Dietary Intake of Polyphenols and All-Cause Mortality: A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Data Extraction
2.2. Inclusion Criteria, Data Extraction, and Registration
2.3. Risk of Bias
2.4. Meta-Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clodoveo, M.L.; Tarsitano, E.; Sabbà, C.; Gesualdo, L.; Corbo, F. Med-Index: A Food Product Labeling System to Promote Adherence to the Mediterranean Diet Encouraging Producers to Make Healthier and More Sustainable Food Products. Ital. J. Food Sci. 2021, 33, 67–83. [Google Scholar] [CrossRef]
- Zupo, R.; Castellana, F.; Piscitelli, P.; Crupi, P.; Desantis, A.; Greco, E.; Severino, F.P.; Pulimeno, M.; Guazzini, A.; Kyriakides, T.C.; et al. Scientific Evidence Supporting the Newly Developed One-Health Labeling Tool “Med-Index”: An Umbrella Systematic Review on Health Benefits of Mediterranean Diet Principles and Adherence in a Planeterranean Perspective. J. Transl. Med. 2023, 21, 755. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing Evidence on Benefits of Adherence to the Mediterranean Diet on Health: An Updated Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef]
- Zupo, R.; Sardone, R.; Donghia, R.; Castellana, F.; Lampignano, L.; Bortone, I.; Misciagna, G.; De Pergola, G.; Panza, F.; Lozupone, M.; et al. Traditional Dietary Patterns and Risk of Mortality in a Longitudinal Cohort of the Salus in Apulia Study. Nutrients 2020, 12, 1070. [Google Scholar] [CrossRef] [PubMed]
- Zupo, R.; Lampignano, L.; Lattanzio, A.; Mariano, F.; Osella, A.R.; Bonfiglio, C.; Giannelli, G.; Pergola, G.D. Association between Adherence to the Mediterranean Diet and Circulating Vitamin D Levels. Int. J. Food Sci. Nutr. 2020, 71, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Zupo, R.; Griseta, C.; Battista, P.; Donghia, R.; Guerra, V.; Castellana, F.; Lampignano, L.; Bortone, I.; Lozupone, M.; Giannelli, G.; et al. Role of Plant-Based Diet in Late-Life Cognitive Decline: Results from the Salus in Apulia Study. Nutr. Neurosci. 2021, 25, 1300–1309. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef]
- Pauwels, E.K.J. The Protective Effect of the Mediterranean Diet: Focus on Cancer and Cardiovascular Risk. Med. Princ. Pract. 2011, 20, 103–111. [Google Scholar] [CrossRef]
- Zupo, R.; Castellana, F.; Crupi, P.; Desantis, A.; Rondanelli, M.; Corbo, F.; Clodoveo, M.L. Olive Oil Polyphenols Improve HDL Cholesterol and Promote Maintenance of Lipid Metabolism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Metabolites 2023, 13, 1187. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Muraglia, M.; Crupi, P.; Hbaieb, R.H.; De Santis, S.; Desantis, A.; Corbo, F. The Tower of Babel of Pharma-Food Study on Extra Virgin Olive Oil Polyphenols. Foods 2022, 11, 1915. [Google Scholar] [CrossRef]
- Zhang, L.; Han, Z.; Granato, D. Polyphenols in Foods: Classification, Methods of Identification, and Nutritional Aspects in Human Health. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2021; Volume 98, pp. 1–33. [Google Scholar]
- Vuolo, M.M.; Lima, V.S.; Junior, M.R.M. Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds; Woodhead Publishing: Cambridge, MA, USA, 2019; pp. 33–50. [Google Scholar]
- Tressera-Rimbau, A.; Arranz, S.; Eder, M.; Vallverdú-Queralt, A. Dietary Polyphenols in the Prevention of Stroke. Oxid. Med. Cell. Longev. 2017, 2017, 7467962. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Mrduljaš, N.; Krešić, G.; Bilušić, T. Polyphenols: Food Sources and Health Benefits. In Functional Food—Improve Health through Adequate Food; IntechOpen: London, UK, 2017; ISBN 9789535134404. [Google Scholar]
- Ji, M.; Gong, X.; Li, X.; Wang, C.; Li, M. Advanced Research on the Antioxidant Activity and Mechanism of Polyphenols from Hippophae Species—A Review. Molecules 2020, 25, 917. [Google Scholar] [CrossRef]
- Bo, Y.; Yuan, L.-P.; Zhang, J.-J.; Meng, D.-D.; Jing, H.; Dai, H.-J. Total Flavonoids of Bidens Bipinnata L. a Traditional Chinese Medicine Inhibits the Production of Inflammatory Cytokines of Vessel Endothelial Cells Stimulated by Sera from Henoch–Schönlein Purpura Patients. J. Pharm. Pharmacol. 2012, 64, 882–887. [Google Scholar] [CrossRef]
- Rodrigo, R.; Gil, D.; Miranda-Merchak, A.; Kalantzidis, G. Antihypertensive Role of Polyphenols. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2012; Volume 58, pp. 225–254. [Google Scholar]
- Hanamura, T.; Mayama, C.; Aoki, H.; Hirayama, Y.; Shimizu, M. Antihyperglycemic Effect of Polyphenols from Acerola (Malpighia Emarginata DC.) Fruit. Biosci. Biotechnol. Biochem. 2006, 70, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Ahmad, W.A.N.; Budin, S.B.; Zainalabidin, S. Implication of Dietary Phenolic Acids on Inflammation in Cardiovascular Disease. Rev. Cardiovasc. Med. 2020, 21, 225–240. [Google Scholar]
- Guasch-Ferré, M.; Merino, J.; Sun, Q.; Fitó, M.; Salas-Salvadó, J. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. Oxid. Med. Cell. Longev. 2017, 2017, 6723931. [Google Scholar] [CrossRef]
- Wang, X.; Yang, D.-Y.; Yang, L.-Q.; Zhao, W.-Z.; Cai, L.-Y.; Shi, H.-P. Anthocyanin Consumption and Risk of Colorectal Cancer: A Meta-Analysis of Observational Studies. J. Am. Coll. Nutr. 2019, 38, 470–477. [Google Scholar] [CrossRef]
- Hejazi, J.; Ghanavati, M.; Hejazi, E.; Poustchi, H.; Sepanlou, S.G.; Khoshnia, M.; Gharavi, A.; Sohrabpour, A.A.; Sotoudeh, M.; Dawsey, S.M.; et al. Habitual Dietary Intake of Flavonoids and All-Cause and Cause-Specific Mortality: Golestan Cohort Study. Nutr. J. 2020, 19, 108. [Google Scholar] [CrossRef]
- Kim, K.; Vance, T.M.; Chun, O.K. Greater Flavonoid Intake Is Associated with Improved CVD Risk Factors in US Adults. Br. J. Nutr. 2016, 115, 1481–1488. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Jiménez, C.; Cleries, R.; Agudo, A.; Sánchez, M.-J.; Sánchez-Cantalejo, E.; Molina-Montes, E.; Navarro, C.; Chirlaque, M.-D.; María Huerta, J.; et al. Dietary Flavonoid and Lignan Intake and Mortality in a Spanish Cohort. Epidemiology 2013, 24, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Morgan, R.L.; Whaley, P.; Thayer, K.A.; Schünemann, H.J. Identifying the PECO: A Framework for Formulating Good Questions to Explore the Association of Environmental and Other Exposures with Health Outcomes. Environ. Int. 2018, 121, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Belur, J.; Tompson, L.; Thornton, A.; Simon, M. Interrater Reliability in Systematic Review Methodology: Exploring Variation in Coder Decision-Making. Sociol. Methods Res. 2021, 50, 837–865. [Google Scholar] [CrossRef]
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying Heterogeneity in a Meta-Analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Castañeda, J.; Almanza-Aguilera, E.; Monge, A.; Lozano-Esparza, S.; Hernández-Ávila, J.E.; Lajous, M.; Zamora-Ros, R. Dietary Intake of (Poly)phenols and Risk of All-Cause and Cause-Specific Mortality in the Mexican Teachers’ Cohort Study. J. Nutr. 2024. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- María Mérida, D.; Vitelli-Storelli, F.; Moreno-Franco, B.; Rodríguez-Ayala, M.; López-García, E.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Polyphenol Intake and Mortality: A Nationwide Cohort Study in the Adult Population of Spain. Clin. Nutr. 2023, 42, 1076–1085. [Google Scholar] [CrossRef]
- Talavera-Rodriguez, I.; Fernandez-Lazaro, C.I.; Hernández-Ruiz, Á.; Hershey, M.S.; Galarregui, C.; Sotos-Prieto, M.; de la Fuente-Arrillaga, C.; Martínez-González, M.Á.; Ruiz-Canela, M. Association between an Oxidative Balance Score and Mortality: A Prospective Analysis in the SUN Cohort. Eur. J. Nutr. 2023, 62, 1667–1680. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, C.; Kishimoto, Y.; Fukushima, Y.; Kondo, K.; Yamakawa, M.; Wada, K.; Nagata, C. Dietary Intake of Total Polyphenols and the Risk of All-Cause and Specific-Cause Mortality in Japanese Adults: The Takayama Study. Eur. J. Nutr. 2020, 59, 1263–1271. [Google Scholar] [CrossRef]
- Pounis, G.; Costanzo, S.; Bonaccio, M.; Di Castelnuovo, A.; de Curtis, A.; Ruggiero, E.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; et al. Reduced Mortality Risk by a Polyphenol-Rich Diet: An Analysis from the Moli-Sani Study. Nutrition 2018, 48, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remón, A.; Martínez-González, M.A.; López-Sabater, M.C.; Covas, M.I.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; et al. Polyphenol Intake and Mortality Risk: A Re-Analysis of the PREDIMED Trial. BMC Med. 2014, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Rabassa, M.; Cherubini, A.; Urpí-Sardà, M.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C. High Concentrations of a Urinary Biomarker of Polyphenol Intake Are Associated with Decreased Mortality in Older Adults. J. Nutr. 2013, 143, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- USDA Database for the Flavonoid Content of Selected Foods, Release 2.1. Available online: https://www.ars.usda.gov/ARSUserFiles/80400525/Data/Flav/Flav02-1.pdf (accessed on 15 May 2024).
- Díaz-Castro, J.; Pérez-Sánchez, L.J.; Ramírez López-Frías, M.; López-Aliaga, I.; Nestares, T.; Alférez, M.J.M.; Ojeda, M.L.; Campos, M.S. Influence of Cow or Goat Milk Consumption on Antioxidant Defence and Lipid Peroxidation during Chronic Iron Repletion. Br. J. Nutr. 2012, 108, 1–8. [Google Scholar] [CrossRef]
- Hooper, L.; Kroon, P.A.; Rimm, E.B.; Cohn, J.S.; Harvey, I.; Le Cornu, K.A.; Ryder, J.J.; Hall, W.L.; Cassidy, A. Flavonoids, Flavonoid-Rich Foods, and Cardiovascular Risk: A Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2008, 88, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Kay, C.; Abdelhamid, A.; Kroon, P.A.; Cohn, J.S.; Rimm, E.B.; Cassidy, A. Effects of Chocolate, Cocoa, and Flavan-3-Ols on Cardiovascular Health: A Systematic Review and Meta-Analysis of Randomized Trials. Am. J. Clin. Nutr. 2012, 95, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Welch, A.A.; Fairweather-Tait, S.J.; Kay, C.; Minihane, A.-M.; Chowienczyk, P.; Jiang, B.; Cecelja, M.; Spector, T.; Macgregor, A.; et al. Higher Anthocyanin Intake Is Associated with Lower Arterial Stiffness and Central Blood Pressure in Women. Am. J. Clin. Nutr. 2012, 96, 781–788. [Google Scholar] [CrossRef]
- Chuang, C.-C.; Martinez, K.; Xie, G.; Kennedy, A.; Bumrungpert, A.; Overman, A.; Jia, W.; McIntosh, M.K. Quercetin Is Equally or More Effective than Resveratrol in Attenuating Tumor Necrosis Factor-{alpha}-Mediated Inflammation and Insulin Resistance in Primary Human Adipocytes. Am. J. Clin. Nutr. 2010, 92, 1511–1521. [Google Scholar] [CrossRef]
- De Pergola, G.; Marucci, S.; Corbo, F.; Almerighi, G.; Cerutti, N.; Triggiani, V.; De Vito, D.; Castellana, F.; Zupo, R. Nutraceuticals and Oral Supplements in Cancer Prevention: A Narrative Review. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 1021–1031. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies. Anticancer Res. 2004, 24, 2783–2840. [Google Scholar] [PubMed]
- Cimino, S.; Sortino, G.; Favilla, V.; Castelli, T.; Madonia, M.; Sansalone, S.; Russo, G.I.; Morgia, G. Polyphenols: Key Issues Involved in Chemoprevention of Prostate Cancer. Oxid. Med. Cell. Longev. 2012, 2012, 632959. [Google Scholar] [CrossRef] [PubMed]
- Stagos, D.; Amoutzias, G.D.; Matakos, A.; Spyrou, A.; Tsatsakis, A.M.; Kouretas, D. Chemoprevention of Liver Cancer by Plant Polyphenols. Food Chem. Toxicol. 2012, 50, 2155–2170. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, C.; Russo, M.; Bilotto, S.; Tedesco, I.; Laratta, B.; Russo, G.L. Dietary Polyphenols in Cancer Prevention: The Example of the Flavonoid Quercetin in Leukemia. Ann. N. Y. Acad. Sci. 2012, 1259, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.D.; Hong, J.; Yang, G.-Y.; Liao, J.; Yang, C.S. Inhibition of Carcinogenesis by Polyphenols: Evidence from Laboratory Investigations. Am. J. Clin. Nutr. 2005, 81, 284S–291S. [Google Scholar] [CrossRef] [PubMed]
- Boskou, D.; Clodoveo, M.L. Olive Oil: Processing Characterization, and Health Benefits. Foods 2020, 9, 1612. [Google Scholar] [CrossRef] [PubMed]
- Lammi, C.; Bellumori, M.; Cecchi, L.; Bartolomei, M.; Bollati, C.; Clodoveo, M.L.; Corbo, F.; Arnoldi, A.; Mulinacci, N. Extra Virgin Olive Oil Phenol Extracts Exert Hypocholesterolemic Effects through the Modulation of the LDLR Pathway: In Vitro and Cellular Mechanism of Action Elucidation. Nutrients 2020, 12, 1723. [Google Scholar] [CrossRef]
- Kurutas, E.B. The Importance of Antioxidants Which Play the Role in Cellular Response against Oxidative/nitrosative Stress: Current State. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef]
Strategy | Descriptors Used | |
---|---|---|
#1 | Population | (human*[tiab]) |
#2 | Intervention/Exposure | (intake[tiab]) OR (consumption[tiab]) OR (exposure*[tiab]) |
#3 | Comparator | (Categor*[tiab]) OR (exposure[tiab]) OR (tertile*[tiab]) OR (quartile*[tiab]) OR (quintile*[tiab]) OR (level*[tiab]) |
#4 | Outcomes | (overall mortality[tiab]) OR (survival[tiab]) OR (death*[tiab]) OR (all-cause mortality[tiab]) |
#5 | Exclusion keywords | (Review[tiab]) OR (systematic review[tiab]) OR (narrative review[tiab]) OR (meta-analysis[tiab]) OR (editorial[tiab]) OR (letter[tiab]) OR (commentary[tiab]) OR (perspective[tiab]) OR (book[tiab]) |
#6 | Search strategy | #1 AND #2 AND #3 AND #4 NOT #5 |
Filters: Sort by: most recent. Date: 31 May 2024. Time restriction: none. |
Author, Year | Recruitment Period | Sex | Country | N | Study Population | Follow-Up | Design | Exposure | Outcome(s) | Covariates Adjusted for |
---|---|---|---|---|---|---|---|---|---|---|
Castañeda J et al., 2024 [33] | 2008–2011 | All female | America (Mexico) | 95,313 | The Mexican Teachers’ Cohort Study | 11.2 years | cohort | Dietary polyphenols | All-cause mortality | Education, smoking status, leisure time and household physical activity, time watching TV, former drinker status, Body Mass Index (BMI), energy intake, fiber intake, number of medications per day, number of chronic diseases, age, sex, hypertriglyceridemia, hypercholesterolemia, low HDL-cholesterol, and hypertension. |
Talavera-Rodriguez I et al., 2023 [35] | 1999–2009 | 7580 (M), 10,981 (F), aged ≥20 years | Europe (Spain) | 18,561 | The Seguimiento Universidad de Navarra (SUN) Study | 12.2 years | cohort | Dietary polyphenols | All-cause mortality | Age, family history of cardiocascular disease (CVD), following special diet at baseline, marital status, Mediterranean adherence, prevalent cancer, depression, CVD, diabetes, dyslipidemia, hypertension, sex, total energy intake, use of aspirin, education. |
María Mérida D et al., 2023 [34] | 2008–2010 | 5760 (M), 6401 (F), aged ≥18 years | Europe (Spain) | 12,161 | The Study on Nutrition and Cardiovascular Risk (ENRICA) | 12.5 years | cohort | Dietary polyphenols | All-cause mortality | Age, sex, education, smoking status, leisure time and household physical activity, time watching TV, former drinker, BMI, total energy intake, total fiber intake, number of medications per day, number of chronic conditions, hypertriglyceridemia, hypercholesterolemia, low HDL-cholesterol, and hypertension. |
Taguchi C et al., 2020 [36] | 1992–2008 | 14,427 (M), 17,125 (F), aged ≥35 years | Asia (Japan) | 29,079 | The Takayama study | 16 years | cohort | Dietary polyphenols | All-cause mortality | Age, sex, total energy, BMI, physical activity, smoking status, education, marital status, histories of diabetes and hypertension, alcohol consumption, and intake of salt. |
Pounis G et al., 2018 [37] | 2005–2010 | 10,980 (F), 10,322 (M), aged ≥35 y | Europe (Italy) | 21,302 | The Moli-sani study | 8.3 years | cohort | Dietary polyphenols | All-cause mortality | Age, energy intake, smoking habits, social status, physical activity level, and the low-grade inflammation status of the participants assessed through the INFLA score. |
Tresserra-Rimbau A et al., 2014 [38] | 2003–2010 | NR | Europe (Spain) | 1434 | The PREDIMED trial | 4.8 years | cohort | Dietary polyphenols | All-cause mortality | Age, smoking, BMI, baseline diabetes, alcohol, total energy intake, physical activity, family history of CVD or cancer, aspirin use, antihypertensive drug use, use of cardiovascular medication, use of oral hypoglycaemic agents, insulin, intake of protein, saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, and cholesterol. |
Zamora-Ros R et al., 2013 [39] | 1998–2000 | 444 (F), 363 (M), aged ≥65 years | Europe (Italy) | 807 | The INCHIANTI study | 12 years | cohort | Total urinary polyphenols | All-cause mortality | Education, BMI, total energy intake, alcohol intake, smoking history, physical activity, CVD, cancer, diabetes mellitus, dementia, Parkinson’s disease, and chronic obstructive pulmonary disease. |
Author, Year | Selection 1 (Representativeness of Exposure) | Selection 3 (Exposure Assessment) | Selection 4 (Outcome of Interest) | Outcome 1 (Outcome Ascertainment) | Outcome 2 (Duration of Follow-Up) | Outcome 3 (Adequate Follow-Up Time) | NOS Score (Maximum 6) |
---|---|---|---|---|---|---|---|
Castañeda J et al., 2024 [33] | * | * | * | * | * | * | 6 |
Talavera-Rodriguez I et al., 2023 [35] | * | - | * | * | * | * | 5 |
María Mérida D et al., 2023 [34] | * | * | * | * | * | * | 6 |
Taguchi C et al., 2020 [36] | * | - | * | * | * | * | 5 |
Pounis G et al., 2018 [37] | * | - | * | * | * | * | 5 |
Tresserra-Rimbau A et al., 2014 [38] | * | - | * | * | * | - | 4 |
Zamora-Ros R et al., 2013 [39] | - | - | * | * | * | * | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zupo, R.; Castellana, F.; Lisco, G.; Corbo, F.; Crupi, P.; Sardone, R.; Panza, F.; Lozupone, M.; Rondanelli, M.; Clodoveo, M.L. Dietary Intake of Polyphenols and All-Cause Mortality: A Systematic Review with Meta-Analysis. Metabolites 2024, 14, 404. https://doi.org/10.3390/metabo14080404
Zupo R, Castellana F, Lisco G, Corbo F, Crupi P, Sardone R, Panza F, Lozupone M, Rondanelli M, Clodoveo ML. Dietary Intake of Polyphenols and All-Cause Mortality: A Systematic Review with Meta-Analysis. Metabolites. 2024; 14(8):404. https://doi.org/10.3390/metabo14080404
Chicago/Turabian StyleZupo, Roberta, Fabio Castellana, Giuseppe Lisco, Filomena Corbo, Pasquale Crupi, Rodolfo Sardone, Francesco Panza, Madia Lozupone, Mariangela Rondanelli, and Maria Lisa Clodoveo. 2024. "Dietary Intake of Polyphenols and All-Cause Mortality: A Systematic Review with Meta-Analysis" Metabolites 14, no. 8: 404. https://doi.org/10.3390/metabo14080404
APA StyleZupo, R., Castellana, F., Lisco, G., Corbo, F., Crupi, P., Sardone, R., Panza, F., Lozupone, M., Rondanelli, M., & Clodoveo, M. L. (2024). Dietary Intake of Polyphenols and All-Cause Mortality: A Systematic Review with Meta-Analysis. Metabolites, 14(8), 404. https://doi.org/10.3390/metabo14080404