Untargeted Blood Lipidomics Analysis in Critically Ill Pediatric Patients with Ventilator-Associated Pneumonia: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Chemicals and Reagents
2.3. Blood Samples
2.4. Sample Preparation
2.5. RPLC-TOFMS Analysis
2.6. Data Handling and Statistical Analysis
2.7. Lipid Annotation
3. Results
3.1. Lipid Profiling by LC-TOF-MS
3.2. Quality of the Analytical System
3.3. Multivariate Analysis of Lipidomics and VAP Suspicion: High or Low
3.4. Multivariate Analysis for Lipidomics and Isolation of Targeted Respiratory Bacterial Pathogens
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalamitsou, S.; Violaki, A.; Iosifidis, E.; Avramidou, V.; Mantzafleri, P.-E.; Karaiskou, E.; Karantaglis, N.; Sdougka, M. Ventilator associated pneumonia (VAP) in children: A diagnostic challenge. Signa Vitae 2023, 19, 6–19. [Google Scholar] [CrossRef]
- da Silva, P.S.L.; de Aguiar, V.E.; de Carvalho, W.B.; Fonseca, M.C.M. Value of clinical pulmonary infection score in critically ill children as a surrogate for diagnosis of ventilator-associated pneumonia. J. Crit. Care 2014, 29, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Burke, A.; Gotts, N.; Van Oort, P.; Bannard-Smith, J.; Morton, B.; Welters, I.; Mcmullan, R.; Goodacre, R.; Dark, P.; et al. Metabolomics of blood plasma from critically ill patients with suspected ventilator-associated pneumonia. Eur. Respir. J. 2023, 62, PA2962. [Google Scholar] [CrossRef]
- Wildman, E.; Mickiewicz, B.; Vogel, H.J.; Thompson, G.C. Metabolomics in pediatric lower respiratory tract infections and sepsis: A literature review. Pediatr. Res. 2022, 93, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Bajo-Fernández, M.; Souza-Silva, É.A.; Barbas, C.; Rey-Stolle, M.F.; García, A. GC-MS-based metabolomics of volatile organic compounds in exhaled breath: Applications in health and disease. A review. Front. Mol. Biosci. 2024, 10, 1295955. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Biol. 2022, 48, 155–171. [Google Scholar] [CrossRef]
- Belhaj, M.R.; Lawler, N.G.; Hoffman, N.J. Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. Metabolites 2021, 11, 151. [Google Scholar] [CrossRef] [PubMed]
- van Oort, P.M.P.; Nijsen, T.; Weda, H.; Knobel, H.; Dark, P.; Felton, T.; Rattray, N.J.W.; Lawal, O.; Ahmed, W.; Portsmouth, C.; et al. BreathDx—Molecular analysis of exhaled breath as a diagnostic test for ventilator–associated pneumonia: Protocol for a European multicentre observational study. BMC Pulm. Med. 2017, 17, 1. [Google Scholar] [CrossRef]
- Filipiak, W.; Żuchowska, K.; Marszałek, M.; Depka, D.; Bogiel, T.; Warmuzińska, N.; Bojko, B. GC-MS profiling of volatile metabolites produced by Klebsiella pneumoniae. Front. Mol. Biosci. 2022, 9, 1019290. [Google Scholar] [CrossRef]
- Xu, W.; Zou, X.; Ding, Y.; Zhang, J.; Zheng, L.; Zuo, H.; Yang, M.; Zhou, Q.; Liu, Z.; Ge, D.; et al. Rapid screen for ventilator associated pneumonia using exhaled volatile organic compounds. Talanta 2023, 253, 124069. [Google Scholar] [CrossRef]
- Schnabel, R.; Fijten, R.; Smolinska, A.; Dallinga, J.; Boumans, M.-L.; Stobberingh, E.; Boots, A.; Roekaerts, P.; Bergmans, D.; van Schooten, F.J. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci. Rep. 2015, 5, 17179. [Google Scholar] [CrossRef] [PubMed]
- van Oort, P.M.P.; de Bruin, S.; Weda, H.; Knobel, H.H.; Schultz, M.J.; Bos, L.D. Exhaled Breath Metabolomics for the Diagnosis of Pneumonia in Intubated and Mechanically-Ventilated Intensive Care Unit (ICU)-Patients. Int. J. Mol. Sci. 2017, 18, 449. [Google Scholar] [CrossRef] [PubMed]
- Lawal, O.; Muhamadali, H.; Ahmed, W.M.; White, I.R.; Nijsen, T.M.E.; Goodacre, R.; Fowler, S.J. Headspace volatile organic compounds from bacteria implicated in ventilator-associated pneumonia analysed by TD-GC/MS. J. Breath Res. 2018, 12, 026002. [Google Scholar] [CrossRef]
- Mourani, P.M.; Sontag, M.K. Ventilator-Associated Pneumonia in Critically Ill Children. Pediatr. Clin. 2017, 64, 1039–1056. [Google Scholar] [CrossRef]
- Jongers, B.; Hotterbeekx, A.; Bielen, K.; Vervliet, P.; Boddaert, J.; Lammens, C.; Fransen, E.; Baggerman, G.; Covaci, A.; Goossens, H.; et al. Identification of Potential Urinary Metabolite Biomarkers of Pseudomonas aeruginosa Ventilator-Associated Pneumonia. Biomark. Insights 2022, 17. [Google Scholar] [CrossRef]
- Antcliffe, D.; Jiménez, B.; Veselkov, K.; Holmes, E.; Gordon, A.C. Metabolic Profiling in Patients with Pneumonia on Intensive Care. EBioMedicine 2017, 18, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Laiakis, E.C.; Morris, G.A.J.; Fornace, A.J.; Howie, S.R.C. Metabolomic Analysis in Severe Childhood Pneumonia in The Gambia, West Africa: Findings from a Pilot Study. PLoS ONE 2010, 5, e12655. [Google Scholar] [CrossRef]
- Sdougka, M.; Simitsopoulou, M.; Volakli, E.; Violaki, A.; Georgopoulou, V.; Ftergioti, A.; Roilides, E.; Iosifidis, E. Evaluation of Five Host Inflammatory Biomarkers in Early Diagnosis of Ventilator-Associated Pneumonia in Critically Ill Children: A Prospective Single Center Cohort Study. Antibiotics 2023, 12, 921. [Google Scholar] [CrossRef]
- Kuligowski, J.; Sánchez-Illana, Á.; Sanjuán-Herráez, D.; Vento, M.; Quintás, G. Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC). Analyst 2015, 140, 7810–7817. [Google Scholar] [CrossRef]
- Goracci, L.; Tortorella, S.; Tiberi, P.; Pellegrino, R.M.; Di Veroli, A.; Valeri, A.; Cruciani, G. Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics. Anal. Chem. 2017, 89, 6257–6264. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Fedorova, M. Evaluation of lipid quantification accuracy using HILIC and RPLC MS on the example of NIST® SRM® 1950 metabolites in human plasma. Anal. Bioanal. Chem. 2020, 412, 3573–3584. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, F.; Cecchetti, S.; Fantuzzi, L. Macrophages and Phospholipases at the Intersection between Inflammation and the Pathogenesis of HIV-1 Infection. Int. J. Mol. Sci. 2017, 18, 1390. [Google Scholar] [CrossRef] [PubMed]
- Wheelock, C.E.; Goss, V.M.; Balgoma, D.; Nicholas, B.; Brandsma, J.; Skipp, P.J.; Snowden, S.; Burg, D.; D’Amico, A.; Horvath, I.; et al. Application of ’omics technologies to biomarker discovery in inflammatory lung diseases. Eur. Respir. J. 2013, 42, 802–825. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Prakash, H. Sphingolipids Are Dual Specific Drug Targets for the Management of Pulmonary Infections: Perspective. Front. Immunol. 2017, 8, 378. [Google Scholar] [CrossRef]
- Nishimura, M.; Saida, T.; Kuroki, S.; Kawabata, T.; Obayashi, H.; Saida, K.; Uchiyama, T. Post-infectious encephalitis with anti-galactocerebroside antibody subsequent to Mycoplasma pneumoniae infection. J. Neurol. Sci. 1996, 140, 91–95. [Google Scholar] [CrossRef]
- Harvald, E.B.; Olsen, A.S.B.; Færgeman, N.J. Autophagy in the light of sphingolipid metabolism. Apoptosis 2015, 20, 658–670. [Google Scholar] [CrossRef]
- Ghidoni, R.; Caretti, A.; Signorelli, P. Role of Sphingolipids in the Pathobiology of Lung Inflammation. Mediat. Inflamm. 2015, 2015, 487508. [Google Scholar] [CrossRef]
- Wu, W.; Li, Z.; Wang, Y.; Huang, C.; Zhang, T.; Zhao, H. Advances in metabolomics of chronic obstructive pulmonary disease. Chin. Med. J. Pulm. Crit. Care Med. 2023, 1, 223–230. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Y.; Shi, M.; Gao, F.; Huang, L.; Wang, W.; Wei, D.; Shi, C.; Yu, Y.; Xia, X.; et al. The novel molecular mechanism of pulmonary fibrosis: Insight into lipid metabolism from reanalysis of single-cell RNA-seq databases. Lipids Health Dis. 2024, 23, 98. [Google Scholar] [CrossRef]
- Boggara, M.B.; Krishnamoorti, R. Partitioning of Nonsteroidal Antiinflammatory Drugs in Lipid Membranes: A Molecular Dynamics Simulation Study. Biophys. J. 2010, 98, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, K.; Yang, L.; Liu, R.; Chu, Y.; Qin, X.; Yang, P.; Yu, H. Lipid metabolism in inflammation-related diseases. Analyst 2018, 143, 4526–4536. [Google Scholar] [CrossRef] [PubMed]
- Feingold, K.R.; Grunfeld, C. The Effect of Inflammation and Infection on Lipids and Lipoproteins. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
Total | High VAP Suspicion (mCPIS ≥ 6) | Low VAP Suspicion (mCPIS < 6) | |
---|---|---|---|
n = 20 | n = 12 | n = 8 | |
Age, months | 93 (6–184) | 24.5 (6–141) | 129 (28–184) |
male, n (%) | 13 (65) | 9 (75) | 5 (63) |
PRISM score | 12.1 (5.45) | 13.1 (6.49) | 11 (4.14) |
time to event, days | 9.37 (7.65) | 8.73 (7.43) | 8.73 (7.43) |
duration of mechanical ventilation, days | 26.3 (14.1) | 24.4 (16.2) | 29 (11) |
Hospitalization, days | 67.3 (47.4) | 61.7 (46.0) | 75.8 (51.2) |
mortality, n (%) | 2 (10) | 2 (17) | 0 |
Model | Type | N | R2X | R2Y | Q2 | CV ANOVA |
---|---|---|---|---|---|---|
Samples_QC | PCA-X | 131 | 0.580 | 0.262 | ||
LOW vs HIGH VAP Suspicion | OPLS-DA | 74 | 0.267 | 0.965 | 0.436 | 5.2 × 10−6 |
K. pneumoniae vs. S. aureus | OPLS-DA | 30 | 0.286 | 0.987 | 0.528 | 4.8 × 10−3 |
Blood LOW HIGH Suspecion | |||||||
---|---|---|---|---|---|---|---|
Lipids | p Value | p Value Adj. Waist | VIP | AUC | Log2FC | 95% Lower CI | 95% Upper CI |
CE 18:3 | 6.99 × 10−3 | 3.32 × 10−2 | 1.07 | 0.65 | −0.58 | 0.52 | 0.77 |
DG 36:3 | 2.34 × 10−3 | 1.62 × 10−2 | 1.41 | 0.73 | −0.69 | 0.60 | 0.85 |
LPC 20:5 | 1.10 × 10−2 | 4.79 × 10−2 | 1.18 | 0.71 | −0.62 | 0.57 | 0.81 |
PC 32:1 | 2.02 × 10−3 | 1.62 × 10−2 | 0.98 | 0.69 | −0.52 | 0.56 | 0.80 |
PC 32:2 | 2.17 × 10−5 | 1.46 × 10−3 | 1.80 | 0.81 | −0.69 | 0.70 | 0.91 |
PC 34:1 | 3.76 × 10−3 | 2.20 × 10−2 | 1.35 | 0.75 | −0.27 | 0.63 | 0.86 |
PC 34:2 | 1.61 × 10−3 | 1.46 × 10−2 | 1.45 | 0.75 | −0.33 | 0.62 | 0.85 |
PC 34:2 | 1.04 x 10−2 | 4.70 × 10−2 | 1.65 | 0.77 | −0.33 | 0.66 | 0.87 |
PC 34:3 | 1.29 × 10−2 | 4.96 × 10−2 | 1.32 | 0.68 | −0.96 | 0.57 | 0.80 |
PC 35:2 | 3.77 × 10−4 | 5.38 × 10−3 | 1.51 | 0.74 | −0.49 | 0.62 | 0.84 |
PC 36:1 | 1.22 × 10−2 | 4.96 × 10−2 | 0.93 | 0.69 | −0.31 | 0.56 | 0.79 |
PC 37:3 | 3.14 × 10−3 | 1.96 × 10−2 | 1.50 | 0.76 | −0.37 | 0.65 | 0.87 |
PC 38:6 | 1.38 × 10−3 | 1.46 × 10−2 | 1.73 | 0.80 | −0.87 | 0.69 | 0.90 |
SM 32:1 | 1.25 × 10−2 | 4.96 × 10−2 | 1.46 | 0.74 | −0.60 | 0.61 | 0.84 |
SM 34:0 | 5.33 × 10−3 | 2.66 × 10−2 | 1.44 | 0.74 | −0.43 | 0.63 | 0.85 |
SM 38:1 | 2.80 × 10−4 | 4.65 × 10−3 | 1.68 | 0.77 | −0.56 | 0.66 | 0.86 |
SM 40:1 | 1.49 × 10−3 | 1.46 × 10−2 | 1.71 | 0.79 | −0.62 | 0.68 | 0.89 |
SM 40:2 | 1.43 × 10−3 | 1.46 × 10−2 | 1.35 | 0.71 | −0.41 | 0.59 | 0.82 |
SM 41:1 | 1.32 × 10−4 | 3.29 × 10−3 | 1.73 | 0.79 | −0.59 | 0.68 | 0.89 |
SM 42:2 | 5.33 × 10−3 | 2.66 × 10−2 | 1.32 | 0.69 | −0.44 | 0.57 | 0.81 |
TG 46:1 | 6.01 × 10−5 | 2.00 × 10−3 | 1.15 | 0.81 | −1.09 | 0.69 | 0.90 |
TG 48:1 | 1.80 × 10−4 | 3.60 × 10−3 | 1.55 | 0.78 | −0.85 | 0.66 | 0.87 |
TG 48:2 | 2.92 × 10−5 | 1.46 × 10−3 | 1.52 | 0.82 | −1.39 | 0.72 | 0.91 |
TG 48:3 | 2.18 × 10−3 | 1.62 × 10−2 | 1.22 | 0.82 | −2.08 | 0.72 | 0.91 |
TG 50:4 | 2.43 × 10−3 | 1.62 × 10−2 | 1.58 | 0.77 | −1.32 | 0.65 | 0.87 |
TG 54:3 | 4.80 × 10−3 | 2.66 × 10−2 | 1.64 | 0.75 | −0.88 | 0.64 | 0.86 |
Bacteria Strain | ||||||
---|---|---|---|---|---|---|
Lipids | p Value | VIP | AUC | Log2FC | 95% Lower CI | 95% Upper CI |
CE 20:4 | 3.45 × 10−2 | 1.1 | 0.68 | −0.38 | 0.47 | 0.89 |
PC 33:2 | 1.27 × 10−2 | 1.7 | 0.75 | −0.66 | 0.58 | 0.91 |
PC 34:3 | 1.47 × 10−2 | 1.2 | 0.71 | −0.57 | 0.50 | 0.88 |
PC 36:4 | 1.76 × 10−2 | 1.4 | 0.73 | −0.47 | 0.55 | 0.89 |
PC 36:4 | 2.46 × 10−2 | 1.2 | 0.73 | −0.41 | 0.53 | 0.91 |
PC 37:3 | 6.23 × 10−3 | 1.9 | 0.76 | −0.73 | 0.60 | 0.90 |
PC 38:4 | 2.97 × 10−2 | 1.4 | 0.72 | −0.38 | 0.53 | 0.89 |
PC O-34:0 | 1.55 × 10−2 | 1.8 | 0.76 | −0.40 | 0.59 | 0.91 |
PC O-38:4 | 3.29 × 10−2 | 1.7 | 0.72 | −0.59 | 0.53 | 0.89 |
SM 34:1 | 1.04 × 10−2 | 1.7 | 0.67 | 5.76 | 0.48 | 0.87 |
SM 36:2 | 1.39 × 10−2 | 1.7 | 0.76 | −0.35 | 0.57 | 0.91 |
SM 38:2 | 1.61 × 10−2 | 1.7 | 0.75 | −0.32 | 0.56 | 0.91 |
SM 40:1 | 3.15 × 10−2 | 1.5 | 0.72 | −0.44 | 0.53 | 0.88 |
TG 48:0 | 8.22 × 10−3 | 1.9 | 0.77 | −0.27 | 0.61 | 0.92 |
TG 50:1 | 7.98 × 10−3 | 2.0 | 0.76 | −0.60 | 0.58 | 0.91 |
TG 52:5 | 4.95 × 10−2 | 1.5 | 0.72 | −0.76 | 0.51 | 0.88 |
TG 54:5 | 2.31 × 10−3 | 1.9 | 0.81 | −0.76 | 0.64 | 0.95 |
TG 54:6 | 2.98 × 10−3 | 2.0 | 0.80 | −0.36 | 0.63 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Virgiliou, C.; Begou, O.; Ftergioti, A.; Simitsopoulou, M.; Sdougka, M.; Roilides, E.; Theodoridis, G.; Gika, H.; Iosifidis, E. Untargeted Blood Lipidomics Analysis in Critically Ill Pediatric Patients with Ventilator-Associated Pneumonia: A Pilot Study. Metabolites 2024, 14, 466. https://doi.org/10.3390/metabo14090466
Virgiliou C, Begou O, Ftergioti A, Simitsopoulou M, Sdougka M, Roilides E, Theodoridis G, Gika H, Iosifidis E. Untargeted Blood Lipidomics Analysis in Critically Ill Pediatric Patients with Ventilator-Associated Pneumonia: A Pilot Study. Metabolites. 2024; 14(9):466. https://doi.org/10.3390/metabo14090466
Chicago/Turabian StyleVirgiliou, Christina, Olga Begou, Argyro Ftergioti, Maria Simitsopoulou, Maria Sdougka, Emmanuel Roilides, Georgios Theodoridis, Helen Gika, and Elias Iosifidis. 2024. "Untargeted Blood Lipidomics Analysis in Critically Ill Pediatric Patients with Ventilator-Associated Pneumonia: A Pilot Study" Metabolites 14, no. 9: 466. https://doi.org/10.3390/metabo14090466
APA StyleVirgiliou, C., Begou, O., Ftergioti, A., Simitsopoulou, M., Sdougka, M., Roilides, E., Theodoridis, G., Gika, H., & Iosifidis, E. (2024). Untargeted Blood Lipidomics Analysis in Critically Ill Pediatric Patients with Ventilator-Associated Pneumonia: A Pilot Study. Metabolites, 14(9), 466. https://doi.org/10.3390/metabo14090466