Combination of Transcriptomics and Metabolomics Analyses Provides Insights into the Mechanisms of Growth Differences in Spotted Seabass (Lateolabrax maculatus) Fed a Low-Phosphorus Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feed and Feeding Experiment
2.2. Sample Collection
2.3. Liver Biochemistry Analysis
2.4. Quantitative Real-Time PCR
2.5. Transcriptomics Sequencing (RNA-Seq) Analysis
2.6. Metabolomics Analysis
2.7. Comprehensive Transcriptomics and Metabolomics Analyses
2.8. Statistical Analysis
3. Results
3.1. Differences in Growth Performance
3.2. Oxidative Stress-Related Parameters in the Liver
3.3. Expression of Genes Associated with Inflammatory Response
3.4. Transcriptomics Analysis
3.4.1. Transcriptomics Sequence Evaluation and Annotation
3.4.2. Significant Functional Enrichment Analysis of DEGs
3.4.3. RT-qPCR Verification
3.5. Metabolomics Analysis
3.5.1. Differential Metabolites (DMs) Analysis
3.5.2. Identification and Functional Analysis of Differential Metabolites
3.6. Comprehensive Transcriptomics and Metabolomics Analyses
4. Discussion
4.1. Fast-Growing Spotted Seabass Fed a Low-Phosphorus Diet Displayed Higher Antioxidant Capacity
4.2. Fast-Growing Spotted Seabass Were Adapted to a Low-Phosphorus Diet Revealed in Transcriptomic Function
4.3. Fast-Growing Spotted Seabass Fed a Low-Phosphorus Diet Exhibited Greater Protein Digestion and Transfer Ability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fishery and Fishery Administration of the Ministry of Agriculture and Rural Affairs; National Fisheries Technology Extension Center, C.S.o.F. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2023.
- Guo, J.; Lin, J.; Li, X.; Wang, L.; Song, K.; Lu, K.; Zhang, C. Enhanced Intestinal Microflora Composition and Phosphorus-transportation Efficiency in Fast-growing Spotted Seabass (Lateolabrax maculatus) Fed a Low-phosphorus Diet. Aquaculture 2023, 577, 739916. [Google Scholar] [CrossRef]
- Curran, T.E. The Miner. Hist. Photogr. 1979, 3, 128. [Google Scholar] [CrossRef]
- Chapagain, P.; Arivett, B.; Cleveland, B.M.; Walker, D.M.; Salem, M. Analysis of the Fecal Microbiota of Fast- and Slow-growing Rainbow Trout (Oncorhynchus mykiss). BMC Genom. 2019, 20, 788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, S.; Lu, K.; Wang, L.; Song, K.; Li, X.; Zhang, C.; Rahimnejad, S. Effects of Dietary Phosphorus Level on Growth, Body Composition, Liver Histology and Lipid Metabolism of Spotted Seabass (Lateolabrax maculatus) reared in freshwater. Aquac. Fish. 2023, 8, 528–537. [Google Scholar] [CrossRef]
- Itoi, S.; Ineno, T.; Kinoshita, S.; Hirayama, Y.; Nakaya, M.; Kakinuma, M.; Watabe, S. Analysis on Serum Proteins From Rainbow Trout Oncorhynchus mykiss Exposed to High Temperature. Fish. Sci. 2001, 67, 191–193. [Google Scholar] [CrossRef]
- Reinke, H.; Asher, G. Circadian Clock Control of Liver Metabolic Functions. Gastroenterology 2016, 150, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for Laboratory Diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ince-Dunn, G.; Suomalainen, A.; Elo, L.L. Integrative Omics Approaches Provide Biological and Clinical Insights: Examples From mitochondrial diseases. J. Clin. Investig. 2020, 130, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.; David, L.; Dirks, R.; Wiegertjes, G.F. Genomic and Transcriptomic Approaches to Study Immunology in Cyprinids: What is Next? Dev. Comp. Immunol. 2017, 75, 48–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Du, X.; Cui, Z.; Jiang, X.; Wang, L.; Yao, J.; Liu, S.; Wang, J.; Cai, C.; et al. Transcriptome in Liver of Periparturient Dairy Cows Differs Between Supplementation of Rumen-Protected Niacin and Rumen-Protected Nicotinamide. Metabolites 2024, 14, 150. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Jiang, X.; Zou, S. Transcriptome Analysis of Blunt Snout Bream (Megalobrama amblycephala) Reveals Putative Differential Expression Genes Related to Growth and Hypoxia. PLoS ONE 2015, 10, e142801. [Google Scholar] [CrossRef]
- Li, Z.; Bao, X.; Liu, X.; Wang, W.; Yang, J.; Zhu, X.; Wang, S. Transcriptome Profiling Based at Different Time Points after Hatching Deepened Our Understanding on Larval Growth and Development of Amphioctopus fangsiao. Metabolites 2023, 13, 927. [Google Scholar] [CrossRef]
- Luo, W.; Chi, S.; Wang, J.; Yu, X.; Tong, J. Comparative Transcriptomic Analyses of Brain-Liver-Muscle in Channel Catfish (Ictalurus punctatus) with Differential Growth Rate. Comp. Biochem. Phys. D Genom. Proteom. 2024, 49, 101178. [Google Scholar] [CrossRef]
- Maekawa, S.; Wang, P.C.; Chen, S.C. Comparative Study of Immune Reaction Against Bacterial Infection From Transcriptome Analysis. Front. Immunol. 2019, 10, 153. [Google Scholar] [CrossRef]
- Sudhagar, A.; Kumar, G.; El-Matbouli, M. Transcriptome Analysis Based on RNA-Seq in Understanding Pathogenic Mechanisms of Diseases and the Immune System of Fish: A Comprehensive Review. Int. J. Mol. Sci. 2018, 19, 245. [Google Scholar] [CrossRef]
- Li, J.; Bai, J.; Yang, Y.; Wu, Z. Low-Protein Diet Supplemented with 1% L-glutamine Improves Growth Performance, Serum Biochemistry, Redox Status, Plasma Amino Acids, and Alters Fecal Microbiota in Weaned Piglets. Anim. Nutr. 2024, 17, 144–154. [Google Scholar] [CrossRef]
- Kong, T.; Lin, S.; Ren, X.; Li, S.; Gong, Y. Transcriptome and Metabolome Integration Analysis of Mud Crab Scylla Paramamosain Challenged to Vibrio parahaemolyticus Infection. Fish Shellfish Immunol. 2020, 103, 430–437. [Google Scholar] [CrossRef]
- Mo, N.; Zhu, D.; Liu, J.; Feng, T.; Cui, Z. Metabolic Responses to Air-Exposure Stress of the Chinese Mitten Crab (Eriocheir sinensis) Revealed by a Combined Analysis of Metabolome and Transcriptome. Aquaculture 2022, 548, 737710. [Google Scholar] [CrossRef]
- Yang, X.; He, Y.; Lin, S.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S.; Chi, S.; Tan, B. Saccharomyces Cerevisiae Extracts Improved the Effects of a Low Fishmeal, Complex Plant Protein Diet in the Orange-Spotted Grouper, Epinephelus coioides. Aquac. Rep. 2021, 19, 100574. [Google Scholar] [CrossRef]
- Lu, K.; Ji, Z.; Rahimnejad, S.; Zhang, C.; Wang, L.; Song, K. De novo Assembly and Characterization of Seabass Lateolabrax japonicus Transcriptome and Expression of Hepatic Genes Following Different Dietary Phosphorus/Calcium Levels. Comp. Biochem. Phys. D Genom. Proteom. 2017, 24, 51–59. [Google Scholar] [CrossRef]
- Guo, J.; Wang, L.; Song, K.; Lu, K.; Li, X.; Zhang, C. Physiological Response of Spotted Seabass (Lateolabrax maculatus) to Different Dietary Available Phosphorus Levels and Water Temperature: Changes in Growth, Lipid Metabolism, Antioxidant Status and Intestinal Microbiota. Antioxidants 2023, 12, 2128. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Yu, X.; Tong, J.; Pang, M.; Zhou, Y.; Liu, Q.; Tao, W. Comparative Transcriptomic Analysis of Hypothalamus-pituitary-liver Axis in Bighead Carp (Hypophthalmichthys nobilis) with Differential Growth rate. BMC Genom. 2019, 20, 328. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.; Vallejo, R.L.; Leeds, T.D.; Palti, Y.; Liu, S.; Sabbagh, A.; Rexroad, C.R.; Yao, J. RNA-Seq identifies SNP Markers for Growth traits in rainbow trout. PLoS ONE 2012, 7, e36264. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, J.; Shi, X. Vitamin D3 Identified From Metabolomic Analysis of Intestinal Contents Promotes an Antibacterial Response in Shrimp Intestinal Immunity. Aquaculture 2021, 530, 735951. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, F.; Hu, J.; Liu, C.; Liu, H.; Han, D.; Jin, J.; Yang, Y.; Zhu, X.; Yi, J.; et al. Effects of Dietary Yeast Hydrolysate on the Growth, Antioxidant Response, Immune Response and Disease Resistance of Largemouth Bass (Micropterus salmoides). Fish Shellfish Immunol. 2019, 94, 548–557. [Google Scholar] [CrossRef]
- Heusner, A.A. Energy Metabolism and Body Size I. Is the 0.75 Mass Exponent of Kleiber’s Equation a Statistical Artifact? Respir. Physiol. 1982, 48, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lai, J.; Chen, Y.; Liu, Y.; Song, M.; Li, F.; Li, P.; Li, Q.; Gong, Q. Combination of Metabolome and Proteome Analyses Provides Insights into the Mechanism Underlying Growth Differences in Acipenser dabryanus. iScience 2023, 26, 107413. [Google Scholar] [CrossRef] [PubMed]
- Annadurai, T.; Vigneshwari, S.; Thirukumaran, R.; Thomas, P.A.; Geraldine, P. Acetyl-L-carnitine prevents carbon tetrachloride-induced oxidative stress in various tissues of Wistar rats. J. Physiol. Biochem. 2011, 67, 519–530. [Google Scholar] [CrossRef]
- He, K.; Meng, X.; Su, J.; Jiang, S.; Chu, M.; Huang, B. Oleanolic Acid Inhibits the Tumor Progression by Regulating Lactobacillus through the Cytokine-Cytokine Receptor Interaction Pathway in 4T1-Induced Mice Breast Cancer Model. Heliyon 2024, 10, e27028. [Google Scholar] [CrossRef]
- Abudawood, M.; Tabassum, H.; Ansar, S.; Almosa, K.; Sobki, S.; Ali, M.N.; Aljohi, A. Assessment of Gender-Related Differences in Vitamin D Levels and Cardiovascular Risk Factors in Saudi Patients with Type 2 Diabetes Mellitus. Saudi J. Biol. Sci. 2018, 25, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Mccullough, M.L.; Bostick, R.M.; Mayo, T.L. Vitamin D Gene Pathway Polymorphisms and Risk of Colorectal, Breast, and Prostate Cancer. Annu. Rev. Nutr. 2009, 29, 111–132. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Biswal, N.; Bethou, A.; Rajappa, M.; Kumar, S.; Vinayagam, V. Does Vitamin D Supplementation Improve Glycaemic Control In Children With Type 1 Diabetes Mellitus?—A Randomized Controlled Trial. J. Clin. Diagn. Res. 2017, 11, SC15–SC17. [Google Scholar] [PubMed]
- Sakaki, T.; Sawada, N.; Komai, K.; Shiozawa, S.; Yamada, S.; Yamamoto, K.; Ohyama, Y.; Inouye, K. Dual Metabolic Pathway of 25-hydroxyvitamin D3 Catalyzed by Human CYP24. Eur. J. Biochem. 2000, 267, 6158–6165. [Google Scholar] [CrossRef]
- Jones, G.; Strugnell, S.A.; DeLuca, H.F. Current Understanding of The Molecular Actions of Vitamin D. Physiol. Rev. 1998, 78, 1193–1231. [Google Scholar] [CrossRef] [PubMed]
- Prosser, D.E.; Jones, G. Enzymes Involved in the Activation and Inactivation of Vitamin D. Trends Biochem. Sci. 2004, 29, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Sun, S. Research Progress of Vitamin D. Med. Innov. China 2020, 17, 167–172. [Google Scholar]
- Zhou, S.; Glowacki, J. Dehydroepiandrosterone and Bone. Vitam. Horm. 2018, 108, 251–271. [Google Scholar] [PubMed]
- Marchitti, S.A.; Brocker, C.; Orlicky, D.J.; Vasiliou, V. Molecular Characterization, Expression Analysis, and Role of ALDH3B1 in the Cellular Protection Against Oxidative Stress. Free Radic. Biol. Med. 2010, 49, 1432–1443. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sen, K.; Sa, P.; Khuntia, A.; Raghav, S.K.; Swain, R.K.; Sahoo, S.K. Piperlongumine Based Nanomedicine Impairs Glycolytic Metabolism in Triple Negative Breast Cancer Stem Cells through Modulation of GAPDH & FBP1. Phytomedicine 2024, 123, 155181. [Google Scholar]
- Wang, X.; Fu, S.Q.; Yuan, X.; Yu, F.; Ji, Q.; Tang, H.W.; Li, R.K.; Huang, S.; Huang, P.Q.; Qin, W.T.; et al. A GAPDH Serotonylation System Couples CD8+ T Cell Glycolytic Metabolism to Antitumor Immunity. Mol. Cell 2024, 84, 760–775. [Google Scholar] [CrossRef] [PubMed]
- Buller, C.L.; Heilig, C.W.; Brosius, F.R. GLUT1 Enhances mTOR Activity Independently of TSC2 and AMPK. Am. J. Physiol. Renal Physiol. 2011, 301, F588–F596. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.M.P.; Moutou, K.A.; Conceição, L.E.C.; Engrola, S.; Fernandes, J.M.O.; Johnston, I.A. What Determines Growth Potential and Juvenile Quality of Farmed Fish Species? Rev. Aquac. 2013, 5, S168–S193. [Google Scholar] [CrossRef]
- Xiao, L.; Jiang, W.; Wu, P.; Liu, Y.; Ren, H.; Tang, L.; Li, S.; Zhong, C.; Zhang, R.; Feng, L.; et al. Improvement of Flesh Quality, Muscle Growth and Protein Deposition in Adult Grass Carp (Ctenopharyngodon idella): The role of tryptophan. Aquaculture 2023, 577, 740005. [Google Scholar] [CrossRef]
- Babazadeh, D.; Ahmadi Simab, P. Methionine in Poultry Nutrition: A Review. J. World’s Poult. Sci. 2022, 1, 1–11. [Google Scholar] [CrossRef]
- Habte-Tsion, H.M.; Ge, X.; Liu, B.; Xie, J.; Ren, M.; Zhou, Q.; Miao, L.; Pan, L.; Chen, R. A Deficiency or an Excess of Dietary Threonine Level Affects Weight Gain, Enzyme Activity, Immune Response and Immune-Related Gene Expression in Juvenile Blunt Snout bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2015, 42, 439–446. [Google Scholar] [CrossRef]
- Carvalho, P.L.P.F.; Xavier, W.D.S.; Guimarães, M.G.; Rodrigues, E.J.D.; Furuya, W.M.; Yamamoto, F.Y.; Pezzato, L.E.; Gatlin, D.M.; Barros, M.M. Dietary Glutamine Improves Growth and Intestinal Morphology of Juvenile GIFT Tilapia (Oreochromis niloticus) but has Limited Effects on Innate Immunity and Antioxidant Capacity. Aquaculture 2023, 563, 738976. [Google Scholar] [CrossRef]
- Yue, H.; Wu, J.; Fu, P.; Ruan, R.; Ye, H.; Hu, B.; Chen, X.; Li, C. Effect of Glutamine Supplementation Against Soybean Meal-Induced Growth Retardation, Hepatic Metabolomics and Transcriptome Alterations in Hybrid Sturgeon Acipenser baerii ♀ × A. schrenckii ♂. Aquac. Rep. 2022, 24, 101158. [Google Scholar] [CrossRef]
- Oliveira, C.H.; Dias, K.M.M.; Bernardes, R.D.; Diana, T.F.; Rodrigueiro, R.J.B.; Calderano, A.A.; Albino, L.F.T. The Effects of Arginine Supplementation Through Different Ratios of Arginine:Lysine on Performance, Skin Quality and Creatine Levels of Broiler Chickens Fed Diets Reduced in Protein Content. Poult. Sci. 2022, 101, 102148. [Google Scholar] [CrossRef]
- Rotoli, B.M.; Barilli, A.; Visigalli, R.; Ferrari, F.; Dall’Asta, V. y+LAT1 and y+LAT2 Contribution to Arginine Uptake in Different Human Cell Models: Implications in the Pathophysiology of Lysinuric Protein Intolerance. J. Cell. Mol. Med. 2020, 24, 921–929. [Google Scholar] [CrossRef]
- Singh, N.; Ecker, G.F. Insights into the Structure, Function, and Ligand Discovery of the Large Neutral Amino Acid Transporter 1, LAT1. Int. J. Mol. Sci. 2018, 19, 1278. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Jiao, J.; Zhou, C.; Tang, S.; Wang, M.; Kang, J.; Han, X.; Tan, Z. LPAR5, GNAT3 and Partial Amino acid Transporters Messenger RNA Expression Patterns in Digestive Tracts, Metabolic Organs and Muscle Tissues of Growing Goats. Animal 2019, 13, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Le Maréchal, C.; Lucas, D.; Raguénès, O.; Férec, C. “Loss of function” Mutations in the Cationic Trypsinogen Gene (PRSS1) may Act as a Protective Factor against Pancreatitis. Mol. Genet. Metab. 2003, 79, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.V.C.; Verma, S.K.; Sharma, D.; Kumar, L.K.; Veerappa, V.G.; Singh, D.; Onteru, S.K. Meprin A1 Subunit Beta Gene Polymorphism is Associated with the Length of Post-Partum Anestrus Interval in Murrah buffaloes. Gene 2022, 827, 146456. [Google Scholar] [CrossRef]
- Salimian, N.; Peymani, M.; Ghaedi, K.; Hashemi, M.; Rahimi, E. Collagen 1A1 (COL1A1) and Collagen11A1 (COL11A1) as Diagnostic Biomarkers in Breast, Colorectal and Gastric Cancers. Gene 2024, 892, 147867. [Google Scholar] [CrossRef]
Ingredients | Content/% |
---|---|
Deboned fishmeal | 15.00 |
Squid paste | 3.00 |
Casein | 22.00 |
Wheat gluten | 8.00 |
Dextrin | 37.00 |
Microcrystalline cellulose | 2.52 |
Fish oil | 9.00 |
Vitamin C | 0.10 |
Vitamin premix a | 0.40 |
Mineral premix b | 0.50 |
Choline chloride | 0.50 |
KCI | 1.00 |
NaCl | 0.78 |
Taurine | 0.10 |
Y2O3 | 0.10 |
Total | 100.0 |
Proximate composition | |
Crude protein | 45.76 |
Crude lipid | 11.34 |
Total Ca | 0.35 |
Total P | 0.11 |
Genes | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|
SLC2A3 | CAGAAGAGGCCGAACACCAA | TGGCAGATTCGTACGGAAGAC |
APOE | TGGTTTCACATCCCTCCTGC | CACCAAGATCCGTGAGCAGT |
IL-17 | GGTGTCCAACTACACGCTGA | TGCACCGGCTGGTAACTTAG |
AQP9 | AGTGATTGCCAGGATGCACA | CTGTCACTGGTGCAAATGCC |
CYP2R1 | CTCGGTGGCATCTTGACTGT | GCCAGTTTGCGGTGTTCAAT |
GCK | CTGGCTTGTGGGGACAGATT | GAGGCTGGCCCTCTTTATCC |
IL-10 | ATGGGCGAACTGGATCTGC | TTAGGGTCAGCCGGTCTTCA |
COX-2 | ACTTTCACGACCACGCTCTAA | GCAGGGAGAACAGTTCAGACA |
TLR2 | TTGCCAAATGCAATCCCGAC | TCATCTTCAACCAGCGGTGT |
TNF-α | GATCGTCATCCCACAAACCG | GCTTTGCTGCCTATGGAGTC |
IL-1β | TCTGTGGCGCTGCTCTTAAA | TGCCCAGTGGAATGGACTTG |
IL-8 | TGGAGCTGATTCCTGCCAAC | TCCCGATCTGTTCAGGGTGT |
β-actin | CAACTGGGATGACATGGAGA | AGTTGGCTTTGGGGTTCAGG |
Sample | Reads No. | Bases (bp) | Q30 (bp) | N (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|---|
FG1 | 47,738,948 | 7,208,581,148 | 6,891,660,095 | 0.004106 | 98.43 | 95.60 |
FG2 | 61,344,676 | 9,263,046,076 | 8,860,529,909 | 0.004164 | 98.46 | 95.65 |
FG3 | 51,054,882 | 7,709,287,182 | 7,355,152,727 | 0.004161 | 98.35 | 95.41 |
SG1 | 50,271,034 | 7,590,926,134 | 7,247,952,498 | 0.004192 | 98.38 | 95.48 |
SG2 | 51,436,446 | 7,766,903,346 | 7,418,109,058 | 0.004164 | 98.38 | 95.51 |
SG3 | 47,522,776 | 7,175,939,176 | 6,851,975,975 | 0.004203 | 98.38 | 95.49 |
Sample | Clean Reads No. | Clean Data (bp) | Clean Reads % | Clean Data % |
---|---|---|---|---|
FG1 | 46,736,204 | 7,049,662,557 | 97.90 | 97.80 |
FG2 | 60,107,352 | 9,065,731,624 | 97.98 | 97.87 |
FG3 | 49,882,034 | 7,521,750,060 | 97.70 | 97.57 |
SG1 | 49,122,294 | 7,406,405,066 | 97.71 | 97.57 |
SG2 | 50,279,510 | 7,582,177,575 | 97.75 | 97.62 |
SG3 | 46,469,094 | 7,001,358,704 | 97.78 | 97.57 |
Level 2 | Pathway | KO |
---|---|---|
Carbohydrate metabolism | Glycolysis/gluconeogenesis | GCK (+); AL3B1 (+); GAPDH (+) |
Lipid metabolism | Steroid biosynthesis | SOAT1 (+); CYP2R1 (+); CYP24A1 (−) |
Digestive system | Protein digestion and absorption | PRSS1(+); MEP1B (+); COL12A1 (+); SLC7A7 (+); SLC7A6 (−) |
Endocrine system | Insulin secretion | RYR2 (+); GCK (+); SLC2A1 (+); GLUC2 (−); GLUC1 (−); KCNJ11 (−) |
Signaling molecules and interaction | Cytokine–cytokine receptor interaction | INHBB (+); CCR3 (+); CCR9 (+); CCL4 (+); GDF11 (−); IL-10 (−) |
Metabolite | VIP | FC | p Value | Metabolic Pathway | Trend |
---|---|---|---|---|---|
Decanoyl-L-carnitine | 1.5732 | 2.0500 | 2.4030 × 10−6 | — | ↑ |
Dehydroepiandrosterone | 1.5457 | 4.8000 | 8.8503 × 10−6 | Steroid degradation | ↑ |
Creatine | 1.5676 | 0.6300 | 3.3865 × 10−5 | Arginine and proline metabolism | ↓ |
D-Galactose | 1.4958 | 1.3800 | 1.8468 × 10−3 | Mineral absorption | ↑ |
L-Methionine | 1.4611 | 1.4000 | 4.8716 × 10−3 | Central carbon metabolism | ↑ |
L-Glutamine | 1.4409 | 1.2000 | 7.2854 × 10−3 | Protein digestion and absorption | ↑ |
L-Threonine | 1.4388 | 1.1700 | 1.0996 × 10−2 | Mineral absorption Protein digestion and absorption | ↑ |
L-Tyrosine | 1.5135 | 1.4800 | 1.1841 × 10−2 | Protein digestion and absorption | ↑ |
L-Phenylalanine | 1.4556 | 1.3700 | 3.0524 × 10−2 | Mineral absorption Protein digestion and absorption | ↑ |
L-Proline | 1.4665 | 1.6500 | 3.4051 × 10−2 | Mineral absorption Protein digestion and absorption | ↑ |
Taurine | 1.3846 | 1.19 | 0.017041367 | Neuroactive ligand–receptor interaction | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, N.; Wang, L.; Song, K.; Lu, K.; Li, X.; Zhang, C. Combination of Transcriptomics and Metabolomics Analyses Provides Insights into the Mechanisms of Growth Differences in Spotted Seabass (Lateolabrax maculatus) Fed a Low-Phosphorus Diet. Metabolites 2024, 14, 406. https://doi.org/10.3390/metabo14080406
Jin N, Wang L, Song K, Lu K, Li X, Zhang C. Combination of Transcriptomics and Metabolomics Analyses Provides Insights into the Mechanisms of Growth Differences in Spotted Seabass (Lateolabrax maculatus) Fed a Low-Phosphorus Diet. Metabolites. 2024; 14(8):406. https://doi.org/10.3390/metabo14080406
Chicago/Turabian StyleJin, Nan, Ling Wang, Kai Song, Kangle Lu, Xueshan Li, and Chunxiao Zhang. 2024. "Combination of Transcriptomics and Metabolomics Analyses Provides Insights into the Mechanisms of Growth Differences in Spotted Seabass (Lateolabrax maculatus) Fed a Low-Phosphorus Diet" Metabolites 14, no. 8: 406. https://doi.org/10.3390/metabo14080406
APA StyleJin, N., Wang, L., Song, K., Lu, K., Li, X., & Zhang, C. (2024). Combination of Transcriptomics and Metabolomics Analyses Provides Insights into the Mechanisms of Growth Differences in Spotted Seabass (Lateolabrax maculatus) Fed a Low-Phosphorus Diet. Metabolites, 14(8), 406. https://doi.org/10.3390/metabo14080406