Characterizing Growth-Retarded Japanese Eels (Anguilla japonica): Insights into Metabolic and Appetite Regulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Fish Maintenance and Samples Collection
2.3. Growth Parameters Analysis
2.4. Blood Biochemical Analysis
2.5. Analysis of Digestive Enzymes in Intestine and Antioxidant, Metabolic Enzyme in Liver
2.6. Histomorphology
2.7. Extraction of RNA, cDNA Synthesis, Primer Design and qRTPCR
2.8. Statistical Analysis
3. Results
3.1. Growth Performance and Growth-Related Genes Expression
3.2. Serum Parameters
3.3. Antioxidant Enzyme Activities
3.4. Digestive Enzyme Activities and Intestinal Histology
3.5. Metabolic Enzyme Activities
3.6. Appetite-Related Genes Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lugert, V.; Thaller, G.; Tetens, J.; Schulz, C.; Krieter, J. A review on fish growth calculation: Multiple functions in fish production and their specific application. Rev. Aquac. 2016, 8, 30–42. [Google Scholar] [CrossRef]
- Wu, L.A.; Yang, Y.; Wang, X.; Weng, Z.Y.; Hua, S.J.; Li, D.; Xia, J.H.; Liu, X.C.; Meng, Z.N. Genome-wide QTL mapping and RNA-seq reveal the genetic variation influencing growth traits in giant grouper (Epinephelu lanceolatus). Aquaculture 2023, 563, 738944. [Google Scholar] [CrossRef]
- Guo, J.R.; Lin, J.B.; Li, X.S.; Wang, L.; Song, K.; Lu, K.L.; Zhang, C.X. Enhanced intestinal microflora composition and phosphorus-transportation efficiency in fast-growing spotted seabass (Lateolabrax maculatus) fed a low-phosphorus diet. Aquaculture 2023, 577, 739916. [Google Scholar] [CrossRef]
- Lin, Z.J.; Zhang, Z.Y.; Solberg, M.F.; Chen, Z.Q.; Wei, M.L.; Zhu, F.; Jia, C.F.; Meng, Q.; Zhang, Z.W. Comparative transcriptome analysis of mixed tissues of black porgy (Acanthopagrus schlegelii) with differing growth rates. Aquac. Res. 2021, 52, 5800–5813. [Google Scholar] [CrossRef]
- Chen, B.L.; Xiao, W.; Li, D.Y.; Zou, Z.Y.; Zhu, J.L.; Yu, J.; Yang, H. Characterization of glucose metabolism in high-growth performance Nile tilapia (Oreochromis niloticus). Aquaculture 2024, 580, 740317. [Google Scholar] [CrossRef]
- Meng, K.F.; Lin, X.; Chen, Y.Y.; Hu, M.D.; Hu, W.; Luo, D.J. Integrated analysis of the digestive tract bacterial community on individual growth in sibling generation of Swamp Eels (Monopterus albus). Aquaculture 2023, 566, 739228. [Google Scholar] [CrossRef]
- Goodrich, H.R.; Clark, T.D. Why do some fish grow faster than others? Fish Fish. 2023, 24, 796–811. [Google Scholar] [CrossRef]
- Kestemont, P.; Jourdan, S.; Houbart, M.; M’elard, C.; Paspatis, M.; Fontaine, P.; Cuvier, A.; Kentouri, M.; Baras, E. Size heterogeneity, cannibalism and competition in cultured predatory fish larvae: Biotic and abiotic influences. Aquaculture 2003, 227, 333–356. [Google Scholar] [CrossRef]
- Sherzada, S.; Sharif, M.N.; Ali, Q.; Khan, S.A.; Shah, T.A.; El-Tabakh, M.A.M.; Aziz, T.; Nabi, G.; Alharbi, M.; Albekairi, T.H.; et al. Relative expression levels of growth hormone gene and growth rate in Indian major carp species. Acta Biochim. Pol. 2023, 70, 943–949. [Google Scholar] [CrossRef]
- Marín, A.; Alonso, A.M.; Delgadin, T.H.; López-Landavery, E.A.; Cometivos, L.J.; Saavedra-Flores, A.; Reyes-Flores, L.E.; Yzásiga-Barrera, C.G.; Fernandino, J.I.; Zelada-Mázmela, E. Analysis of truncated growth hormone receptor 1 in the differential growth of fine flounder Paralichthys adspersus. Aquaculture 2023, 574, 739691. [Google Scholar] [CrossRef]
- Allen, D.; Rosenfeld, J.; Richards, J. Physiological basis of metabolic trade-offs between growth and performance among different strains of rainbow trout. Can. J. Fish. Aquat. Sci. 2016, 73, 1493–1506. [Google Scholar] [CrossRef]
- Li, W.S.; Lin, H.R. The endocrine regulation network of growth hormone synthesis and secretion in fish: Emphasis on the signal integration in somatotropes. Sci. China Life Sci. 2010, 53, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Reindl, K.M.; Sheridan, M.A. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2012, 163, 231–245. [Google Scholar] [CrossRef]
- Murua, H.; Rodriguez-Marin, E.; Neilson, J.D.; Farley, J.H.; Juan-Jordá, M.J. Fast versus slow growing tuna species: Age, growth, and implications for population dynamics and fisheries management. Rev. Fish Biol. Fish. 2017, 27, 733–773. [Google Scholar] [CrossRef]
- Sousa, T.; Domingos, T.; Poggiale, J.C.; Kooijman, S. Dynamic energy budget theory restores coherence in biology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3413–3428. [Google Scholar] [CrossRef] [PubMed]
- Blanco, A.M. Hypothalamic- and pituitary-derived growth and reproductive hormones and the control of energy balance in fish. Gen. Comp. Endocr. 2020, 287, 113322. [Google Scholar] [CrossRef] [PubMed]
- Canosa, L.F.; Bertucci, J.I. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol. Cell. Endocrinol. 2020, 518, 111029. [Google Scholar] [CrossRef] [PubMed]
- Näslund, E.; Hellström, P.M. Appetite signaling: From gut peptides and enteric nerves to brain. Physiol. Behav. 2007, 92, 256–262. [Google Scholar] [CrossRef]
- Beullens, K.; Eding, E.H.; Ollevier, F.; Komen, J.; Richter, C.J.J. Sex differentiation, changes in length, weight and eye size before and after metamorphosis of European eel (Anguilla anguilla L.) maintained in captivity. Aquaculture 1997, 153, 151–162. [Google Scholar] [CrossRef]
- Damusaru, J.H.; Moniruzzaman, M.; Park, Y.; Seong, M.; Jung, J.Y.; Kim, D.J.; Bai, S.C. Evaluation of fish meal analogue as partial fish meal replacement in the diet of growing Japanese eel Anguilla japonica. Anim. Feed Sci. Technol. 2019, 247, 41–52. [Google Scholar] [CrossRef]
- Tanaka, H. Progression in artificial seedling production of Japanese eel Anguilla japonica. Fish. Sci. 2015, 81, 11–19. [Google Scholar] [CrossRef]
- Degani, G.; Gallagher, M.L. The relationship between growth, food conversion and oxygen consumption in developed and undeveloped American eels Anguilla rostrata (L.). J. Fish Biol. 2010, 27, 635–641. [Google Scholar] [CrossRef]
- Aya, F.A.; Unida, J.C.L.; Garcia, L.M.B. Effect of size grading on growth of yellow Pacific shortfin eel (Anguilla bicolor pacifica). J. Fish Biol. 2023, 102, 1237–1244. [Google Scholar] [CrossRef]
- Zhai, S.W.; Zhao, P.Y.; Huang, L.X. Dietary bile acids supplementation improves the growth performance with regulation of serum biochemical parameters and intestinal microbiota of growth retarded European eels (Anguilla anguilla) cultured in cement tanks. Isr. J. Aquacult-Bamid. 2020, 72, 1–12. [Google Scholar] [CrossRef]
- Zhai, S.W.; Zhao, P.Y.; Shi, Y.; Chen, X.H.; Liang, Y. Effects of Dietary Surfactin Supplementation on Growth Performance, Intestinal Digestive Enzymes Activities, and Hepatic Antioxidant Potential of American Eel (Anguilla rostrata) Elvers. Isr. J. Aquacult-Bamid. 2018, 70, 20899. [Google Scholar] [CrossRef]
- Zhai, S.W.; Shi, Q.C.; Chen, X.H. Effects of Dietary Surfactin Supplementation on Growth, Digestive Enzyme Activity, and Antioxidant Potential in the Intestine of Growth Retarded Marbled Eel (Anguilla marmaorata) at Elver Stage. Isr. J. Aquacult-Bamid. 2016, 68, 1–7. [Google Scholar] [CrossRef]
- Lin, M.; Zeng, C.X.; Jia, X.Q.; Zhai, S.W.; Li, Z.Q.; Ma, Y. The composition and structure of the intestinal microflora of Anguilla marmorata at different growth rates: A deep sequencing study. J. Appl. Microbiol. 2019, 126, 1340–1352. [Google Scholar] [CrossRef]
- Willemse, J.J. Characteristics of myotomal muscle fibres and their possible relation to growth rate in eels—Anguilla anguilla (L.) (Pisces, Teleostei). Aquaculture 1976, 8, 251–258. [Google Scholar] [CrossRef]
- Triantaphyllopoulos, K.A.; Cartas, D.; Miliou, H. Factors influencing GH and IGF-I gene expression on growth in teleost fish: How can aquaculture industry benefit? Rev. Aquac. 2020, 12, 1637–1662. [Google Scholar] [CrossRef]
- Kaneko, N.; Ishikawa, T.; Nomura, K. Effects of the short-term fasting and refeeding on growth-related genes in Japanese eel (Anguilla japonica) larvae. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2023, 265, 110826. [Google Scholar] [CrossRef]
- Yang, B.Y.; Green, M.; Chen, T.T. Early embryonic expression of the growth hormone family protein genes in the developing rainbow trout, Oncorhynchus mykiss. Mol. Reprod. Dev. 1999, 53, 127–134. [Google Scholar] [CrossRef]
- Sudo, R.; Kawakami, Y.; Nomura, K.; Tanaka, H.; Kazeto, Y. Production of recombinant Japanese eel (Anguilla japonica) growth hormones and their effects on early-stage larvae. Gen. Comp. Endocrinol. 2022, 317, 113977. [Google Scholar] [CrossRef]
- Zhong, H.; Xiao, J.; Chen, W.Z.; Zhou, Y.; Tang, Z.Y.; Guo, Z.B.; Luo, Y.J.; Lin, Z.B.; Gan, X.; Zhang, M. DNA methylation of pituitary growth hormone is involved in male growth superiority of Nile tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2014, 171, 42–48. [Google Scholar] [CrossRef]
- Peres, H.; Santos, S.; Oliva-Teles, A. Blood chemistry profile as indicator of nutritional status in European seabass (Dicentrarchus labrax). Fish Physiol. Biochem. 2014, 40, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Dagoudo, M.; Qiang, J.; Bao, J.W.; Tao, Y.F.; Zhu, T.H.J.; Tumukunde, E.M.; Ngoepe, T.K.; Xu, P. Effects of acute hypoxia stress on hemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (pelteobagrus fulvidraco × P. vachelli) juveniles. Aquac. Int. 2021, 29, 2181–2196. [Google Scholar] [CrossRef]
- Chen, B.L.; Xiao, W.; Zou, Z.Y.; Zhu, J.L.; Li, D.Y.; Yu, J.; Yang, H. Comparing Transcriptomes Reveals Key Metabolic Mechanisms in Superior Growth Performance Nile Tilapia (Oreochromis niloticus). Front. Genet. 2022, 13, 879570. [Google Scholar] [CrossRef]
- Wang, Z.; Qian, X.Q.; Xie, S.Q.; Yun, B. Changes of growth performance and plasma biochemical parameters of hybrid grouper (Epinephelus lanceolatus♂ x Epinephelus fuscoguttatus♀) in response to substitution of dietary fishmeal with poultry by-product meal. Aqua. Rep. 2020, 18, 100516. [Google Scholar] [CrossRef]
- Yin, X.L.; Li, Z.J.; Yang, K.; Lin, H.Z.; Guo, Z.X. Effect of guava leaves on growth and the non-specific immune response of Penaeus monodon. Fish Shellfish Immunol. 2014, 40, 190–196. [Google Scholar] [CrossRef]
- Li, Q.Z.; Wang, J.; Chen, Y.Y.; Wu, X.Y.; Liu, Y.; Lai, J.S.; Song, M.J.; Li, F.Y.; Li, P.C.; He, B.; et al. Comparison of muscle structure and transcriptome analysis reveals the mechanism of growth variation in Yangtze sturgeon (Acipenser dabryanus). Aquaculture 2024, 579, 740268. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, D.; Zhang, D.L.; Wang, Z.Y.; Fang, M. Comparative analysis of transcriptome of muscle tissue of individuals with different growth rate of Larimichthys crocea. J. Fish. China 2023, 47, 87–100. [Google Scholar]
- Zhang, W.; Liu, K.; Tan, B.P.; Liu, H.Y.; Dong, X.H.; Yang, Q.H.; Chi, S.Y.; Zhang, S.; Wang, H.L. Transcriptome, enzyme activity and histopathology analysis reveal the effects of dietary carbohydrate on glycometabolism in juvenile largemouth bass, Micropterus salmoides. Aquaculture 2019, 504, 39–51. [Google Scholar] [CrossRef]
- Feng, Q.M. Study on Behavioral and Physiological Mechanism of Individual Growth Differences of Apostichopus japonicus. Ph.D. Thesis, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, 2023. [Google Scholar]
- Li, C.; Sun, L.D.; Lin, H.Z.; Qin, Z.D.; Tu, J.G.; Li, J.; Chen, K.P.; Babu, V.S.; Lin, L. Glutamine starvation inhibits snakehead vesiculovirus replication via inducing autophagy associated with the disturbance of endogenous glutathione pool. Fish Shellfish Immunol. 2019, 86, 1044–1052. [Google Scholar] [CrossRef]
- Sakyi, M.E.; Cai, J.; Ampofo-Yeboah, A.; Anokyewaa, M.A.; Wang, Z.W.; Jian, J.C. Starvation and re-feeding influence the growth, immune response, and intestinal microbiota of Nile tilapia (Oreochromis niloticus; Linnaeus 1758). Aquaculture 2021, 543, 736959. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, L.; Liu, Y.; Jiang, W.D.; Wu, P.; Jiang, J.; Zhang, Y.G.; Zhou, X.Q. Effect of dietary isoleucine on the immunity, antioxidant status, tight junctions and microflora in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol. 2014, 41, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Magnoni, L.J.; Novais, S.C.; Eding, E.; Leguen, I.; Lemos, M.F.L.; Ozório, R.O.A.; Geurden, I.; Prunet, P.; Schrama, J.W. Acute Stress and an Electrolyte-Imbalanced Diet, but Not Chronic Hypoxia, Increase Oxidative Stress and Hamper Innate Immune Status in a Rainbow Trout (Oncorhynchus mykiss) Isogenic Line. Front. Physiol. 2019, 10, 453. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lai, J.; Chen, Y.; Liu, Y.; Song, M.; Li, F.; Li, P.; Li, Q.; Gong, Q. Combination of metabolome and proteome analyses provides insights into the mechanism underlying growth differences in Acipenser dabryanus. iScience 2023, 26, 107413. [Google Scholar] [CrossRef] [PubMed]
- Ronnestad, I.; Gomes, A.S.; Murashita, K.; Angotzi, R.; Jönsson, E.; Volkoff, H. Appetite-Controlling Endocrine Systems in Teleosts. Front. Endocrinol. 2017, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Zhao, L.P.; Xiao, L.; Liu, Q.Y.; Zhou, W.Y.; Qi, X.; Chen, H.P.; Yang, H.R.; Liu, X.C.; Zhang, Y.; et al. Structural and functional characterization of neuropeptide Y in a primitive teleost, the Japanese eel (Anguilla japonica). Gen. Comp. Endocrinol. 2012, 179, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Alrubaian, J.; Lecaude, S.; Barba, J.; Szynskie, L.; Jacobs, N.; Bauer, D.; Brown, C.; Kaminer, I.; Bagrosky, B.; Dores, R.M. Trends in the evolution of the prodynorphin gene in teleosts: Cloning of eel and tilapia prodynorphin cDNAs. Peptides 2006, 27, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, T.; Iinuma, N.; Unuma, T.; Tanaka, H.; Kagawa, H.; Ohta, H.; Suzuki, T. Development of endocrine system regulating exocrine pancreas and estimation of feeding and digestive ability in Japanese eel larvae. Aquaculture 2004, 234, 513–525. [Google Scholar] [CrossRef]
- Yada, T.; Abe, M.; Kaifu, K.; Yokouchi, K.; Fukuda, N.; Kodama, S.; Hakoyama, H.; Ogoshi, M.; Kaiya, H.; Sakamoto, T.; et al. Ghrelin and food acquisition in wild and cultured Japanese eel (Anguilla japonica). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020, 245, 110700. [Google Scholar] [CrossRef]
- Cerdá-Reverter, J.M.; Sorbera, L.A.; Carrillo, M.; Zanuy, S. Energetic dependence of NPY-induced LH secretion in a teleost fish (Dicentrarchus labrax). Am. J. Physiol. 1999, 277, R1627–R1634. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, J.T.; Breininger, J.; Baskin, D.G.; Plisetskaya, E.M. Neuropeptide Y-like gene expression in the salmon brain increases with fasting. Gen. Comp. Endocrinol. 1998, 110, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Narnaware, Y.K.; Peter, R.E. Effects of food deprivation and refeeding on neuropeptide Y (NPY) mRNA levels in goldfish. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001, 129, 633–637. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Gao, Y.F.; Wang, J.R.; Yu, X.M.; Zhang, Z.; Tong, J.G. Expression analyses of npy and pomc genes in extreme growthand starvation-refeeding bighead carp (hypophthalmichthys nobilis). Acta Hydrobiol. Sin. 2023, 47, 1228–1236. [Google Scholar] [CrossRef]
- Huang, L.L.; Tan, H.Y.; Fogarty, M.J.; Andrews, Z.B.; Veldhuis, J.D.; Herzog, H.; Steyn, F.J.; Chen, C. Actions of NPY, and Its Y1 and Y2 Receptors on Pulsatile Growth Hormone Secretion during the Fed and Fasted State. J. Neurosci. 2014, 34, 16309–16319. [Google Scholar] [CrossRef]
- Kiris, G.A.; Kumlu, M.; Dikel, S. Stimulatory effects of neuropeptide Y on food intake and growth of Oreochromis niloticus. Aquaculture 2007, 264, 383–389. [Google Scholar] [CrossRef]
- Breton, B.; Mikolajczyk, T.; Popek, W.; Bieniarz, K.; Epler, P. Neuropeptide Y stimulates in vivo gonadotropin secretion in teleost fish. Gen. Comp. Endocrinol. 1991, 84, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Tine, M.; Kuhl, H.; Teske, P.R.; Tschöp, M.H.; Jastroch, M. Diversification and coevolution of the ghrelin/growth hormone secretagogue receptor system in vertebrates. Ecol. Evol. 2016, 6, 2516–2535. [Google Scholar] [CrossRef]
- Riley, L.G.; Fox, B.K.; Kaiya, H.; Hirano, T.; Grau, E.G. Long-term treatment of ghrelin stimulates feeding, fat deposition, and alters the GH/IGF-I axis in the tilapia, Oreochromis mossambicus. Gen. Comp. Endocrinol. 2005, 142, 234–240. [Google Scholar] [CrossRef]
- Yuan, X.C.; Cai, W.J.; Liang, X.F.; Su, H.; Yuan, Y.C.; Li, A.X.; Tao, Y.X. Obestatin partially suppresses ghrelin stimulation of appetite in “high-responders” grass carp, Ctenopharyngodon idellus. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 184, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Tinoco, A.B.; Näslund, J.; Delgado, M.J.; de Pedro, N.; Johnsson, J.I.; Jönsson, E. Ghrelin increases food intake, swimming activity and growth in juvenile brown trout (Salmo trutta). Physiol. Behav. 2014, 124, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Maruyama, K.; Shimakura, S.I.; Kaiya, H.; Uchiyama, M.; Kangawa, K.; Shioda, S.; Matsuda, K. Regulation of food intake in the goldfish by interaction between ghrelin and orexin. Peptides 2007, 28, 1207–1213. [Google Scholar] [CrossRef]
- Matsuda, K. Regulation of feeding behavior and psychomotor activity by corticotropin-releasing hormone (CRH) in fish. Front. Neurosci. 2013, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhou, C.W.; Yuan, D.Y.; Lin, F.J.; Chen, H.; Wu, H.W.; Wei, R.B.; Xin, Z.M.; Liu, J.; Gao, Y.D.; et al. Schizothorax prenanti corticotropin-releasing hormone (CRH): Molecular cloning, tissue expression, and the function of feeding regulation. Fish Physiol. Biochem. 2014, 40, 1407–1415. [Google Scholar] [CrossRef]
- Bauer, P.V.; Hamr, S.C.; Duca, F.A. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell. Mol. Life Sci. 2016, 73, 737–755. [Google Scholar] [CrossRef] [PubMed]
- Volkoff, H. Appetite regulating peptides in red-bellied piranha, Pygocentrus nattereri: Cloning, tissue distribution and effect of fasting on mRNA expression levels. Peptides 2014, 56, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pandit, N.P.; Fu, J.J.; Li, D.; Li, J.L. Identification, characterization and feeding response of peptide YYb (PYYb) gene in grass carp (Ctenopharyngodon idellus). Fish Physiol. Biochem. 2014, 40, 45–55. [Google Scholar] [CrossRef] [PubMed]
NGE | GRE | NGE vs. GRE | |
---|---|---|---|
TP (g/L) | 71.52 ± 1.58 | 55.60 ± 8.67 | ** |
ALB (g/L) | 11.67 ± 0.21 | 12.04 ± 0.05 | ns |
T-CHO (mmol/L) | 11.35 ± 1.61 | 7.59 ± 0.48 | * |
TG (mmol/L) | 15.54 ± 2.28 | 3.56 ± 0.04 | *** |
HDL-C (mmol/L) | 7.23 ± 1.07 | 3.06 ± 0.24 | * |
LDL-C (mmol/L) | 6.11 ± 0.64 | 3.14 ± 0.08 | ** |
GLU (mmol/L) | 4.35 ± 0.24 | 6.68 ± 0.17 | *** |
BA (μmol/L) | 303.30 ± 24.61 | 246.15 ± 8.60 | * |
BUN (mmol/L) | 3.2 ± 0.35 | 1.27 ± 0.13 | ** |
ALP (U/L) | 22.73 ± 4.65 | 11.79 ± 2.03 | * |
ALT (U/L) | 2.52 ± 0.12 | 5.73 ± 1.43 | * |
AST (U/L) | 7.10 ± 3.51 | 26.35 ± 1.53 | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Liu, J.; Chen, Y.; Han, H.; Liu, Y.; Xie, B.; Jiang, T.; Wong, C.K.-C.; Li, K.; Liu, L. Characterizing Growth-Retarded Japanese Eels (Anguilla japonica): Insights into Metabolic and Appetite Regulation. Metabolites 2024, 14, 432. https://doi.org/10.3390/metabo14080432
Zeng X, Liu J, Chen Y, Han H, Liu Y, Xie B, Jiang T, Wong CK-C, Li K, Liu L. Characterizing Growth-Retarded Japanese Eels (Anguilla japonica): Insights into Metabolic and Appetite Regulation. Metabolites. 2024; 14(8):432. https://doi.org/10.3390/metabo14080432
Chicago/Turabian StyleZeng, Xiangbiao, Jingwei Liu, Yiwen Chen, Huan Han, Yanhe Liu, Bin Xie, Tianwei Jiang, Chris Kong-Chu Wong, Kang Li, and Liping Liu. 2024. "Characterizing Growth-Retarded Japanese Eels (Anguilla japonica): Insights into Metabolic and Appetite Regulation" Metabolites 14, no. 8: 432. https://doi.org/10.3390/metabo14080432
APA StyleZeng, X., Liu, J., Chen, Y., Han, H., Liu, Y., Xie, B., Jiang, T., Wong, C. K. -C., Li, K., & Liu, L. (2024). Characterizing Growth-Retarded Japanese Eels (Anguilla japonica): Insights into Metabolic and Appetite Regulation. Metabolites, 14(8), 432. https://doi.org/10.3390/metabo14080432