Relationship between Body Adiposity Indices and Reversal of Metabolically Unhealthy Obesity 6 Months after Roux-en-Y Gastric Bypass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
- VAI [23]:
- LAP [24]:
- CUN-BAE [25]:
- CI [26]:
- ABSI [25]:
2.3. Metabolic Phenotypes
2.4. Statistical Analyses
3. Results
3.1. Sample Characterization and Post-Surgical Outcomes According to the Metabolic Obesity Phenotype
3.2. Transition to Metabolically Healthy Obesity Phenotype 6 Months after RYGB and Its Association with Body Adiposity Indices
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Azagury, D.E.; Morton, J.M. Bariatric Surgery. Endocrinol. Metab. Clin. N. Am. 2016, 45, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Genua, I.; Tuneu, L.; Ramos, A.; Stantonyonge, N.; Caimari, F.; Balagué, C.; Fernández-Ananin, S.; Sánchez-Quesada, J.L.; Pérez, A.; Miñambres, I. Effectiveness of Bariatric Surgery in Patients with the Metabolically Healthy Obese Phenotype. Obes. Surg. 2021, 31, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Di, J.; Bao, Y.; Zhang, P.; Zhang, L.; Tu, Y.; Han, X.; Jia, W. Visceral Fat Area as a New Predictor of Short-Term Diabetes Remission after Roux-En-Y Gastric Bypass Surgery in Chinese Patients with a Body Mass Index Less than 35 Kg/M2. Surg. Obes. Relat. Dis. 2015, 11, 6–11. [Google Scholar] [CrossRef]
- Angrisani, L.; Ferraro, L.; Santonicola, A.; Palma, R.; Formisano, G.; Iovino, P. Long-Term Results of Laparoscopic Roux-En-Y Gastric Bypass for Morbid Obesity: 105 Patients with Minimum Follow-up of 15 Years. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2021, 17, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, N.; Kazemi, A.; Asbaghi, O.; Jafarian, F.; Moeinvaziri, N.; Hosseini, B.; Amini, M. Long-Term Effect of Bariatric Surgery on Body Composition in Patients with Morbid Obesity: A Systematic Review and Meta-Analysis. Clin. Nutr. 2020, 40, 1755–1766. [Google Scholar] [CrossRef]
- Doumouras, A.G.; Wong, J.A.; Paterson, J.M.; Lee, Y.; Sivapathasundaram, B.; Tarride, J.-E.; Thabane, L.; Hong, D.; Yusuf, S.; Anvari, M. Bariatric Surgery and Cardiovascular Outcomes in Patients With Obesity and Cardiovascular Disease: A Population-Based Retrospective Cohort Study. Circulation 2021, 143, 1468–1480. [Google Scholar] [CrossRef]
- Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Leccesi, L.; Nanni, G.; Pomp, A.; Castagneto, M.; Ghirlanda, G.; et al. Bariatric Surgery versus Conventional Medical Therapy for Type 2 Diabetes. N. Engl. J. Med. 2012, 366, 1577–1585. [Google Scholar] [CrossRef]
- Cӑtoi, A.F.; Pârvu, A.E.; Andreicuț, A.D.; Mironiuc, A.; Crӑciun, A.; Cӑtoi, C.; Pop, I.D. Metabolically Healthy versus Unhealthy Morbidly Obese: Chronic Inflammation, Nitro-Oxidative Stress, and Insulin Resistance. Nutrients 2018, 10, 1199. [Google Scholar] [CrossRef]
- Stefan, N.; Häring, H.-U.; Hu, F.B.; Schulze, M.B. Metabolically Healthy Obesity: Epidemiology, Mechanisms, and Clinical Implications. Lancet Diabetes Endocrinol. 2013, 1, 152–162. [Google Scholar] [CrossRef]
- Goossens, G.H. The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function. Obes. Facts 2017, 10, 207–215. [Google Scholar] [CrossRef]
- Lejawa, M.; Osadnik, K.; Czuba, Z.; Osadnik, T.; Pawlas, N. Association of Metabolically Healthy and Unhealthy Obesity Phenotype with Markers Related to Obesity, Diabetes among Young, Healthy Adult Men. Analysis of MAGNETIC Study. Life 2021, 11, 1350. [Google Scholar] [CrossRef] [PubMed]
- Eckel, N.; Meidtner, K.; Kalle-Uhlmann, T.; Stefan, N.; Schulze, M.B. Metabolically Healthy Obesity and Cardiovascular Events: A Systematic Review and Meta-Analysis. Eur. J. Prev. Cardiol. 2016, 23, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Sims, E.A. Are There Persons Who Are Obese, but Metabolically Healthy? Metabolism 2001, 50, 1499–1504. [Google Scholar] [CrossRef]
- Netto, A.M.; Kashiwagi, N.M.; Minanni, C.A.; Santos, R.D.; Cesena, F.Y. Adiposity, Hepatic Steatosis, and Metabolic Health Transitions in People with Obesity: Influences of Age and Sex. Nutr. Metab. Cardiovasc. Dis. NMCD 2023, 33, 1149–1157. [Google Scholar] [CrossRef]
- Kouvari, M.; Chrysohoou, C.; Skoumas, J.; Pitsavos, C.; Panagiotakos, D.B.; Mantzoros, C.S.; ATTICA study Investigators. The Presence of NAFLD Influences the Transition of Metabolically Healthy to Metabolically Unhealthy Obesity and the Ten-Year Cardiovascular Disease Risk: A Population-Based Cohort Study. Metabolism 2022, 128, 154893. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, R.; Wang, J.; Han, X.; Wang, F.; Zhang, Z.; Xu, Y.; Zhang, X.; Guo, H.; Yang, H.; et al. Transitions in Metabolic Health Status and Obesity Over Time and Risk of Diabetes: The Dongfeng-Tongji Cohort Study. J. Clin. Endocrinol. Metab. 2023, 108, 2024–2032. [Google Scholar] [CrossRef]
- Lee, E.J.; Song, N.; Chung, E.S.; Heo, E.; Lee, H.; Kim, H.; Jeon, J.S.; Noh, H.; Kim, S.H.; Kwon, S.H. Changes in Abdominal Fat Depots after Bariatric Surgery Are Associated with Improved Metabolic Profile. Nutr. Metab. Cardiovasc. Dis. NMCD 2023, 33, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Goday, A.; Benaiges, D.; Parri, A.; Ramón, J.M.; Flores-Le Roux, J.A.; Pedro Botet, J.; Obemar Group. Can Bariatric Surgery Improve Cardiovascular Risk Factors in the Metabolically Healthy but Morbidly Obese Patient? Surg. Obes. Relat. Dis. 2014, 10, 871–876. [Google Scholar] [CrossRef]
- Schmitz, S.M.; Storms, S.; Koch, A.; Stier, C.; Kroh, A.; Rheinwalt, K.P.; Schipper, S.; Hamesch, K.; Ulmer, T.F.; Neumann, U.P.; et al. Insulin Resistance Is the Main Characteristic of Metabolically Unhealthy Obesity (MUO) Associated with NASH in Patients Undergoing Bariatric Surgery. Biomedicines 2023, 11, 1595. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Zhou, L.J.; Ma, K.L.; Hao, R.; Li, M. MHO or MUO? White Adipose Tissue Remodeling. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2024, 25, e13691. [Google Scholar] [CrossRef] [PubMed]
- Estrella, M.L.; Pirzada, A.; Durazo-Arvizu, R.A.; Cai, J.; Giachello, A.L.; Espinoza Gacinto, R.; Siega-Riz, A.M.; Daviglus, M.L. Correlates of and Body Composition Measures Associated with Metabolically Healthy Obesity Phenotype in Hispanic/Latino Women and Men: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). J. Obes. 2019, 2019, 1251456. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A Reliable Indicator of Visceral Fat Function Associated with Cardiometabolic Risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Kahn, H.S. The “Lipid Accumulation Product” Performs Better than the Body Mass Index for Recognizing Cardiovascular Risk: A Population-Based Comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Vinknes, K.J.; Nurk, E.; Tell, G.S.; Sulo, G.; Refsum, H.; Elshorbagy, A.K. The Relation of CUN-BAE Index and BMI with Body Fat, Cardiovascular Events and Diabetes during a 6-Year Follow-up: The Hordaland Health Study. Clin. Epidemiol. 2017, 9, 555–566. [Google Scholar] [CrossRef]
- Valdez, R. A Simple Model-Based Index of Abdominal Adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef] [PubMed]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A Better Index of Body Adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef]
- WHO. Obesity: Preventing and Managing the Global Epidemic. Available online: https://iris.who.int/handle/10665/42330 (accessed on 1 July 2024).
- Durward, C.M.; Hartman, T.J.; Nickols-Richardson, S.M. All-Cause Mortality Risk of Metabolically Healthy Obese Individuals in NHANES III. J. Obes. 2012, 2012, 460321. [Google Scholar] [CrossRef]
- Faludi, A.; Izar, M.; Saraiva, J.; Chacra, A.; Bianco, H.; Afiune Neto, A.; Bertolami, A.; Pereira, A.; Lottenberg, A.; Sposito, A.; et al. Atualização Da Diretriz Brasileira De Dislipidemias E Prevenção Da Aterosclerose—2017. Arq. Bras. Cardiol. 2017, 109, 1–76. [Google Scholar] [CrossRef]
- Cobas, R.; Rodacki, M.; Giacaglia, L.; Calliari, L.; Noronha, R.; Valerio, C.; Custodio, J.S., Jr.; Scharf, M.; Barcellos, C.R.G.; Bertoluci, M.; et al. Diagnóstico do diabetes e rastreamento do diabetes tipo 2. Dir. Of. Da Soc. Bras. Diabetes 2022, 2021, 557753-2022. [Google Scholar]
- Amato, M.C.; Giordano, C.; Pitrone, M.; Galluzzo, A. Cut-off Points of the Visceral Adiposity Index (VAI) Identifying a Visceral Adipose Dysfunction Associated with Cardiometabolic Risk in a Caucasian Sicilian Population. Lipids Health Dis. 2011, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, S.P.; da Cruz, S.P.; Pereira, S.; Saboya, C.; Ramalho, A. Vitamin D and the Metabolic Phenotype in Weight Loss After Bariatric Surgery: A Longitudinal Study. Obes. Surg. 2024, 34, 1561–1568. [Google Scholar] [CrossRef]
- González-González, J.G.; Violante-Cumpa, J.R.; Zambrano-Lucio, M.; Burciaga-Jimenez, E.; Castillo-Morales, P.L.; Garcia-Campa, M.; Solis, R.C.; González-Colmenero, A.D.; Rodríguez-Gutiérrez, R. HOMA-IR as a Predictor of Health Outcomes in Patients with Metabolic Risk Factors: A Systematic Review and Meta-Analysis. High Blood Press. Cardiovasc. Prev. 2022, 29, 547–564. [Google Scholar] [CrossRef]
- Calori, G.; Lattuada, G.; Piemonti, L.; Garancini, M.P.; Ragogna, F.; Villa, M.; Mannino, S.; Crosignani, P.; Bosi, E.; Luzi, L.; et al. Prevalence, Metabolic Features, and Prognosis of Metabolically Healthy Obese Italian Individuals: The Cremona Study. Diabetes Care 2011, 34, 210–215. [Google Scholar] [CrossRef]
- Messier, V.; Karelis, A.D.; Prud’homme, D.; Primeau, V.; Brochu, M.; Rabasa-Lhoret, R. Identifying Metabolically Healthy but Obese Individuals in Sedentary Postmenopausal Women. Obesity 2010, 18, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Lopes, H.F.; Corrêa-Giannella, M.L.; Consolim-Colombo, F.M.; Egan, B.M. Visceral Adiposity Syndrome. Diabetol. Metab. Syndr. 2016, 8, 40. [Google Scholar] [CrossRef]
- Haberka, M.; Skilton, M.; Biedroń, M.; Szóstak-Janiak, K.; Partyka, M.; Matla, M.; Gąsior, Z. Obesity, Visceral Adiposity and Carotid Atherosclerosis. J. Diabetes Complicat. 2019, 33, 302–306. [Google Scholar] [CrossRef]
- Jensen, M.D. Visceral Fat: Culprit or Canary? Endocrinol. Metab. Clin. N. Am. 2020, 49, 229–237. [Google Scholar] [CrossRef]
- Cesaro, A.; De Michele, G.; Fimiani, F.; Acerbo, V.; Scherillo, G.; Signore, G.; Rotolo, F.P.; Scialla, F.; Raucci, G.; Panico, D.; et al. Visceral Adipose Tissue and Residual Cardiovascular Risk: A Pathological Link and New Therapeutic Options. Front. Cardiovasc. Med. 2023, 10, 1187735. [Google Scholar] [CrossRef] [PubMed]
- Kouli, G.-M.; Panagiotakos, D.B.; Kyrou, I.; Georgousopoulou, E.N.; Chrysohoou, C.; Tsigos, C.; Tousoulis, D.; Pitsavos, C. Visceral Adiposity Index and 10-Year Cardiovascular Disease Incidence: The ATTICA Study. Nutr. Metab. Cardiovasc. Dis. NMCD 2017, 27, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Biolo, G.; Di Girolamo, F.G.; Breglia, A.; Chiuc, M.; Baglio, V.; Vinci, P.; Toigo, G.; Lucchin, L.; Jurdana, M.; Pražnikar, Z.J.; et al. Inverse Relationship between “a Body Shape Index” (ABSI) and Fat-Free Mass in Women and Men: Insights into Mechanisms of Sarcopenic Obesity. Clin. Nutr. Edinb. Scotl. 2015, 34, 323–327. [Google Scholar] [CrossRef]
- Gomez-Peralta, F.; Abreu, C.; Cruz-Bravo, M.; Alcarria, E.; Gutierrez-Buey, G.; Krakauer, N.Y.; Krakauer, J.C. Relationship between “a Body Shape Index (ABSI)” and Body Composition in Obese Patients with Type 2 Diabetes. Diabetol. Metab. Syndr. 2018, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Zhang, S.; An, R. Effectiveness of A Body Shape Index (ABSI) in Predicting Chronic Diseases and Mortality: A Systematic Review and Meta-Analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2018, 19, 737–759. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, D.; Fujishiro, K.; Watanabe, Y.; Yamaguchi, T.; Suzuki, K.; Saiki, A.; Shirai, K. A Body Shape Index (ABSI) as a Variant of Conicity Index Not Affected by the Obesity Paradox: A Cross-Sectional Study Using Arterial Stiffness Parameter. J. Pers. Med. 2022, 12, 2014. [Google Scholar] [CrossRef]
- Roriz, A.K.C.; Passos, L.C.S.; de Oliveira, C.C.; Eickemberg, M.; de Moreira, P.A.; Sampaio, L.R. Evaluation of the Accuracy of Anthropometric Clinical Indicators of Visceral Fat in Adults and Elderly. PLoS ONE 2014, 9, e103499. [Google Scholar] [CrossRef]
- Michalsen, V.L.; Wild, S.H.; Kvaløy, K.; Svartberg, J.; Melhus, M.; Broderstad, A.R. Obesity Measures, Metabolic Health and Their Association with 15-Year All-Cause and Cardiovascular Mortality in the SAMINOR 1 Survey: A Population-Based Cohort Study. BMC Cardiovasc. Disord. 2021, 21, 510. [Google Scholar] [CrossRef]
- Cho, H.-W.; Chung, W.; Moon, S.; Ryu, O.-H.; Kim, M.K.; Kang, J.G. Effect of Sarcopenia and Body Shape on Cardiovascular Disease According to Obesity Phenotypes. Diabetes Metab. J. 2021, 45, 209–218. [Google Scholar] [CrossRef]
- Yu, H.; Chen, J.; Lu, J.; Bao, Y.; Tu, Y.; Zhang, L.; Zhang, P.; Jia, W. Decreased Visceral Fat Area Correlates with Improved Arterial Stiffness after Roux-En-Y Gastric Bypass in Chinese Obese Patients with Type 2 Diabetes Mellitus: A 12-Month Follow-Up. Surg. Obes. Relat. Dis. 2016, 12, 550–555. [Google Scholar] [CrossRef]
- Weiss, R.; Appelbaum, L.; Schweiger, C.; Matot, I.; Constantini, N.; Idan, A.; Shussman, N.; Sosna, J.; Keidar, A. Short-Term Dynamics and Metabolic Impact of Abdominal Fat Depots After Bariatric Surgery. Diabetes Care 2009, 32, 1910–1915. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.; Park, J.H.; Chung, H.S.; Yu, J.M.; Kim, D.S.; Moon, S. Utility of the Z-Score of Log-Transformed A Body Shape Index (LBSIZ) in the Assessment for Sarcopenic Obesity and Cardiovascular Disease Risk in the United States. Sci. Rep. 2019, 9, 9292. [Google Scholar] [CrossRef]
- Bellanti, F.; Romano, A.D.; Buglio, A.L.; Castriotta, V.; Guglielmi, G.; Greco, A.; Serviddio, G.; Vendemiale, G. Oxidative Stress Is Increased in Sarcopenia and Associated with Cardiovascular Disease Risk in Sarcopenic Obesity. Maturitas 2018, 109, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.N.; Choi, K.M. The Implications of Sarcopenia and Sarcopenic Obesity on Cardiometabolic Disease. J. Cell. Biochem. 2015, 116, 1171–1178. [Google Scholar] [CrossRef]
- Oh, C.-M.; Park, J.H.; Chung, H.S.; Yu, J.M.; Chung, W.; Kang, J.G.; Moon, S. Effect of Body Shape on the Development of Cardiovascular Disease in Individuals with Metabolically Healthy Obesity. Medicine 2020, 99, e22036. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Zhu, C.-F. Causal Relationship between Insulin Resistance and Sarcopenia. Diabetol. Metab. Syndr. 2023, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Nuijten, M.A.H.; Monpellier, V.M.; Eijsvogels, T.M.H.; Janssen, I.M.C.; Hazebroek, E.J.; Hopman, M.T.E. Rate and Determinants of Excessive Fat-Free Mass Loss After Bariatric Surgery. Obes. Surg. 2020, 30, 3119–3126. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-C.; Hayashi, T.; Fujimoto, W.Y.; Kahn, S.E.; Leonetti, D.L.; McNeely, M.J.; Boyko, E.J. Visceral Abdominal Fat Accumulation Predicts the Conversion of Metabolically Healthy Obese Subjects to an Unhealthy Phenotype. Int. J. Obes. 2015, 39, 1365–1370. [Google Scholar] [CrossRef]
- Barzin, M.; Aryannezhad, S.; Khalaj, A.; Mahdavi, M.; Valizadeh, M.; Ghareh, S.; Azizi, F.; Hosseinpanah, F. Effects of Bariatric Surgery in Different Obesity Phenotypes: Tehran Obesity Treatment Study (TOTS). Obes. Surg. 2020, 30, 461–469. [Google Scholar] [CrossRef]
- Abdesselam, I.; Dutour, A.; Kober, F.; Ancel, P.; Bege, T.; Darmon, P.; Lesavre, N.; Bernard, M.; Gaborit, B. Time Course of Change in Ectopic Fat Stores After Bariatric Surgery. J. Am. Coll. Cardiol. 2016, 67, 117–119. [Google Scholar] [CrossRef]
VARIABLES | T0 | p * | T1 | p * | T0 × T1 p + | |||
---|---|---|---|---|---|---|---|---|
MHO-T0 (n = 22) | MUO-T0 (n = 37) | MHO-T0 (n = 22) | MUO-T0 (n = 37) | MHO | MUO | |||
BMI (Kg/m2) | 42.1 ± 4.1 | 41.3 ± 3.9 | 0.451 | 32.9 ± 4.1 | 31.2 ± 4.1 | 0.771 | 1 × 10−4 | 1 × 10−4 |
WC (cm) | 121.4 ± 14.6 | 118.6 ± 10.1 | 0.389 | 98.1 ± 9.8 | 97.7 ± 8.8 | 0.306 | 1 × 10−4 | 1 × 10−4 |
WtHR | 0.71 ± 0.07 | 0.7 ± 0.1 | 0.300 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.393 | 1 × 10−4 | 1 × 10−4 |
Glucose (mg/dL) | 90.5 ± 7.7 | 104.7 ± 23.5 | 0.684 | 85.7 ± 9.8 | 91.1 ± 10.2 | 0.527 | 0.026 | 1 × 10−4 |
HbA1c (%) | 5.2 ± 0.4 | 6.9 ± 7.3 | 0.003 | 3.5 ± 1.2 | 9.9 ± 4.6 | 0.561 | 1 × 10−5 | 1 × 10−4 |
HOMA-IR | 1.7 ± 0.5 | 4.6 ± 1.6 | 0.013 | 0.5 ± 0.41 | 0.9 ± 1.1 | 0.804 | 0.001 | 1 × 10−4 |
Insulin (mCu/mL) | 7.6 ± 1.9 | 19.6 ± 7.6 | 1 × 10−4 | 2.7 ± 2.3 | 3.9 ± 4.6 | 0.974 | 0.001 | 1 × 10−4 |
TC (mg/dL) | 184.7 ± 41.8 | 219.9 ± 63.2 | 1 × 10−5 | 123.1 ± 34.9 | 135.1 ± 42.1 | 1 × 10−4 | 1 × 10−4 | 1 × 10−4 |
LDL-c (mg/dL) | 108.2 ± 30.5 | 133.1 ± 53.9 | 0.026 | 84.0 ± 15.6 | 95.6 ± 34.9 | 0.091 | 0.001 | 1 × 10−4 |
HDL-c (mg/dL) | 43.5 ± 19.9 | 43.5 ± 9.8 | 0.080 | 47.5 ± 17.1 | 46.2 ± 11.7 | 0.105 | 0.164 | 0.100 |
TG (mg/dL) | 139.4 ± 87.8 | 155.1 ± 63.6 | 0.796 | 113.6 ± 78.7 | 120.2 ± 48.2 | 0.088 | 0.001 | 1 × 10−5 |
CRP (mg/dL) | 0.8 ± 0.8 | 0.9 ± 0.8 | 0.085 | 0.7 ± 0.5 | 0.7 ± 0.5 | 0.282 | 0.050 | 0.001 |
VAI | 2.8 ± 1.8 | 3.0 ± 1.5 | 0.632 | 1.6 ± 1.0 | 2.2 ± 1.2 | 0.823 | 0.026 | 1 × 10−4 |
CI | 1.3 ± 0.1 | 1.3 ± 0.1 | 0.294 | 1.2 ± 0.1 | 1.3 ± 0.1 | 0.023 | 1 × 10−4 | 1 × 10−4 |
ABSI | 0.08 ± 0.001 | 0.08 ± 0.001 | 0.638 | 0.07 ± 0.001 | 0.08 ± 0.001 | 0.389 | 0.009 | 0.922 |
CUN-BAE | 51.4 ± 4.4 | 50.3 ± 5.6 | 0.913 | 43.3 ± 6.7 | 40.7 ± 8.2 | 0.271 | 1 × 10−4 | 1 × 10−4 |
LAP | 192.3 ± 126.6 | 206.2 ± 84.5 | 0.638 | 100.85 ± 38.31 | 131.9 ± 52.8 | 0.077 | 1 × 10−4 | 1 × 10−5 |
Δ VARIABLES | MHO-T0 (n = 22) | MUO-T0 (n = 37) | p * |
---|---|---|---|
Weight (Kg) | −36.68 ± 10.30 | −27.88 ± 10.00 | 0.695 |
%WL | 54.98 ± 18.85 | 64.35 ± 23.26 | 0.227 |
%EWL | 21.69 ± 7.08 | 24.55 ± 7.54 | 0.113 |
BMI (Kg/m2) | −9.16 ± 3.12 | −10.15 ± 3.15 | 0.125 |
WC (cm) | −23.27 ± 8.96 | −20.86 ± 7.24 | 0.237 |
WtHR | −0.14 ± 0.05 | −0.12 ± 0.05 | 0.397 |
Glucose (mg/dL) | −4.77 ± 8.82 | −13.51 ± 20.46 | 0.057 |
HbA1c (%) | −1.66 ± 1.18 | −3.05 ± 7.16 | 0.433 |
HOMA-IR | −1.14 ± 0.67 | −4.17 ± 2.14 | 1 × 10−4 |
Insulin (mCu/mL) | −4.98 ± 2.87 | −15.73 ± 7.31 | 1 × 10−4 |
TC (mg/dL) | −61.58 ± 40.39 | −84.78 ± 59.87 | 0.207 |
LDL-c (mg/dL) | −24.22 ± 29.98 | −37.49 ± 43.48 | 0.173 |
HDL-c (mg/dL) | 4.04 ± 16.62 | 2.70 ± 12.39 | 0.350 |
TG (mg/dL) | −25.86 ± 37.37 | −34.77 ± 48.98 | 0.476 |
CRP (md/dL) | −0.15 ± 0.35 | −0.21 ± 0.42 | 0.493 |
VAI | −1.12 ± 1.09 | −0.69 ± 1.1 | 0.802 |
CI | −0.11 ± 0.08 | −0.06 ± 0.09 | 0.074 |
ABSI | −0.003 ± 0.01 | −0.000 ± 0.01 | 0.027 |
CUN-BAE | −8.07 ± 3.50 | −9.60 ± 4.06 | 0.106 |
LAP | −60.05 ± 57.20 | −74.38 ± 69.50 | 0.500 |
METABOLIC CHANGES | T0 | p * | T1 | p * | p MHO T0 vs. T1 + | p MUO T0 vs. T1 + | ||
---|---|---|---|---|---|---|---|---|
MHO-T0 (n = 22) | MUO-T0 (n = 37) | MHO-T0 (n = 22) | MUO-T0 (n = 37) | |||||
High glucose | 13.6% (3) | 51.4% (19) | 0.004 | 4.5% (1) | 16.2% (6) | 0.240 | 0.625 | 1 × 10−4 |
High HbA1c | 0.0% (0) | 24.3% (9) | 0.012 | 0.0% (0) | 0.0% (0) | - | - | 0.004 |
High TC | 27.3% (6) | 62.2% (23) | 0.010 | 0.0% (0) | 2.7% (1) | 0.627 | 0.031 | 1 × 10−4 |
High LDL-c | 18.2% (4) | 45.9% (17) | 0.031 | 0.0% (0) | 13.5% (5) | 0.146 | 0.125 | 0.002 |
Low HDL-c | 40.9% (9) | 45.9% (17) | 0.706 | 22.7% (5) | 21.6% (8) | 0.921 | 0.344 | 0.049 |
High TG | 36.4% (8) | 51.4% (19) | 0.264 | 13.6% (3) | 27.0% (10) | 0.230 | 0.063 | 0.004 |
VARIABLES | MHO-t (n = 34) | MHO-m (n = 21) | MUO-m (n = 4) | p |
---|---|---|---|---|
Age (Years) | 42.03 ± 11.26 a | 43.43 ± 11.25 a | 42.75 ± 11.35 a | 0.828 |
BMI (Kg/m2) | 31.07 ± 4.30 a | 32.83 ± 4.18 a | 32.67 ± 2.45 a | 0.357 |
WC (cm) | 97.10 ± 9.97 a | 98.05 ± 10.06 a | 99.50 ± 5.00 a | 0.843 |
WtHR | 0.59 ± 0.05 a | 0.58 ± 0.05 a | 0.63 ± 0.04 a | 0.300 |
Glucose (mg/dL) | 90.68 ± 10.23 a | 85.47 ± 9.97 a | 94.75 ± 9.22 a | 0.153 |
HbA1c (%) | 3.94 ± 1.05 a | 3.61 ± 1.22 a | 2.77 ± 0.62 a | 0.124 |
HOMA-IR | 0.55 ± 0.54 a | 0.57 ± 0.48 a | 3.52 ± 0.70 b | 0.004 |
Insulin (mCu/mL) | 2.47 ± 2.45 a | 2.70 ± 2.23 a | 14.95 ± 1.55 b | 0.003 |
TC (mg/dL) | 140.71 ± 41.12 a | 123.25 ± 35.76 a | 92.50 ± 5.32 b | 0.031 |
LDL-c (mg/dL) | 95.32 ± 35.00 a | 83.71 ± 15.91 a | 97.00 ± 34.47 a | 0.503 |
HDL-c (mg/dL) | 46.52 ± 11.97 a | 47.28 ± 17.43 a | 45.50 ± 9.75 a | 0.470 |
TG (mg/dL) | 125.94 ± 58.74 a | 103.67 ± 65.20 a | 122.00 ± 57.50 a | 0.125 |
CRP (mg/dL) | 0.74 ± 0.58 a | 0.64 ± 0.51 a | 0.53 ± 0.33 a | 0.865 |
VAI | 2.16 ± 1.11 a | 1.41 ± 0.62 b | 3.33 ± 2.00 c | 0.010 |
CI | 1.25 ± 0.11 a | 1.20 ± 0.10 a | 1.27 ± 0.04 a | 0.322 |
ABSI | 0.08 ± 0.01 a | 0.07 ± 0.01 a | 0.08 ± 0.00 a | 0.227 |
CUN-BAE | 40.70 ± 8.45 a | 43.07 ± 6.77 a | 42.50 ± 5.03 a | 0.619 |
LAP | 131.50 ± 53.14 a | 100.85 ± 38.31 b | 135.92 ± 60.05 a | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna, M.; Pereira, S.; Saboya, C.; Ramalho, A. Relationship between Body Adiposity Indices and Reversal of Metabolically Unhealthy Obesity 6 Months after Roux-en-Y Gastric Bypass. Metabolites 2024, 14, 502. https://doi.org/10.3390/metabo14090502
Luna M, Pereira S, Saboya C, Ramalho A. Relationship between Body Adiposity Indices and Reversal of Metabolically Unhealthy Obesity 6 Months after Roux-en-Y Gastric Bypass. Metabolites. 2024; 14(9):502. https://doi.org/10.3390/metabo14090502
Chicago/Turabian StyleLuna, Mariana, Silvia Pereira, Carlos Saboya, and Andrea Ramalho. 2024. "Relationship between Body Adiposity Indices and Reversal of Metabolically Unhealthy Obesity 6 Months after Roux-en-Y Gastric Bypass" Metabolites 14, no. 9: 502. https://doi.org/10.3390/metabo14090502
APA StyleLuna, M., Pereira, S., Saboya, C., & Ramalho, A. (2024). Relationship between Body Adiposity Indices and Reversal of Metabolically Unhealthy Obesity 6 Months after Roux-en-Y Gastric Bypass. Metabolites, 14(9), 502. https://doi.org/10.3390/metabo14090502