; Gorini, A.; Villa, R.F. Affective Disorders, Antidepressant Drugs and Brain Metabolism. Mol. Psychiatry 2003, 8, 773–785. [Google Scholar] [CrossRef]
- Ferrari, F.; Villa, R.F. The Neurobiology of Depression: An Integrated Overview from Biological Theories to Clinical Evidence. Mol. Neurobiol. 2017, 54, 4847–4865. [Google Scholar] [CrossRef]
- Perez-Caballero, L.; Torres-Sanchez, S.; Bravo, L.; Mico, J.A.; Berrocoso, E. Fluoxetine: A Case History of Its Discovery and Preclinical Development. Expert Opin. Drug Discov. 2014, 9, 567–578. [Google Scholar] [CrossRef]
- Brambilla, P.; Cipriani, A.; Hotopf, M.; Barbui, C. Side-Effect Profile of Fluoxetine in Comparison with Other SSRIs, Tricyclic and Newer Antidepressants: A Meta-Analysis of Clinical Trial Data. Pharmacopsychiatry 2005, 38, 69–77. [Google Scholar] [CrossRef]
- Wagner, G.A. Treatment of Depression in Older Adults beyond Fluoxetine. Rev. Saude Publica 2015, 49, 20. [Google Scholar] [CrossRef]
- Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; et al. Antidepressant Drugs Act by Directly Binding to TRKB Neurotrophin Receptors. Cell 2021, 184, 1299–1313.e19. [Google Scholar] [CrossRef] [PubMed]
- Castrén, E.; Antila, H. Neuronal Plasticity and Neurotrophic Factors in Drug. Mol. Psychiatry 2017, 22, 1085. [Google Scholar] [CrossRef] [PubMed]
- Pehrson, A.L.; Sanchez, C. Altered γ-Aminobutyric Acid Neurotransmission in Major Depressive Disorder: A Critical Review of the Supporting Evidence and the Influence of Serotonergic Antidepressants. Drug Des. Devel. Ther. 2015, 9, 603–624. [Google Scholar] [CrossRef]
- Perić, I.; Stanisavljević, A.; Gass, P.; Filipović, D. Fluoxetine Exerts Subregion/Layer Specific Effects on Parvalbumin/GAD67 Protein Expression in the Dorsal Hippocampus of Male Rats Showing Social Isolation-Induced Depressive-like Behaviour. Brain Res. Bull. 2021, 173, 174–183. [Google Scholar] [CrossRef]
- Sethi, S.; Brietzke, E. Omics-Based Biomarkers: Application of Metabolomics in Neuropsychiatric Disorders. Int. J. Neuropsychopharmacol. 2016, 19, pyv096. [Google Scholar] [CrossRef]
- De Kluiver, H.; Jansen, R.; Penninx, B.W.J.H.; Giltay, E.J.; Schoevers, R.A.; Milaneschi, Y. Metabolomics Signatures of Depression: The Role of Symptom Profiles. Transl. Psychiatry 2023, 13, 198. [Google Scholar] [CrossRef]
- Bot, M.; Milaneschi, Y.; Al-Shehri, T.; Amin, N.; Garmaeva, S.; Onderwater, G.L.J.; Pool, R.; Thesing, C.S.; Vijfhuizen, L.S.; Vogelzangs, N.; et al. Metabolomics Profile in Depression: A Pooled Analysis of 230 Metabolic Markers in 5283 Cases With Depression and 10,145 Controls. Biol. Psychiatry 2020, 87, 409–418. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, X.; Zhang, Y.; Liu, Y.; Yang, L.; Pu, J.; Zhu, D.; Zhou, C.; Xie, P. The Identification of Metabolic Disturbances in the Prefrontal Cortex of the Chronic Restraint Stress Rat Model of Depression. Behav. Brain Res. 2016, 305, 148–156. [Google Scholar] [CrossRef]
- Yao, T.; Cui, Q.; Liu, Z.; Wang, C.; Zhang, Q.; Wang, G. Metabolomic Evidence for the Therapeutic Effect of Gentiopicroside in a Corticosterone-Induced Model of Depression. Biomed. Pharmacother. 2019, 120, 109549. [Google Scholar] [CrossRef]
- Borreggine, K.; Chan, L.; Price, J.; Walker, A.; Frye, M.; Tye, S. 659. Metabolomics Analysis of Tricyclic Antidepressant Treatment Resistance in a Rodent Model: Disrupted Energy Metabolism Mitigated by Lithium Augmentation. Biol. Psychiatry 2017, 81, S267. [Google Scholar] [CrossRef]
- Pu, J.; Liu, Y.; Gui, S.; Tian, L.; Yu, Y.; Wang, D.; Zhong, X.; Chen, W.; Chen, X.; Chen, Y.; et al. Effects of Pharmacological Treatment on Metabolomic Alterations in Animal Models of Depression. Transl. Psychiatry 2022, 12, 175. [Google Scholar] [CrossRef]
- Wang, P.; Ng, Q.; Zhang, B.; Wei, Z.; Hassan, M.; He, Y.; Ong, C.N. Employing Multi-Omics to Elucidate the Hormetic Response against Oxidative Stress Exerted by NC60 on Daphnia Pulex. Environ. Pollut. 2019, 251, 22–29. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Yan, G.; Wang, P.; Wang, X. Metabolomics for Biomarker Discovery: Moving to the Clinic. BioMed Res. Int. 2015, 2015, 354671. [Google Scholar] [CrossRef]
- Shih, P.-a. Metabolomics Biomarkers for Precision Psychiatry. Adv. Exp. Med. Biol. 2019, 1161, 101–113. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Galal, A.; Talal, M.; Moustafa, A. Applications of Machine Learning in Metabolomics: Disease Modeling and Classification. Front. Genet. 2022, 13, 1017340. [Google Scholar] [CrossRef]
- Chen, T.; Cao, Y.; Zhang, Y.; Liu, J.; Bao, Y.; Wang, C.; Jia, W.; Zhao, A. Random Forest in Clinical Metabolomics for Phenotypic Discrimination and Biomarker Selection. Evid. Based. Complement. Alternat. Med. 2013, 2013, 298183. [Google Scholar] [CrossRef]
- Gromski, P.S.; Xu, Y.; Correa, E.; Ellis, D.I.; Turner, M.L.; Goodacre, R. A Comparative Investigation of Modern Feature Selection and Classification Approaches for the Analysis of Mass Spectrometry Data. Anal. Chim. Acta 2014, 829, 1–8. [Google Scholar] [CrossRef]
- Xu, P.; Chen, A.; Li, Y.; Xing, X.; Lu, H. Medial Prefrontal Cortex in Neurological Diseases. Physiol. Genom. 2019, 51, 432–442. [Google Scholar] [CrossRef]
- Rajkowska, G.; Stockmeier, C. Astrocyte Pathology in Major Depressive Disorder: Insights from Human Postmortem Brain Tissue. Curr. Drug Targets 2013, 14, 1225–1236. [Google Scholar] [CrossRef]
- Pu, J.; Liu, Y.; Zhang, H.; Tian, L.; Gui, S.; Yu, Y.; Chen, X.; Chen, Y.; Yang, L.; Ran, Y.; et al. An Integrated Meta-Analysis of Peripheral Blood Metabolites and Biological Functions in Major Depressive Disorder. Mol. Psychiatry 2021, 26, 4265. [Google Scholar] [CrossRef]
- Sun, X.L.; Ma, L.N.; Chen, Z.Z.; Xiong, Y.B.; Jia, J.; Wang, Y.; Ren, Y. Search for Serum Biomarkers in Patients with Bipolar Disorder and Major Depressive Disorder Using Metabolome Analysis. Front. Psychiatry 2023, 14, 1251955. [Google Scholar] [CrossRef]
- Strawbridge, R.; Young, A.H.; Cleare, A.J. Biomarkers for Depression: Recent Insights, Current Challenges and Future Prospects. Neuropsychiatr. Dis. Treat. 2017, 13, 1245–1262. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wei, J.; Yang, X.; Dou, Y.; Zhao, L.; Qi, X.; Yu, X.; Guo, W.; Wang, Q.; Deng, W.; et al. Plasma Metabolites Were Associated with Spatial Working Memory in Major Depressive Disorder. Medicine 2021, 100, E24581. [Google Scholar] [CrossRef]
- Mahadevan, S.; Shah, S.L.; Marrie, T.J.; Slupsky, C.M. Analysis of Metabolomic Data Using Support Vector Machines. Anal. Chem. 2008, 80, 7562–7570. [Google Scholar] [CrossRef]
- Kovacevic, I.; Pokrajac, M.; Miljkovic, B.; Jovanovic, D.; Prostran, M. Comparison of Liquid Chromatography with Fluorescence Detection to Liquid Chromatography-Mass Spectrometry for the Determination of Fluoxetine and Norfluoxetine in Human Plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 830, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Perić, I.; Stanisavljević, A.; Gass, P.; Filipović, D. Fluoxetine Reverses Behavior Changes in Socially Isolated Rats: Role of the Hippocampal GSH-Dependent Defense System and Proinflammatory Cytokines. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 737–749. [Google Scholar] [CrossRef]
- Zlatković, J.; Todorović, N.; Bošković, M.; Pajović, S.B.; Demajo, M.; Filipović, D. Different Susceptibility of Prefrontal Cortex and Hippocampus to Oxidative Stress Following Chronic Social Isolation Stress. Mol. Cell. Biochem. 2014, 393, 43–57. [Google Scholar] [CrossRef]
- Dulawa, S.C.; Holick, K.A.; Gundersen, B.; Hen, R. Effects of Chronic Fluoxetine in Animal Models of Anxiety and Depression. Neuropsychopharmacology 2004, 29, 1321–1330. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Anton, G.; Blavet, N.; Jalfre, M. Behavioural Despair in Rats: A New Model Sensitive to Antidepressant Treatments. Eur. J. Pharmacol. 1978, 47, 379–391. [Google Scholar] [CrossRef]
- Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The Forced Swim Test as a Model of Depressive-like Behavior. J. Vis. Exp. 2015, 97, e52587. [Google Scholar] [CrossRef]
- Naito, R.; Leong, D.P.; Bangdiwala, S.I.; McKee, M.; Subramanian, S.V.; Rangarajan, S.; Islam, S.; Avezum, A.; Yeates, K.E.; Lear, S.A.; et al. Impact of Social Isolation on Mortality and Morbidity in 20 High-Income, Middle-Income and Low-Income Countries in Five Continents. BMJ Glob. Health 2021, 6, e004124. [Google Scholar] [CrossRef]
- Ruoppolo, M.; Caterino, M.; Albano, L.; Pecce, R.; Di Girolamo, M.G.; Crisci, D.; Costanzo, M.; Milella, L.; Franconi, F.; Campesi, I. Targeted Metabolomic Profiling in Rat Tissues Reveals Sex Differences. Sci. Rep. 2018, 8, 4663. [Google Scholar] [CrossRef] [PubMed]
- Folberth, J.; Begemann, K.; Jöhren, O.; Schwaninger, M.; Othman, A. MS2 and LC Libraries for Untargeted Metabolomics: Enhancing Method Development and Identification Confidence. J. Chromatogr. B 2020, 1145, 122105. [Google Scholar] [CrossRef] [PubMed]
- Sud, M.; Fahy, E.; Cotter, D.; Azam, K.; Vadivelu, I.; Burant, C.; Edison, A.; Fiehn, O.; Higashi, R.; Nair, K.S.; et al. Metabolomics Workbench: An International Repository for Metabolomics Data and Metadata, Metabolite Standards, Protocols, Tutorials and Training, and Analysis Tools. Nucleic Acids Res. 2016, 44, D463–D470. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Hsu, M.J.; Chang, Y.C.I.; Hsueh, H.M. Biomarker Selection for Medical Diagnosis Using the Partial Area under the ROC Curve. BMC Res. Notes 2014, 7, 25. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support Vector Machines for Classification. In Efficient Learning Machines; Springer: Berlin/Heidelberg, Germany, 2015; pp. 39–66. [Google Scholar] [CrossRef]
- Lahmiri, S.; Dawson, D.A.; Shmuel, A. Performance of Machine Learning Methods in Diagnosing Parkinson’s Disease Based on Dysphonia Measures. Biomed. Eng. Lett. 2018, 8, 29–39. [Google Scholar] [CrossRef]
- Lin, S.; Wu, Y.; Fang, Y. A Hybrid Machine Learning Model of Depression Estimation in Home-Based Older Adults: A 7-Year Follow-up Study. BMC Psychiatry 2022, 22, 816. [Google Scholar] [CrossRef]
- Yu, J.S.; Xue, A.Y.; Redei, E.E.; Bagheri, N. A Support Vector Machine Model Provides an Accurate Transcript-Level-Based Diagnostic for Major Depressive Disorder. Transl. Psychiatry 2016, 6, e931. [Google Scholar] [CrossRef]
- Heinemann, J.; Mazurie, A.; Tokmina-Lukaszewska, M.; Beilman, G.J.; Bothner, B. Application of Support Vector Machines to Metabolomics Experiments with Limited Replicates. Metabolomics 2014, 10, 1121–1128. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: London, UK, 1984; p. 368. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Pedregosa, F.; Weiss, R.; Brucher, M.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Zeisel, S.H. Choline: Critical Role during Fetal Development and Dietary Requirements in Adults. Annu. Rev. Nutr. 2006, 26, 229–250. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H.; Da Costa, K.A. Choline: An Essential Nutrient for Public Health. Nutr. Rev. 2009, 67, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Wiedeman, A.M.; Barr, S.I.; Green, T.J.; Xu, Z.; Innis, S.M.; Kitts, D.D. Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients 2018, 10, 1513. [Google Scholar] [CrossRef] [PubMed]
- Riley, C.A.; Renshaw, P.F. Brain Choline in Major Depression: A Review of the Literature. Psychiatry Res. Neuroimaging 2018, 271, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Williams, K. Modulation and Block of Ion Channels: A New Biology of Polyamines. Cell. Signal. 1997, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liao, X.; Pan, Y.; Xiang, X.; Zhang, Y. Gamma-Glutamyl Transferase Levels Are Associated with the Occurrence of Post-Stroke Cognitive Impairment: A Multicenter Cohort Study. BMC Neurol. 2022, 22, 65. [Google Scholar] [CrossRef] [PubMed]
- Ristoff, E.; Larsson, A. Inborn Errors in the Metabolism of Glutathione. Orphanet J. Rare Dis. 2007, 2, 16. [Google Scholar] [CrossRef] [PubMed]
- Bak, L.K.; Schousboe, A.; Waagepetersen, H.S. The Glutamate/GABA-Glutamine Cycle: Aspects of Transport, Neurotransmitter Homeostasis and Ammonia Transfer. J. Neurochem. 2006, 98, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Waagepetersen, H.S.; Sonnewald, U.; Schousboe, A. Compartmentation of Glutamine, Glutamate, and GABA Metabolism in Neurons and Astrocytes: Functional Implications. Neuroscientist 2003, 9, 398–403. [Google Scholar] [CrossRef]
- Pervin, M.; Unno, K.; Konishi, T.; Nakamura, Y. L-Arginine Exerts Excellent Anti-Stress Effects on Stress-Induced Shortened Lifespan, Cognitive Decline and Depression. Int. J. Mol. Sci. 2021, 22, 508. [Google Scholar] [CrossRef]
- Li, Y.; Wu, L.; Chen, C.; Wang, L.; Guo, C.; Zhao, X.; Zhao, T.; Wang, X.; Liu, A.; Yan, Z. Serum Metabolic Profiling Reveals the Antidepressive Effects of the Total Iridoids of Valeriana Jatamansi Jones on Chronic Unpredictable Mild Stress Mice. Front. Pharmacol. 2020, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Yamashiro, D.; Ogawa, S.; Kobayashi, M.; Cho, D.; Iizuka, A.; Tsukamoto-Yasui, M.; Takada, M.; Isokawa, M.; Nagao, K.; et al. Intake of Seven Essential Amino Acids Improves Cognitive Function and Psychological and Social Function in Middle-Aged and Older Adults: A Double-Blind, Randomized, Placebo-Controlled Trial. Front. Nutr. 2020, 7, 586166. [Google Scholar] [CrossRef] [PubMed]
- Gammoh, O.; Aljabali, A.A.A.; Tambuwala, M.M. Plasma Amino Acids in Major Depressive Disorder: Between Pathology to Pharmacology. EXCLI J. 2024, 23, 62. [Google Scholar] [CrossRef] [PubMed]
- Park, D.I.; Dournes, C.; Sillaber, I.; Uhr, M.; Asara, J.M.; Gassen, N.C.; Rein, T.; Ising, M.; Webhofer, C.; Filiou, M.D.; et al. Purine and Pyrimidine Metabolism: Convergent Evidence on Chronic Antidepressant Treatment Response in Mice and Humans. Sci. Rep. 2016, 6, 35317. [Google Scholar] [CrossRef] [PubMed]
- Mathews, D.C.; Henter, I.D.; Zarate, C.A. Targeting the Glutamatergic System to Treat Major Depressive Disorder: Rationale and Progress to Date. Drugs 2012, 72, 1313–1333. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Phillips, C.; Trillo, L.; De Miguel, Z.; Das, D.; Salehi, A. The Role of NMDA Receptors in the Pathophysiology and Treatment of Mood Disorders. Neurosci. Biobehav. Rev. 2014, 47, 336–358. [Google Scholar] [CrossRef] [PubMed]
- Deutschenbaur, L.; Beck, J.; Kiyhankhadiv, A.; Mühlhauser, M.; Borgwardt, S.; Walter, M.; Hasler, G.; Sollberger, D.; Lang, U.E. Role of Calcium, Glutamate and NMDA in Major Depression and Therapeutic Application. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 325–333. [Google Scholar] [CrossRef]
- Bonanno, G.; Giambelli, R.; Raiteri, L.; Tiraboschi, E.; Zappettini, S.; Musazzi, L.; Raiteri, M.; Racagni, G.; Popoli, M. Chronic Antidepressants Reduce Depolarization-Evoked Glutamate Release and Protein Interactions Favoring Formation of SNARE Complex in Hippocampus. J. Neurosci. 2005, 25, 3270–3279. [Google Scholar] [CrossRef] [PubMed]
- Wirthgen, E.; Hoeflich, A.; Rebl, A.; Günther, J. Kynurenic Acid: The Janus-Faced Role of an Immunomodulatory Tryptophan Metabolite and Its Link to Pathological Conditions. Front. Immunol. 2018, 8, 312707. [Google Scholar] [CrossRef] [PubMed]
- Ruddick, J.P.; Evans, A.K.; Nutt, D.J.; Lightman, S.L.; Rook, G.A.W.; Lowry, C.A. Tryptophan Metabolism in the Central Nervous System: Medical Implications. Expert Rev. Mol. Med. 2006, 8, 1–27. [Google Scholar] [CrossRef]
- Baj, A.; Moro, E.; Bistoletti, M.; Orlandi, V.; Crema, F.; Giaroni, C. Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. Int. J. Mol. Sci. 2019, 20, 1482. [Google Scholar] [CrossRef] [PubMed]
- Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the Nervous System. Physiol. Rev. 2008, 88, 1183–1241. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ishwaran, H. Random Forests for Genomic Data Analysis. Genomics 2012, 99, 323–329. [Google Scholar] [CrossRef] [PubMed]
Control + Flx vs. Control | CSIS vs. Control | CSIS + Flx vs. CSIS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RT (min) | Metabolite | p-Value | p-Adjusted | FC | p-Value | p-Adjusted | FC | p-Value | p-Adjusted | FC | Pathway |
3.57 | Hydroxy-hippuric acid | 2.02 × 10−3 | 2.55 × 10−3 | 0.34 | 5.87 × 10−4 | 6.60 × 10−3 | 0.38 | Lipid metabolism | |||
19.73 | Histamine | 6.13 × 10−4 | 1.24 × 10−2 | 0.38 | 2.00 × 10−4 | 2.90 × 10−3 | 0.51 | Amino acid metabolism | |||
1.33 | Hydroxy-hexa-decanoic acid | 6.83 × 10−5 | 2.15 × 10−3 | 0.45 | Lipid metabolism | ||||||
2.02 | Uracil | 3.94 × 10−3 | 3.62 × 10−2 | 0.54 | Nucleotide metabolism | ||||||
12.35 | Aspartate | 1.94 × 10−3 | 2.55 × 10−2 | 0.59 | 2.84 × 10−4 | 3.60 × 10−3 | 0.49 | Amino acid metabolism | |||
2.41 | 3-(4-Hydroxy-phenyl) lactate | 8.91 × 10−4 | 1.50 × 10−2 | 0.64 | Energy metabolism | ||||||
5.35 | Riboflavin | 5.41 × 10−3 | 4.56 × 10−2 | 1.39 | Riboflavin metabolism | ||||||
8.84 | Deoxy-carnitine | 6.29 × 10−3 | 4.89 × 10−2 | 1.40 | Lipid metabolism | ||||||
6.63 | 1-Methylxanthine | 2.72 × 10−3 | 3.05 × 10−2 | 1.87 | 1.54 × 10−4 | 2.60 × 10−3 | 2.66 | Purine metabolism | |||
6.63 | 7-Methylguanine | 8.50 × 10−5 | 2.15 × 10−3 | 1.88 | 6.00 × 10−7 | 6.06 × 10−5 | 2.63 | Purine metabolism | |||
7.95 | Propionyl carnitine | 1.72 × 10−5 | 8.71 × 10−4 | 2.04 | 1.95 × 10−3 | 1.78 × 10−2 | 1.66 | Amino acid metabolism | |||
2.04 | Succinate | 3.65 × 10−3 | 3.62 × 10−2 | 2.42 | 9.87 × 10−5 | 2.0 × 10−3 | 3.04 | Energy metabolism | |||
9.98 | Stachydrine | 2.20 × 10−6 | 2.00 × 10−4 | 3.27 | 1.09 × 10−5 | 5.51 × 10−4 | 2.30 | Energy metabolism | |||
19.20 | N1-Acetyl spermidine | 2.78 × 10−4 | 2.36 × 10−2 | 0.31 | Polyamine metabolism | ||||||
13.04 | Glutamyl-glutamine | 1.41 × 10−3 | 4.76 × 10−2 | 0.34 | Amino acid metabolism | ||||||
8.48 | Choline | 4.68 × 10−4 | 2.36 × 10−2 | 1.27 | Lipid metabolism | ||||||
2.22 | N-Acetyl-glycine | 2.44 × 10−3 | 2.06 × 10−2 | 0.69 | Amino acid metabolism | ||||||
11.72 | Guanidino acetate | 1.49 × 10−3 | 1.49 × 10−2 | 1.86 | Amino acid metabolism | ||||||
6.04 | Kynurenic acid | 2.11 × 10−5 | 7.10 × 10−4 | 2.29 | Amino acid metabolism | ||||||
2.15 | 5′-Methylthio adenosine | 4.98 × 10−5 | 1.26 × 10−2 | 2.71 | Amino acid metabolism |
Group Comparison | No of Components | R2 a | Q2 b | Accuracy |
---|---|---|---|---|
Control + Flx vs. Control | 5 | 0.99987 | 0.80464 | 1 |
CSIS vs. Control | 5 | 0.99991 | 0.69004 | 0.93 |
CSIS + Flx vs. CSIS | 5 | 0.99989 | 0.93421 | 1 |
Control + Flx vs. Control | CSIS vs. Control | CSIS + Flx vs. CSIS | ||||||
---|---|---|---|---|---|---|---|---|
Metabolites | AUC | FC | Metabolites | AUC | FC | Metabolites | AUC | FC |
Stachydrine | 1 | 3.27 | Choline | 1 | 1.27 | Succinate | 1 | 3.04 |
7-Methylguanine | 1 | 1.88 | Glutamine | 1 | 0.72 | Stachydrine | 1 | 2.30 |
3-(4 Hydroxy phenyl) lactate | 1 | 0.64 | N1-Acetyl spermidine | 1 | 0.31 | 7-Methylguanine | 1 | 2.63 |
Propionyl-carnitine | 1 | 2.04 | Glutamyl-glutamine | 0.97222 | 0.34 | Kynurenic acid | 1 | 2.29 |
Hydroxy-hexa-decanoic acid | 1 | 0.45 | 5′-Methylthio- adenosine | 0.97222 | 0.58 | 5′-Methylthio adenosine | 1 | 2.71 |
Histamine | 0.97917 | 0.38 | Lysine | 0.94444 | 0.63 | Histamine | 0.97917 | 0.51 |
1-Methyl- xanthine | 0.95833 | 1.87 | Histidine | 0.94444 | 0.75 | Aspartate | 0.97917 | 0.49 |
Hydroxy hippuric acid | 0.95833 | 0.34 | Urate | 0.91667 | 0.67 | 1-Methyl xanthine | 0.97917 | 2.66 |
Uracil | 0.91667 | 0.54 | Arginine | 0.91667 | 0.72 | Guanidino acetate | 0.95833 | 1.86 |
Succinate | 0.91667 | 2.42 | Cystathionine | 0.91667 | 0.52 | Hydroxy hippuric acid | 0.95833 | 0.38 |
Aspartate | 0.91667 | 0.59 | Propionyl carnitine | 0.95833 | 1.66 | |||
Deoxy-carnitine | 0.91667 | 1.40 | N-Acetyl-glycine | 0.9375 | 0.69 | |||
3-Hydroxy-3-methylglutarate | 0.91667 | 0.66 | Hydroxy-hexa-decanoic acid | 0.91667 | 0.75 | |||
Urocanate | 0.89583 | 0.60 |
Control + Flx vs. Control | CSIS vs. Control | CSIS + Flx vs. CSIS | |||
---|---|---|---|---|---|
Accuracy | 85.70% | Accuracy | 75.00% | Accuracy | 85.70% |
Sensitivity | 83.30% | Sensitivity | 83.30% | Sensitivity | 66.70% |
Specificity | 87.50% | Specificity | 66.70% | Specificity | 100.00% |
Balanced Accuracy | 85.40% | Balanced Accuracy | 75.00% | Balanced Accuracy | 85.30% |
Predictive Metabolites | FC | Predictive Metabolites | FC | Predictive Metabolites | FC |
Histamine | 0.38 | Glutamine | 0.72 | Histamine | 0.51 |
Uracil | 0.54 | Lactate | 0.79 | N-Acetyl-glycine | 0.69 |
Aspartate | 0.59 | Amino(iso)butyric acid | 0.82 | Choline | 0.84 |
Putrescine | 0.81 | Glycine | 0.87 | Cytosine | 1.14 |
N-Acetyl-glycine | 0.82 | Indole | 0.88 | Urea | 1.14 |
Pyruvate | 0.82 | Urea | 0.96 | Amino(iso)butyric acid | 1.31 |
Choline | 0.84 | Choline | 1.27 | Guanidinoacetate | 1.86 |
Urea | 1.12 | Stachydrine | 2.30 | ||
Succinate | 2.42 | Succinate | 3.04 | ||
Stachydrine | 3.27 |
Control + Flx (Positive) vs. Control | CSIS (Positive) vs. Control | CSIS + Flx (Positive) vs. CSIS | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | 98.00% | Accuracy | 75.83% | Accuracy | 98.50% | |||
Sensitivity | 96.67% | Sensitivity | 66.67% | Sensitivity | 100.00% | |||
Specificity | 100.00% | Specificity | 85.00% | Specificity | 96.67% | |||
Balanced Accuracy | 98.33% | Balanced Accuracy | 75.83% | Balanced Accuracy | 98.33% | |||
Predictive metabolites | Predictive metabolites | Predictive metabolites | ||||||
Name | Import ance | FC | Name | Import ance | FC | Name | Import ance | FC |
Hydroxy-hexa -decanoic acid | 0.1354 | 0.45 | 5′-Methylthio adenosine | 0.1327 | 0.58 | Stachydrine | 0.0767 | 2.30 |
Histamine | 0.0807 | 0.38 | Choline | 0.1200 | 1.27 | 7-Methyl guanine | 0.0767 | 2.63 |
Stachydrine | 0.0800 | 3.27 | N1-Acetyl spermidine | 0.0714 | 0.31 | 5′-Methyl thio-adenosine | 0.0706 | 2.71 |
7-Methylguanine | 0.0658 | 1.88 | Myo-Inositol | 0.0633 | 0.71 | 1-Methyl xanthine | 0.0662 | 2.66 |
1-Methyl xanthine | 0.0574 | 1.87 | Glutamine | 0.0429 | 0.72 | Kynurenic acid | 0.0600 | 2.29 |
Propionyl carnitine | 0.0553 | 2.04 | Lysine | 0.0429 | 0.63 | Succinate | 0.0600 | 3.04 |
3-(4-Hydroxy phenyl) lactate | 0.0458 | 0.64 | Cystathionine | 0.0386 | 0.52 | Aspartate | 0.0554 | 0.49 |
Aspartate | 0.0413 | 0.59 | Arginine | 0.0343 | 0.72 | Guanidino acetate | 0.0412 | 1.86 |
Hydroxy hippuric acid | 0.0356 | 0.34 | Allantoin | 0.0340 | 0.85 | Glycero-phospho-choline | 0.0317 | 0.74 |
Riboflavin | 0.0274 | 1.39 | N-Acetyl cytidine | 0.0302 | 0.82 | Choline | 0.0292 | 0.84 |
Ala-Pro (Alanyl-Proline) | 0.0244 | 1.65 | Methionine | 0.0288 | 0.82 | Histamine | 0.0281 | 0.51 |
Anserine | 0.0228 | 0.59 | Indole | 0.0286 | 0.88 | N-Acetyl glycine | 0.0219 | 0.69 |
Succinate | 0.0228 | 2.42 | Hydroxy-hexa -decanoic acid | 0.0257 | 0.78 | Hydroxy-hexa -decanoic acid | 0.0217 | 0.75 |
Urocanate | 0.0200 | 0.60 | Asparagine | 0.0213 | 0.78 | N1-Acetyl spermidine | 0.0200 | 3.67 |
Orotic acid | 0.0200 | 0.65 | Vanillic acid | 0.0143 | 0.74 | Propionyl carnitine | 0.0200 | 1.66 |
Metabolites Content vs. Immobility Pearson Correlation | r | p |
---|---|---|
N1-Acetylspermidine | −0.5274 | 0.0040 |
Stachydrine | −0.4934 | 0.0077 |
7-Methylguanine | −0.4841 | 0.0091 |
5′-Methylthioadenosine | −0.4738 | 0.0110 |
Glutamyl-leucine | −0.4099 | 0.0307 |
Succinate | −0.4094 | 0.0307 |
Glutamyl-glutamine | −0.4045 | 0.0330 |
Hydroxy-hippuric acid | 0.4349 | 0.0207 |
Choline | 0.4563 | 0.0147 |
Anserine | 0.4657 | 0.0125 |
Histamine | 0.4765 | 0.0104 |
3-Hydroxy-3-methylglutarate | 0.5166 | 0.0049 |
N-Acetyl-glycine | 0.5324 | 0.0035 |
Aspartate | 0.5493 | 0.0025 |
Prolyl-leucine | 0.5627 | 0.0018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipović, D.; Inderhees, J.; Korda, A.; Tadić, P.; Schwaninger, M.; Inta, D.; Borgwardt, S. Serum Metabolites as Potential Markers and Predictors of Depression-like Behavior and Effective Fluoxetine Treatment in Chronically Socially Isolated Rats. Metabolites 2024, 14, 405. https://doi.org/10.3390/metabo14080405
Filipović D, Inderhees J, Korda A, Tadić P, Schwaninger M, Inta D, Borgwardt S. Serum Metabolites as Potential Markers and Predictors of Depression-like Behavior and Effective Fluoxetine Treatment in Chronically Socially Isolated Rats. Metabolites. 2024; 14(8):405. https://doi.org/10.3390/metabo14080405
Chicago/Turabian StyleFilipović, Dragana, Julica Inderhees, Alexandra Korda, Predrag Tadić, Markus Schwaninger, Dragoš Inta, and Stefan Borgwardt. 2024. "Serum Metabolites as Potential Markers and Predictors of Depression-like Behavior and Effective Fluoxetine Treatment in Chronically Socially Isolated Rats" Metabolites 14, no. 8: 405. https://doi.org/10.3390/metabo14080405
APA StyleFilipović, D., Inderhees, J., Korda, A., Tadić, P., Schwaninger, M., Inta, D., & Borgwardt, S. (2024). Serum Metabolites as Potential Markers and Predictors of Depression-like Behavior and Effective Fluoxetine Treatment in Chronically Socially Isolated Rats. Metabolites, 14(8), 405. https://doi.org/10.3390/metabo14080405